Finite State Machines

Chapter 5

Pattern Recognition

- Pattern Recognition:
- Given a specified pattern string, and
- a text string provided by the user,
- output:
- "yes" if the text contains pattern
- "no" if the text does not contain pattern
- DNA Example:
- looking for "CTT" in string of characters $\{\mathrm{C}, \mathrm{T}, \mathrm{A}, \mathrm{G}\}$
- Use a Finite State Machine

Finite State Machine (FSM)

- Pattern matching:
- Number of states?
$|P|+1$
- Number of transitions?
$(|P|+1)$ * (\# chars in alphabet)
- Not so far from programming:
- Sequential execution
- Conditional execution
- Iterative execution
- NOTE: Assuming text is being read in one character at a time, we only need memory to keep track of the state.

Languages and Machines

Regular Languages

Finite State Machines

- Deterministic (DFSM)
- Nondeterministic (NDFSM)

Definition of a DFSM

$M=(K, \Sigma, \delta, s, A)$, where:
K is a finite set of states
Σ is an alphabet
$s \in K$ is the initial state
$A \subseteq K$ is the set of accepting states, and
δ is the transition function from $(K \times \Sigma)$ to K

Accepting by a DFSM

Informally, M accepts a string w iff M is in an accepting state (a state in A) when it has finished reading w.

The language accepted by M, denoted $L(M)$, is the set of all strings accepted by M.

Configurations of DFSMs

A configuration of a DFSM is an element of:

$$
K \times \Sigma^{*}
$$

It captures the two things that determine the DFSM's future behavior:

- its current state
- the input that is still left to read.

The initial configuration of a DFSM on input w is (s, w)

The Yields Relations

The yields-in-one-step relation |-м:
$(q, w) \mid{ }_{-}\left(q^{\prime}, w^{\prime}\right)$ iff

- $w=a w^{\prime}$ for some symbol $a \in \Sigma$, and
- $\delta(q, a)=q^{\prime}$

The yields-in-zero-or-more-steps relation I-m * is the reflexive, transitive closure of $\mid-m$

Computations Using FSMs

A computation byDFSM M is a finite sequence of configurations $C_{0}, C_{1}, \ldots, C_{n}$ for some $n \geq 0$ such that:

- C_{0} is an initial configuration,
- C_{n} is of the form (q, ε), for some state $q \in K_{M}$,
- C $\left.\left.\left.\left._{0}\right|_{-м} C_{1}\right|_{-} C_{2}\right|_{-м} \ldots\right|_{-} C_{n}$.

Accepting and Rejecting

A DFSM M accepts a string wiff:

$$
(s, w) \mid-м \text { * }(q, \varepsilon), \text { for some } q \in A \text {. }
$$

A DFSM M rejects a string wiff:

$$
(s, w) \mid-{ }_{M}^{*}(q, \varepsilon) \text {, for some } q \notin A_{M} .
$$

The language accepted by M, denoted $L(M)$, is the set of all strings accepted by M.

Theorem: Every DFSM M, on input s, halts in $|s|$ steps.

An Example Computation

An FSM to accept odd integers:

On input 235, the configurations are:

$\left(q_{0}, 235\right)$	$\mid-m$	$\left(q_{0}, 35\right)$
$\left(q_{0}, 35\right)$	$\mid-m$	$\left(q_{1}, 5\right)$
$\left(q_{1}, 5\right)$	$\mid-m$	$\left(q_{1}, \varepsilon\right)$

Thus $\left(q_{0}, 235\right) \mid-$ м $^{*}\left(q_{1}, \varepsilon\right)$

A Simple FSM Example

$$
L=\left\{w \in\{a, b\}^{*}:\right.
$$

every a is immediately followed by a b\}.

Parity Checking

$L=\left\{w \in\{0,1\}^{*}: w\right.$ has odd parity $\}$.

No More Than One b

$L=\left\{w \in\{a, b\}^{*}: w\right.$ has no more than one $\left.b\right\}$.

Checking Consecutive Characters

$$
L=\left\{w \in\{a, b\}^{*}:\right.
$$

no two consecutive characters are the same\}.

Exercise

Checking Consecutive Characters

$$
L=\left\{w \in\{a, b\}^{*}:\right.
$$

no two consecutive characters are the same\}.

What's the mistake?

Even Segments of a's

$L=$
$\left\{w \in\{a, b\}^{*}:\right.$ every a region in w is of even length $\}$

Exercise

Even Segments of a's

$L=$
$\left\{w \in\{a, b\}^{*}:\right.$ every a region in w is of even length $\}$

Even \# of a's and Odd \# of b's

Let $L=\left\{w \in\{a, b\}^{*}: w\right.$ contains an even number of a's and an odd number of b's\}

Exercise

Even \# of a's and Odd \# of b's

Programming FSMs

$$
\begin{aligned}
& L=\left\{w \in\{a, b\}^{*}: w\right. \text { does not contain the substring } \\
& \text { aab\}. }
\end{aligned}
$$

Hint: Start with a machine for $\neg L$:

Programming FSMs

$$
\begin{aligned}
& L=\left\{w \in\{a, b\}^{*}: w\right. \text { does not contain the substring } \\
& \text { aab\}. }
\end{aligned}
$$

Start with a machine for $\neg L$:

How must it be changed?

Homework

- Chapter 5

2)

a)
e)
i) (DFSM and NDFSM)
m) (DFSM and NDFSM)
4) all

Definition of an NDFSM

$M=(K, \Sigma, \Delta, s, A)$, where:
K is a finite set of states
Σ is an alphabet
$s \in K$ is the initial state
$A \subseteq K$ is the set of accepting states, and
Δ is the transition relation. It is a finite subset of

$$
(K \times(\Sigma \cup\{\varepsilon\})) \times K
$$

NDFSM Transitions

Transitions are more complicated:

- "epsilon" transitions, i.e. change state without reading a character of input
- multiple transitions from a state for a given character
- no transition for a character from a state, i.e. the computation can "block"

Sources of Nondeterminism

Accepting by an NDFSM

M accepts a string w iff there exists some path that ends in an accepting state with the entire input read/consumed.

The language accepted by M, denoted $L(M)$, is the set of all strings accepted by M.

Sometimes simpler and smaller than a DFSM that recognizes the same language.

Analyzing Nondeterministic FSMs

Does this FSM accept:

> baaba

Remember: we just have to find one accepting path.

NDFSM Example

$L=\left\{w \in\{a, b\}^{*}: w\right.$ is made up of all a's or all b' $\left.s\right\}$.

- DFSM?
- NDFSM?

Optional Substrings

$L=\left\{w \in\{a, b\}^{*}: w\right.$ is made up of an optional a followed by aa followed by zero or more b' s$\}$.

Analyzing Nondeterministic FSMs

Two ways to think about it:

1) Explore a search tree:

2) Follow all paths in parallel (sets of states M could be in)

Multiple Sublanguages

$$
L=\left\{w \in\{a, b\}^{*}: w=\text { aba or }|w| \text { is even }\right\} .
$$

The Missing Letter Language

Pattern Matching

$$
L=\left\{w \in\{a, b, c\}^{*}: \exists x, y \in\{a, b, c\}^{*}(w=x \text { abcabb } y)\right\} .
$$

A DFSM:

Pattern Matching
$L=\left\{w \in\{a, b, c\}^{*}: \exists x, y \in\{a, b, c\}^{*}(w=x\right.$ abcab.b $\left.y)\right\}$.

An NDFSM:

Multiple Patterns

$$
\begin{aligned}
L=\{ & \{w \\
& \left\{(\mathrm{a}, \mathrm{~b}\}^{*}: \exists x, y \in\{\mathrm{a}, \mathrm{~b}\}^{*}\right. \\
& ((w=x \text { abbaa } y) \vee(w=x \text { baba } y))\} .
\end{aligned}
$$

Exercise

Multiple Patterns

$$
\begin{aligned}
L=\{ & \left\{w \in\{\mathrm{a}, \mathrm{~b}\}^{*}: \exists x, y \in\{\mathrm{a}, \mathrm{~b}\}^{*}\right. \\
& ((w=x \text { abbaa } y) \vee(w=x \text { baba } y))\} .
\end{aligned}
$$

Checking from the End

$$
L=\left\{w \in\{a, b\}^{*}:\right.
$$

the fourth to the last character is a\}
Exercise

Checking from the End

$$
L=\left\{w \in\{a, b\}^{*}:\right.
$$

the fourth to the last character is $a\}$

Homework

- Chapter 5

2)

a)
e)
i) (DFSM and NDFSM)
m) (DFSM and NDFSM)
4) all
5) all
6) f

Dealing with ε Transitions

$$
\operatorname{eps}(q)=\left\{p \in K:(q, w) \mid-{ }^{*} M(p, w)\right\} .
$$

$\operatorname{eps}(q)$ is the closure of $\{q\}$ under the relation $\{(p, r)$: there is a transition $(p, \varepsilon, r) \in \Delta\}$.

An Example of eps

$$
\begin{aligned}
& \operatorname{eps}\left(q_{0}\right)= \\
& \operatorname{eps}\left(q_{1}\right)= \\
& \operatorname{eps}\left(q_{2}\right)= \\
& \operatorname{eps}\left(q_{3}\right)=
\end{aligned}
$$

An Example of eps

$$
\begin{aligned}
& \operatorname{eps}\left(q_{0}\right)=\left\{q_{0}, q_{1}, q_{2}\right\} \\
& \operatorname{eps}\left(q_{1}\right)=\left\{q_{1}, q_{2}\right\} \\
& \operatorname{eps}\left(q_{2}\right)=\left\{q_{2}\right\} \\
& \operatorname{eps}\left(q_{3}\right)=\left\{q_{3}\right\}
\end{aligned}
$$

Simulating an NDFSM

simulateNDFSM (NDFSM M, string w) =

1. current-state $=e p s(s)$.
2. While any input symbols in w remain to be read do:
3. $c=$ get-next-symbol(w).
4. next-state $=\varnothing$.
5. For each state q in current-state do:

For each state p such that $(q, c, p) \in \Delta$ do: next-state $=$ next-state \cup eps (p).
4. current-state $=$ next-state.
3. If current-state contains any states in A, accept. Else reject.

Nondeterministic and Deterministic FSMs

Clearly: $\{$ Languages accepted by a DFSM $\} \subseteq$ \{Languages accepted by a NDFSM\}

More interestingly:
Theorem: For each NDFSM, there is an equivalent DFSM.
HOW? (look back at "Simulating an NDFSM")

General Idea

- Sets of states; takes care of:
- Epsilon transitions
- Multiple transitions on same character
- Can take care of no transition situations with trap states
- NOTE: The number of states in the DFSM can grow exponentially!

Nondeterministic and Deterministic FSMs

Theorem: For each NDFSM, there is an equivalent DFSM.
Proof: By construction:
Given a NDFSM $M=(K, \Sigma, \Delta, s, A)$, we construct $\quad M^{\prime}=\left(K^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, A^{\prime}\right)$, where:

$$
\begin{aligned}
& K^{\prime}=P(K) \\
& s^{\prime}=\operatorname{eps}(s) \\
& A^{\prime}=\{Q \subseteq K: Q \cap A \neq \varnothing\} \\
& \delta^{\prime}(Q, a)=\bigcup\{e p s(p): p \in K \text { and } \\
& \qquad(q, a, p) \in \Delta \text { for some } q \in Q\}
\end{aligned}
$$

An Algorithm for Constructing the Deterministic FSM

1. Compute the eps(q)'s.
2. Compute $s^{\prime}=e p s(s)$.
3. Compute δ^{\prime}.
4. Compute $K^{\prime}=$ a subset of $P(K)$.
5. Compute $A^{\prime}=\left\{Q \in K^{\prime}: Q \cap A \neq \varnothing\right\}$.

The Algorithm NDFSMtoDFSM

NDFSMtoDFSM (NDFSM M) =

1. For each state q in K_{M} do:
1.1 Compute eps(q).
2. $s^{\prime}=e p s(s)$
3. Compute δ^{\prime} :
3.1 active-states $=\{s\}$.
$3.2 \delta^{\prime}=\varnothing$.
3.3 While there exists some element Q of active-states for which δ ' has not yet been computed do:

For each character c in Σ_{M} do: new-state $=\varnothing$.
For each state q in Q do:
For each state p such that $(q, c, p) \in \Delta$ do:
new-state $=$ new-state $\cup e p s(p)$.
Add the transition (Q, c, new-state) to δ^{\prime}.
If new-state \notin active-states then insert it.
4. $K^{\prime}=$ active-states.
5. $A^{\prime}=\left\{Q \in K^{\prime}: Q \cap A \neq \varnothing\right\}$.

Exercise

$L=\left\{w \in\{a, b\}^{*}: w\right.$ is made up of an optional a followed by aa followed by zero or more b' s$\}$.

Homework

- Chapter 5

2)

a)
e)
i) (DFSM and NDFSM)
m) (DFSM and NDFSM)
4) all
5) all
6) f
9) a

Homework

- Chapter 5

2)

a)
e)
i) (DFSM and NDFSM)
m) (DFSM and NDFSM)
4) all
5) all
6) f
9) a

Prove DFSM <-> NDFSM?

- DFSM -> NDFSM?
- Trivial (why?)
- NDFSM -> DFSM?
- Think about it for next time
- Hint: Prove equivalent computation on any possible string of any length

