Alphabets, Strings, and Languages

Chapter 2

Alphabets and Strings

An alphabet Σ is a finite set of symbols.
A string or word is a finite sequence, possibly empty, of symbols drawn from some alphabet Σ.
$-\varepsilon$ is the empty string.

- Σ^{*} is the set of all possible strings over the alphabet Σ.

Alphabet name	Alphabet symbols	Example strings
English alphabet	$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, z\}$	ع, a abbcg, aaaaa
Binary alphabet	$\{0,1\}$	ع, 0, 001100
A star alphabet		

String Operations

Length: $|s|$ is the number of symbols in string s.

$$
|\varepsilon|=0 \quad|1001101|=7
$$

Concatenation: $x y$ is the concatenation of x and y.

$$
\text { If } x=\text { good and } y=\text { bye, then } x y=\text { goodbye }
$$ ε is the identity for concatenation. So, $x \varepsilon=\varepsilon x=x$

Replication: For each string w and each natural number i, the string $w i$ is defined as follows:

$$
w^{0}=\varepsilon
$$

And if $\mathrm{i}>0$:
$w i=i$ copies of w concatenated together
So: $\quad a^{3}=$ aaa
$(b y e)^{2}=$ byebye
$a^{0} b^{3}=b b b$

More String Operations

Reverse: For each string w, w^{R} is the reverse of w.

Concatenation and Reverse: If w and x are strings, then $(w x)^{R}=x^{R} w^{R}$.

Example:
$(\text { nametag })^{R}=(\text { tag })^{R}(\text { name })^{R}=$ gateman

Substrings

The string x is a substring of string w if it is a contiguous sequence of characters in w. If $|x|<|w|$, it is a proper substring.

Note 1: Every string is a substring of itself.
Note 2: The empty string ε is a substring of every string.

Prefixes

p is a prefix of t if $t=p x$
p is a proper prefix of t iff: $\quad p$ is a prefix of t and $p \neq t$.
Note 1: Every string is a prefix of itself.
Note 2: The empty string ε is a prefix of every string.
Examples:
The prefixes of abbb are:
$\varepsilon, a, a b, a b b, a b b b$.
The proper prefixes of abbb are:
$\varepsilon, a, a . b, ~ a b b$.

Suffixes

s is a suffix of t if $t=x s$
s is a proper suffix of t iff: $\quad s$ is a suffix of t and $s \neq t$.
Note 1: Every string is a suffix of itself.
Note 2: The empty string ε is a suffix of every string.
Examples:
The suffixes of abbb are:
ε, b, b.b, bbb, abbb.
The proper suffixes of ab.b.b are:
ε, b, b.b, bbb.

Sets

- The set with no members is the empty set, denoted $\}$ or \varnothing
- If every element of set A is a member of set B, we say that A is a subset of B, denoted $A \subseteq B$
- If set A is a subset of set B and $A \neq B$, then A is a proper subset of B.
- The empty set is a subset of any set.
- Set membership: $x \in S$ denotes that x is in the set S

More on Sets

- The union of two sets, $A \cup B$, is the set that contains everything that is in A, in B, or in both.
- The intersection of two sets, $A \cap B$, is the set that contains only those elements that are in both A and B.
- Two sets A and B are disjoint if they have no elements in common, i.e. $A \cap B=\varnothing$
- The set difference of A and $B, A-B$, is the set that contains everything that is in A but not in B.

Even More on Sets

- The complement of A, written \bar{A}, is the set containing everything that is in some universal set U that is not in A.
- The cardinality of a set A, written $|A|$, is the number of elements in A.
- The power set of A, denoted $P(A)$, is the set of all subsets of A. Note that $|P(A)|=2^{|A|}$.

Defining a Language

A language is a (finite or infinite) set of strings over an alphabet Σ.

Examples:
Let $\Sigma=\{a, b\}$
Some languages over Σ :
\varnothing, (the language with no strings in it)
$\{\varepsilon\}$, (the language containing just the empty string)
$\{a, b\}$,
$\{\varepsilon, a, a a$, aaa, aaaa, aaaaa $\}$

How Large is a Language?

The smallest language over any Σ is \varnothing, i.e. the language with no strings in it, so size 0 .

The language Σ^{*} contains a countably infinite number of strings: the empty string ε and all strings of any length containing only the characters a and b.

Example Language Definition

$L=\left\{x \in\{a, b\}^{*}:\right.$ all a's precede all b's $\}$
Then:
abbb, aabb, and aaaaaaabbbbb are in L.
aba, ba, and abc are not in L.
What about: $\varepsilon, a, a a$, and $b b$?

Exercises

What are the following languages?
$L=\left\{x: \exists y \in\{a, b\}^{*}: x=y a\right\}$
$L=\left\{w \in\{a, b\}^{*}:\right.$ no prefix of w contains $\left.b\right\}$
$L=\left\{w \in\{a, b\}^{*}:\right.$ no prefix of w starts with $\left.a\right\}$
$L=\left\{w \in\{a, b\}^{*}:\right.$ every prefix of w starts with $\left.a\right\}$

Functions on Languages

- Set operations
- Union
- Intersection
- Complement
- Language operations
- Concatenation
- Kleene star

Concatenation of Languages

If L_{1} and L_{2} are languages over Σ :
$L_{1} L_{2}=\left\{w \in \Sigma^{*}: \exists s \in L_{1}\right.$ and $\exists t \in L_{2}$ such that $\left.w=s t\right\}$
Example:
$L_{1}=\{$ cat, dog $\}$
$L_{2}=\{$ apple, pear $\}$
$L_{1} L_{2}=\{$ catapple, catpear, dogapple, dogpear\}
$\{\varepsilon\}$ is the identity for concatenation:

$$
L\{\varepsilon\}=\{\varepsilon\} L=L
$$

\varnothing is the "zero" for concatenation:
$L \varnothing=\varnothing L=\varnothing$

Be Careful Concatenating Languages Defined Using Variables

$$
\begin{aligned}
& L_{1}=\left\{a^{n}: n \geq 0\right\} \\
& L_{2}=\left\{b^{n}: n \geq 0\right\} \\
& L_{1} L_{2}=\left\{a^{n} b^{m}: n, m \geq 0\right\} \\
& L_{1} L_{2} \neq\left\{a^{n} b^{n}: n \geq 0\right\}
\end{aligned}
$$

Kleene Star

$$
\begin{aligned}
L^{*}= & \{\varepsilon\} \cup \\
& \left\{w \in \Sigma^{*}: w=w_{1} w_{2} \ldots w_{\mathrm{k}}\right. \text { and } \\
& \left.w_{1}, w_{2}, \ldots w_{\mathrm{k}} \in L\right\}
\end{aligned}
$$

Example:
$L=\{$ dog, cat, fish $\}$
$L^{*}=\{\varepsilon$, dog, cat, fish, dogdog,
dogcat, fishcatfish,
fishdogdogfishcat, ...\}
$L^{+}=L L^{*}$
$L^{+}=L^{*}-\{\varepsilon\}$ iff $\varepsilon \notin L$

Lexicographic Ordering

Lexicographic Order:

- Shortest first
- Within a given length, "dictionary" order

What is the lexicographic enumeration of:

$$
\left\{w \in\{a, b\}^{*}:|w| \text { is even }\right\}
$$

