Traversing a graph: BFS and DFS

(CLRS 22.2, 22.3)
Laura Toma, csci2200, Bowdoin College

The most fundamental graph problem is traversing the graph.

- There are two standard (and simple) ways of traversing all vertices/edges in a graph in a systematic way: BFS and DFS.
- Most fundamental algorithms on graphs (e.g finding cycles, connected components) are applications of graph traversal.
- Like finding the way out of a maze (maze $=$ graph $)$. Need to be careful to not get stuck in the graph, so we need to mark vertices that we've encountered; and we need to make sure we don't skip anything.
- Basic idea: over the course of the traversal a vertex progresses from undiscovered, to discovered, to completely-discovered:
- undiscovered: initially (WHITE)
- discovered: after it's encountered, but before it's completely explored (GRAY)
- completely explored: the vertex after we visited all its incident edges (BLACK)
- We start with a single vertex and evaluate its outgoing edges:
- If an edge goes to an undiscoverd vertex, we mark it as discovered and add it to the list of discovered vertices.
- If an edge goes to a completely explored vertex, we ignore it (we've already been there)
- If an edge goes to an already discovered vertex, we ignore it (it's on the list).
- Analysis: Each edge is visited once (for directed graphs), or twice (undirected graphs - once when exploring each endpoint $) \Rightarrow O(|V|+|E|)$
- Depending on how we store the list of discovered vertices we get BFS or DFS:
- queue: explore oldest vertex first. The exploration propagates in layers form the starting vertex.
- stack: explore newest vertex first. The exploration goes along a path, and backs up only when new unexplored vertices are not available.

Breadth-first search (BFS)

- We use a queue Q to hold all gray vertices - vertices we have seen but are still not done with.
- We remember from which vertex a given vertex v is colored gray - i.e. the node that discovered v first; this is called parent $[v]$.
- We also maintain $d[v]$, the length of the path from s to v. Initially $d[s]=0$.

```
BFS(s)
    \(\operatorname{color}[s]=\) gray
    \(d[s]=0\)
    ENQUEUE \((Q, s)\)
    WHILE \(Q\) not empty DO
        DEQUEUE \((Q, u)\)
        FOR each \(v \in \operatorname{adj}[u]\) DO
            IF color \([v]=\) white THEN
            color \([v]=\) gray
            \(d[v]=d[u]+1\)
            parent \([v]=\mathrm{u} / /(\mathrm{u}, \mathrm{v})\) is a tree-edge
            ENQUEUE \((Q, v)\)
        // ELSE v is not white, ( \(\mathrm{u}, \mathrm{v}\) ) is non-tree edge
    \(\operatorname{color}[u]=\) black
```

- Example (for directed graph):

- If graph is not connected we start the traversal at all nodes until the entire graph is explored.

BFS(G)

FOR each vertex $u \in V$ DO
IF color $[u]=$ white $\operatorname{THEN} \operatorname{BFS}(u)$

Properties of BFS

- During BFS(v) each edge in G is classified as:
- tree edge: an edge leading to an unmarked vertex
- non-tree edge: an edge leading to a marked vertex.
- Each vertex, except the source vertex s, has a parent; these edges (v, parent $[v]$) define a tree, called the BFS-tree.
- Lemma: On a directed graph, BFS(s) reaches all vertices reachable from s. On an undirected graph, $\operatorname{BFS}(\mathrm{s})$ visits all vertices in the connected component (CC) of s, and the BFStree obtained is a spanning tree of $C C(s)$.

Proof idea: Assume by contradiction that there is a vertex v in $\mathrm{CC}(\mathrm{u})$ that is not reached by $\operatorname{BFS}(u)$. Since u, v are in same CC, there must exist a path $v_{0}=u, v_{1}, v_{2}, \ldots, v_{k}, v$ connecting u to v. Let v_{i} be the last vertex on this path that is reached by $\operatorname{BFS}(\mathrm{u})\left(v_{i}\right.$ could be $u)$. When exploring v_{i}, BFS must have explored edge $\left(v_{i}, v_{i+1}\right), \ldots$, leading eventually to v. Contradiction.

- Lemma: BFS(s) runs in $O\left(\left|V_{c}\right|+\left|E_{c}\right|\right)$, where V_{c}, E_{c} are the number of vertices and edges in $\mathrm{CC}(\mathrm{s})$. When run on the entire graph, $\operatorname{BFS}(\mathrm{G})$ runs in $O(|V|+|E|)$ time. Put differently, BFS runs in linear time in the size of the graph.
Proof: It explores every vertex once. Once a vertex is marked, it's not explored again. It traverses each edge twice. Overall, $O(|V|+|E|)$.
- Lemma: Let x be a vertex reached in $\operatorname{BFS}(\mathrm{s})$. Its distance $d[x]$ represents the the shortest path from s to x in G.
Proof idea: All vertices v which are one edge away from s are discovered when exploring s and are set with $d[v]=1$. Similarly all vertices that are one edge away from vertices at distance 1 , are explored and their distance set to $d=2$. And so on. Make this formal with induction.
- Lemma: For undirected graphs, for any non-tree edge (x, y) in $\operatorname{BFS}(v)$, the level of x and y differ by at most one.
Proof idea: Observe that, at any point in time, the vertices in the queue have distances that differ by at most 1 . Let's say x comes out first from the queue; at this time y must be already marked (because otherwise (x, y) would be a tree edge). Furthermore y has to be in the queue, because, if it wasn't, it means it was already deleted from the queue and we assumed x was first. So y has to be in the queue, and we have $|d(y)-d(x)| \leq 1$ by above observation.

Depth-first search (DFS)

- Use stack instead of queue to hold discovered vertices:
- We go "as deep as possible", go back until we find first unexplored adjacent vertex
- Useful to compute "start time" and "finish time" of vertex u
- Start time d[u]: time when a vertex is first visited.
- Finish time $\mathrm{f}[u]$: time when all adjacent vertices of u have been visited.
- We can write DFS iteratively using the same algorithm as for BFS but with a STACK instead of a QUEUE, or, we can write a recursive DFS procedure

```
DFS(u)
    color \([u]=\) gray
    \(d[u]=\) time
    time \(=\) time +1
    FOR each \(v \in \operatorname{adj}[u]\) DO
        IF color \([v]=\) white THEN
            \(\operatorname{parent}[v]=u\)
            DFS(v)
    color \([u]=\) black
    \(f[u]=\) time
    time \(=\) time +1
```

- Example:

DFS Properties:

- DFS(u) reaches all vertices reachable from u. On undirected graphs, $\operatorname{DFS}(u)$ visits all vertices in CC(u), and the DFS-tree obtained is a spanning tree of CC(u).
- Analysis: $\mathrm{DFS}(\mathrm{s})$ runs in $O\left(\left|V_{c}\right|+\left|E_{c}\right|\right)$, where V_{c}, E_{c} are the number of vertices and edges in $\mathrm{CC}(\mathrm{s})$ (reachable from s, for directed graphs). When run on the entire graph, $\operatorname{DFS}(\mathrm{G})$ runs in $O(|V|+|E|)$ time. Put differently, DFS runs in linear time in the size of the graph.
- As with BFS (v, parent $[v])$ forms a tree, the DFS-tree
- Nesting of descendants: If u is descendent of v in DFS-tree then $d[v]<d[u]<f[u]<f[v]$.

