
Divide-and-Conquer: The Maximum Partial Sum

(CLRS 4.1)

Laura Toma, Bowdoin College

D&C is a powerful technique for solving problems:

To Solve problem P:

1. Divide P into smaller problems P1, P2

2. Conquer by solving the (smaller) subproblems recursively.

3. Combine solutions to P1, P2 into solution for P.

The Maximum Partial Sum (Maximum Sub-Array) Problem

Definition. The maximum partial sum (MPS) problem is defined as follows. Given an array A
of n integers, find values of i and j with 0 ≤ i ≤ j < n such that

A[i] + A[i + 1] + ... + A[j] =
j∑

k=i

A[k]

is maximized. Sometimes this is called the maximum sub-array problem.

Example. For A = [4,−5, 6, 7, 8,−10, 5], the solution to MPS is i = 2 and j = 4 (6 + 7 + 8 = 21).

What if there are no negative values?

Applications. This problem might be encounter in financial analysis, and the textbook offers a
nice explanation. Basically, think of the values in the array as relative gain/loss of a stock (with
respect to some fixed initial value). Finding the maximum sub-array would (retro-actively) tell
you when you should have purchased and sold a stock in order to maximize gain. There are also
applications in genomics. More to the point, perhaps, this problem is also asked in interviews.
We’ll come up with an O(n lg n) solution via divide-and-conquer. A faster, linear solution is also
possible.

1

In-Class Work

1. Consider the following array:

A = [13,−3,−25, 20,−3,−16,−23, 18, 20,−7, 12,−5,−22, 15,−4, 7]

Find MPS (what is i =?, j =?).

2. Describe an algorithm to find the MPS of an array A and analyze its running time. We’ll
refer to this as the simple, or straightforward algorithm.

As always, the question is: Can we do better? For e.g., can we solve MPS in O(n lg n) time?
As it turns out, a neat O(n lg n) algorithm for MPS is possible via divide-and-conquer. We’ll
come up with it in a few steps.

3. First, we’ll consider an easier variant of the problem. Namely, consider that the left index l
is given and you want to find the index j (` ≤ j < n) such that

A[`] + A[` + 1] + ... + A[j] =
j∑

k=`

A[k]

is maximized. Let’s call this problem LMPS(`), namely the maximal partial sum starting
at left position `.

Example: For the array [4,-5,6,7,8,-10,5] the solution to LMPS(3) is j = 4, (7 + 8 = 15).

2

4. Similarly, given the right index r, you want to find the value i (0 ≤ i ≤ r) such that

A[i] + A[i + 1] + ... + A[r] =
r∑

k=i

A[k]

is maximized.

Example: For A = [4,−5, 6, 7, 8,−10, 5] the solution to RMPS(6) is i = 2, (5−10+8+7+6 =
16).

Describe an O(n) time algorithm for each of these problems: LMPS(`) and RMPS(r).

5. If someone (an oracle) told you that a certain index k is part of the MPS, does that help?
how would you use that to find the MPS?

6. Describe an O(n log n) divide-and-conquer algorithm for solving MPS.

3

4

