Divide-and-Conquer: The Maximum Partial Sum (CLRS 4.1)

Laura Toma, Bowdoin College

$\mathrm{D} \& \mathrm{C}$ is a powerful technique for solving problems:
To Solve problem P :

1. Divide P into smaller problems P_{1}, P_{2}
2. Conquer by solving the (smaller) subproblems recursively.
3. Combine solutions to P_{1}, P_{2} into solution for P .

The Maximum Partial Sum (Maximum Sub-Array) Problem

Definition. The maximum partial sum (MPS) problem is defined as follows. Given an array A of n integers, find values of i and j with $0 \leq i \leq j<n$ such that

$$
A[i]+A[i+1]+\ldots+A[j]=\sum_{k=i}^{j} A[k]
$$

is maximized. Sometimes this is called the maximum sub-array problem.

Example. For $A=[4,-5,6,7,8,-10,5]$, the solution to MPS is $i=2$ and $j=4(6+7+8=21)$.
What if there are no negative values?

Applications. This problem might be encounter in financial analysis, and the textbook offers a nice explanation. Basically, think of the values in the array as relative gain/loss of a stock (with respect to some fixed initial value). Finding the maximum sub-array would (retro-actively) tell you when you should have purchased and sold a stock in order to maximize gain. There are also applications in genomics. More to the point, perhaps, this problem is also asked in interviews. We'll come up with an $O(n \lg n)$ solution via divide-and-conquer. A faster, linear solution is also possible.

In-Class Work

1. Consider the following array:

$$
A=[13,-3,-25,20,-3,-16,-23,18,20,-7,12,-5,-22,15,-4,7]
$$

Find MPS (what is $i=?, j=?$).
2. Describe an algorithm to find the MPS of an array A and analyze its running time. We'll refer to this as the simple, or straightforward algorithm.

As always, the question is: Can we do better? For e.g., can we solve MPS in $O(n \lg n)$ time? As it turns out, a neat $O(n \lg n)$ algorithm for MPS is possible via divide-and-conquer. We'll come up with it in a few steps.
3. First, we'll consider an easier variant of the problem. Namely, consider that the left index l is given and you want to find the index $j(\ell \leq j<n)$ such that

$$
A[\ell]+A[\ell+1]+\ldots+A[j]=\sum_{k=\ell}^{j} A[k]
$$

is maximized. Let's call this problem $\operatorname{LMPS}(\ell)$, namely the maximal partial sum starting at left position ℓ.
Example: For the array $[4,-5,6,7,8,-10,5]$ the solution to $\operatorname{LMPS}(3)$ is $j=4,(7+8=15)$.
4. Similarly, given the right index r, you want to find the value $i(0 \leq i \leq r)$ such that

$$
A[i]+A[i+1]+\ldots+A[r]=\sum_{k=i}^{r} A[k]
$$

is maximized.
Example: For $A=[4,-5,6,7,8,-10,5]$ the solution to $\operatorname{RMPS}(6)$ is $i=2,(5-10+8+7+6=$ 16).

Describe an $O(n)$ time algorithm for each of these problems: $L M P S(\ell)$ and $\operatorname{RMPS}(r)$.
5. If someone (an oracle) told you that a certain index k is part of the MPS, does that help? how would you use that to find the MPS?
6. Describe an $O(n \log n)$ divide-and-conquer algorithm for solving $M P S$.

