
CS 2210:  
Theory of Computation

Spring, 2019



Administrative Information
• Background survey
• Textbook:  E. Rich,  Automata, Computability, and 

Complexity: Theory and Applications, Prentice-Hall, 
2008.

• Book website: 
http://www.cs.utexas.edu/~ear/cs341/automatabook/

• My Office Hours: 
– Monday, 6:00-8:00pm, Searles 224
– Tuesday, 1:00-2:30pm, Searles 222 

• TAs 
– Anjulee Bhalla:  Hours TBA, Searles 224
– Ryan St. Pierre, Hours TBA, Searles 224

http://www.cs.utexas.edu/~ear/cs341/automatabook/


• How to do proofs
• Models of computation
• What’s the difference between computability and 

complexity?
• What’s the Halting Problem?
• What are P and NP?
• Why do we care whether P = NP?
• What are NP-complete problems?
• Where does this make a difference outside of this class?
• How to work the answers to these questions into the 

conversation at a cocktail party…

What you can expect 
from the course



What I will expect from you
• Problem Sets (25%):

– Goal: Problems given on Mondays and Wednesdays
– Due the next Monday
– Graded by following Monday
– A learning tool, not a testing tool
– Collaboration encouraged; more on this in next slide

• Quizzes (15%)
• Exams (2 non-cumulative, 30% each):

– Closed book, closed notes, but…
– Can bring in 8.5 x 11 page with notes on both sides

• Class participation:  Tiebreaker



Other Important Things
• Go to the TA hours
• Study and work on problem sets in groups
• Collaboration Issues:

– Level 0 (In-Class Problems)
• No restrictions

– Level 1 (Homework Problems)
• Verbal collaboration
• But, individual write-ups

– Level 2 (not used in this course)
• Discussion with TAs only

– Level 3 (Exams)
• Professor clarifications only



Right now…
• What does it mean to study the “theory” of something?
• Experience with theory in other disciplines?
• Relationship to practice?

– “In theory, theory and practice are the same.  In practice, they’re 
not.”

• What would/should/could a theory of computation look 
like?
– Would it be something like a “theory of refrigeration”? 
– What would make it useful?
– In what way?

• Why should we care?



The Meaning of Life
"I went to the woods because I wished to live deliberately, to 
front only the essential facts of life, and see if I could not learn 
what it had to teach, and not, when I came to die, discover that 
I had not lived.  I did not wish to live what was not life, living is 
so dear; nor did I wish to practice resignation, unless it was 
quite necessary.  I wanted to live deep and suck out all the 
marrow of life, to live so sturdily and Spartan-like as to put to 
rout all that was not life, to cut a broad swath and shave close, 
to drive life into a corner, and reduce it to its lowest terms, and, 
if it proved to be mean, why then to get the whole and genuine 
meanness of it, and publish its meanness to the world; or if it 
were sublime, to know it by experience, and to be able to give 
a true account of it in my next excursion.”

Walden, Henry David Thoreau



The Meaning of CSt
"I went to CS 2210 because I wished to compute deliberately, 
to front only the essential facts of computation, and see if I 
could not learn what it had to teach, and not, when I graduated, 
discover that I had no idea what a Turing machine -- or NP-
completeness -- was.  I did not wish to try to compute what 
was not computable; nor did I wish to give up trying to find an 
efficient algorithm for a particular problem, unless it was quite 
necessary.  I wanted to compute deeply and suck all of the 
theorems out of my axioms, to compute so abstractly and 
provably as to put to rout all that was not computation, to drive 
computation into a corner, and reduce it to its lowest terms, 
and, if some things proved to be not computable, why then to 
get the whole and genuine undecidability of it, and publish it to 
the world; or, if it were sublime, to know it by experience."

CS 289, Stephen Majercik
(with apologies to Thoreau)



Computer Science is…



IBM 7090 Programming in the 1950’s 
ENTRY SXA 4,RETURN

LDQ X
FMP A
FAD B
XCA
FMP X
FAD C
STO RESULT

RETURN TRA 0
A BSS 1
B BSS 1
C BSS 1
X BSS 1
TEMP BSS 1
STORE BSS 1

END



Programming in the 1970’s 
(IBM 360)

//MYJOB JOB (COMPRESS),
'VOLKER BANDKE',CLASS=P,COND=(0,NE)

//BACKUP EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=MY.IMPORTNT.PDS
//SYSUT2 DD DISP=(,CATLG),

DSN=MY.IMPORTNT.PDS.BACKUP,
// UNIT=3350,VOL=SER=DISK01,
// DCB=MY.IMPORTNT.PDS,

SPACE=(CYL,(10,10,20))
//COMPRESS EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=*
//MYPDS DD DISP=OLD,DSN=*.BACKUP.SYSUT1
//SYSIN DD *
COPY INDD=MYPDS,OUTDD=MYPDS
//DELETE2 EXEC PGM=IEFBR14
//BACKPDS DD DISP=(OLD,DELETE,DELETE),

DSN=MY.IMPORTNT.PDS.BACKUP



APL



Algorithms
• How many have had Algorithms?
• A step removed from programming
• How do we design algorithms to solve problems?

– Divide and conquer
– Greedy
– Dynamic Programming

• How do we measure the “goodness” of an algorithm?
• But we’re still talking about specific problems



Theory
• Talking about classes of problems
• What can we say about all possible computations on 

all possible computers?
• What makes some classes of problems 

computationally hard and others computationally 
easy?

• What exactly do we get from resources like time and 
space?

• What is possible/impossible? (don't want to waste time 
trying to do impossible things)

• And we want to be able to prove our assertions



How?
• Devise a simplified/abstract model of computation and 

say that computation is what this model can do!
• Seems like kind of a leap, but all these models are 

equivalent:
– Lambda calculus
– Turing machines
– Markov algorithms
– 2-stack automata
– Post formal systems
– Unrestricted grammars
– Partial recursive functions
– Recursively enumerable languages

• So it feels like we’re not missing anything



Start With Simple Models
• Finite state automata
• Pushdown automata
• Many ideas carry over to Turing machines
• Easy to build/program, but have practical uses:

– Pattern matching in text editors
– Lexical analysis and language parsing in compilers
– HTML parsing in web browsers
– Graphical user interfaces in operating systems
– Controlling NPCs in computer games
– Control units in elevators, traffic signals, net protocol stacks

• Introduces notion of:
– COMPUTATION = LANGUAGE RECOGNITION/ACCEPTANCE



Computation =
Language Acceptance

• A machine accepts a language if, given a string 
composed of the symbols that language is based on:
– The machine outputs yes if the string is in the language
– The machine outputs no if the string is not in the language

• Can make comparisons of abstract machines based on 
language acceptance, e.g.
– Machine A is at least as powerful as machine B if machine A 

can recognize all of the languages that B can.
– Machine A is more powerful than B, if in addition, it can be 

programmed to recognize at least one additional language. 
– Two machines are equivalent if they can be programmed to 

recognize precisely the same set of languages.   



Artificial?  Restrictive?
• Complex problems can be reduced to language 

recognition problems, e.g. TSP
• TSP: given weighted graph G = (V,E), what is the 

minimum cost circuit that visits every node exactly once?
• TSP = given weighted graph G = (V,E) and cost C, is 

there a circuit that visits every node exactly once that 
costs <= C?
– Suppose we have a way of encoding G and C using characters 

from some alphabet
– Suppose that we have a machine that "recognizes" those 

problem encodings for which the answer is yes
• Now we have a way of solving the TSP optimization 

problem



Traveling Salesperson
• Use binary search to find C*, the minimum cost circuit
• Fine the actual circuit by removing one edge ei at a time 

and using the machine to find out whether the graph 
without that edge G = (V, E – {ei}) still has a circuit of 
cost <= C*
– No?  Put ei back in
– Yes? Leave ei in

• End up with only those edges in the minimum cost circuit



Grammars
• Grammars can generate languages
• Like English, only a lot simpler



Three Kinds of Entities

• Machines recognize Languages
• Grammars generate Languages

Machines Grammars

Languages

recognize/define generate



Can Go in Both Directions

• Machines of a particular type recognize languages in a 
particular class and languages in that class have machines 
that recognize them 

• Grammars of a particular type generate languages in a 
particular class and languages in that class have grammars 
that generate them

Machines Grammars

Languages



Classes of Languages
• Regular Languages = 

Finite State Automata = 
Regular Grammars 

• Context-Free Languages = 
Pushdown Automata = 

Context-Free Grammars

• NOTE:  Notions of finite automata and regular 
expressions were developed with models of neuron nets 
(biologists) and switching circuits (electrical engineers) in 
mind.



Hierarchy

Machines
• FSA

• N-PDA

• Linear Bounded 
Automata

• Turing machines

Languages
• Regular

• Context-Free

• Context-Sensitive

• Recursively 
Enumerable 
(Semidecidable)

Grammars
• Regular

• Context-Free

• Context-Sensitive

• Unrestricted



Hierarchy

Machines
• FSA

• N-PDA

• Linear Bounded 
Automata

• Turing machines

Languages
• Regular

• Context-Free

• Context-Sensitive

• Recursively 
Enumerable 
(Semidecidable)

Grammars
• Regular

• Context-Free

• Context-Sensitive

• Unrestricted



Value of Theory
• Slick program in CS 1101 with great documentation
• A
• C program in CS 2101 with pointers that don’t crash the 

program
• A-
• Neural network in CS 3445 that learns how to classify all 

34,874 items in the test set with 90% accuracy
• A+
• Knowledge of the theoretical underpinnings of computer 

science
• Priceless



More concretely….
• Useful when it’s 3 in the morning and your program just 

doesn’t work?
• Unlikely
• Useful when you’re part of a team working on a robotics 

project?
• Possibly
• Developing algorithms for data mining on web 

documents using graph representations?
• Definitely



Applications of the Theory
• FSMs for parity checkers, vending machines, 

communication protocols, and building security 
devices.

• Using FSMs to control NPCs in video games.
• Interactive games as nondeterministic FSMs.
• Programming languages, compilers, and context-free 

grammars.
• Natural languages are mostly context-free.  Some 

speech understanding systems use probabilistic FSMs.
• Computational biology: DNA and proteins are strings. 
• Artificial intelligence: the undecidability of first-order 

logic.



Summary
• Computation can be viewed as language recognition or 

acceptance
– Machines are “equivalent” to Languages
– Grammars are “equivalent” to Languages
– Machines are “equivalent” to Grammars

• Start with severely restricted model of computation that 
cannot compute everything

• Loosen restrictions until we get a model that can 
compute everything that’s computable

• Go beyond:
– Not everything is computable
– Complexity theory


