Alphabets, Strings, and Languages

Chapter 2

# **Alphabets and Strings**

An *alphabet*  $\Sigma$  is a finite set of symbols.

A *string* or *word* is a finite sequence, possibly empty, of symbols drawn from some alphabet  $\Sigma$ .

- $\epsilon$  is the empty string.
- $\Sigma^*$  is the set of all possible strings over the alphabet  $\Sigma$ .

| Alphabet name    | Alphabet symbols   | Example strings            |
|------------------|--------------------|----------------------------|
| English alphabet | {a, b, c,, z}      | $\epsilon$ , aabbcg, aaaaa |
| Binary alphabet  | {0, 1}             | ε, 0, 001100               |
| A star alphabet  | {★, ❹, ☆, ☆, ☆, ☆} | ε, ΟΟ, Ο★☆☆★☆              |

# **String Operations**

Length:|s| is the number of symbols in string s. $|\varepsilon| = 0$ |1001101| = 7

**Concatenation:** *xy* is the **concatenation** of *x* and *y*. If x = good and y = bye, then xy = goodbye $\varepsilon$  is the identity for concatenation. So,  $x \varepsilon = \varepsilon x = x$ 

**Replication**: For each string *w* and each natural number i, the string  $w^i$  is defined as follows:  $w^0 = \varepsilon$ 

And if i > 0:

2. 0. 0

 $w^{i} = i$  copies of w concatenated together

So: 
$$a^3 = aaa$$
  
(bye)<sup>2</sup> = byebye  
 $a^0b^3 = bbb$ 

# **More String Operations**

**Reverse**: For each string w,  $w^{R}$  is the reverse of w.

**Concatenation and Reverse:** If *w* and *x* are strings, then  $(wx)^{R} = x^{R} w^{R}$ .

Example:  $(nametag)^{R} = (tag)^{R} (name)^{R} = gateman$ 

# Substrings

The string *x* is a **substring** of string *w* if it is a contiguous sequence of characters in *w*. If |x| < |w|, it is a *proper substring*.

Note 1: Every string is a substring of itself.

D. D. C. M.

Note 2: The empty string  $\epsilon$  is a substring of every string.

### Prefixes

*p* is a *prefix* of *t* if *t* = *px* 

*p* is a *proper prefix* of *t* iff: *p* is a prefix of *t* and  $p \neq t$ .

Note 1: Every string is a prefix of itself.

Note 2: The empty string  $\epsilon$  is a prefix of every string.

Examples:

The prefixes of abbb are: $\epsilon$ , a, ab, abb, abbb.The proper prefixes of abbb are: $\epsilon$ , a, ab, abb.

### Suffixes

s is a **suffix** of *t* if *t* = *x*s

s is a **proper suffix** of t iff: s is a suffix of t and  $s \neq t$ .

Note 1: Every string is a suffix of itself.

Note 2: The empty string  $\epsilon$  is a suffix of every string.

Examples:

The suffixes of abbb are: $\epsilon$ , b, bb, bbb, abbb.The proper suffixes of abbb are: $\epsilon$ , b, bb, bbb.

### Sets

- The set with no members is the *empty set*, denoted {} or  $\emptyset$
- If every element of set A is a member of set B, we say that A is a subset of B, denoted  $A \subseteq B$
- If set A is a subset of set B and A ≠ B, then A is a proper subset of B.
- The empty set is a subset of any set.
- Set membership:  $x \in S$  denotes that x is in the set **S**

### More on Sets

- The *union* of two sets,  $A \cup B$ , is the set that contains everything that is in *A*, in *B*, or in both.
- The *intersection* of two sets,  $A \cap B$ , is the set that contains only those elements that are in both A and B.
- Two sets A and B are **disjoint** if they have no elements in common, i.e.  $A \cap B = \emptyset$
- The set difference of A and B, A B, is the set that contains everything that is in A but not in B.

## **Even More on Sets**

- The complement of A, written A, is the set containing everything that is in some universal set U that is not in A.
- The *cardinality* of a set A, written |A|, is the number of elements in A.
- The *power set* of *A*, *denoted P(A)*, is the set of all subsets of *A*. Note that |P(A)| = 2<sup>|A|</sup>.

# Defining a Language

A *language* is a (finite or infinite) set of strings over an alphabet  $\Sigma$ .

**Examples:** 

Let  $\Sigma = \{a, b\}$ 

Some languages over  $\Sigma$ :

 $\emptyset$ , (the language with no strings in it) { $\epsilon$ }, (the language containing just the empty string) {a, b}, { $\epsilon$ , a, aa, aaa, aaaa, aaaaa}



# How Large is a Language?

The smallest language over any  $\Sigma$  is  $\emptyset$ , i.e. the language with no strings in it, so size 0.

The language  $\Sigma^*$  contains a countably infinite number of strings: the empty string  $\varepsilon$  and all strings of any length containing only the characters a and b.

# **Example Language Definition**

 $L = \{x \in \{a, b\}^* : all a's precede all b's\}$ 

Then:

abbb, aabb, and aaaaaaabbbbb are in L.

aba, ba, and abc are not in L.

What about:  $\epsilon$ , a, aa, and bb?

### Exercises

What are the following languages?

$$L = \{x : \exists y \in \{a, b\}^* : x = ya\}$$

 $L = \{w \in \{a, b\}^*: no \text{ prefix of } w \text{ contains } b\}$ 

 $L = \{w \in \{a, b\}^*: no \text{ prefix of } w \text{ starts with } a\}$ 

 $L = \{w \in \{a, b\}^*: every prefix of w starts with a\}$ 

## **Functions on Languages**

- Set operations
  - Union
  - Intersection
  - Complement
- Language operations
  - Concatenation
  - Kleene star

# **Concatenation of Languages**

If  $L_1$  and  $L_2$  are languages over  $\Sigma$ :

 $L_1L_2 = \{ w \in \Sigma^* : \exists s \in L_1 \text{ and } \exists t \in L_2 \text{ such that } w = st \}$ 

Example:  $L_1 = \{cat, dog\}$   $L_2 = \{apple, pear\}$  $L_1 L_2 = \{catapple, catpear, dogapple, dogpear\}$ 

{ $\epsilon$ } is the identity for concatenation:  $L{\epsilon} = {\epsilon}L = L$ 

 $\varnothing$  is the "zero" for concatenation:  $L \oslash = \oslash L = \oslash$ 

# Be Careful Concatenating Languages Defined Using Variables

 $L_1 = \{a^n: n \ge 0\} \\ L_2 = \{b^n : n \ge 0\}$ 

 $L_1 L_2 = \{a^n b^m : n, m \ge 0\}$  $L_1 L_2 \neq \{a^n b^n : n \ge 0\}$ 

### **Kleene Star**

$$L^* = \{\varepsilon\} \cup \\ \{w \in \Sigma^* : w = w_1 \ w_2 \ \dots \ w_k \text{ and } \\ w_1, \ w_2, \ \dots \ w_k \in L\}$$

Example:  $L = \{ dog, cat, fish \}$  $L^* = \{ \epsilon, dog, cat, fish, dogdog, dogcat, fishcatfish, fishdogdogfishcat, ... \}$ 

 $L^+ = L L^*$ 

 $L^+ = L^* - \{\varepsilon\}$  iff  $\varepsilon \notin L$ 

# **Lexicographic Ordering**

### Lexicographic Order:

- Shortest first
- Within a given length, "dictionary" order

What is the lexicographic enumeration of:

 $\{w \in \{a, b\}^* : |w| \text{ is even}\}$