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Priority Queue ADT 
A priority queue stores a 
collection of items 
An item is a pair 
(key, element) 
Main methods of the Priority 
Queue ADT 
n  insertItem(k, e) 

inserts an item with key k 
and element e 

n  removeMin() 
removes the item with 
smallest key and returns its 
element 

Additional methods 
n  minKey() 

returns, but does not 
remove, the smallest key of 
an item 

n  minElement() 
returns, but does not 
remove, the element of an 
item with smallest key 

n  size(), isEmpty() 
Applications: 
n  Standby flyers 
n  Auctions 
n  Stock market 
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Sorting with Priority Queues 
We can use a priority 
queue to sort a set of 
comparable elements 
n  Insert the elements one 

by one with a series of 
insertItem(e, e) 
operations 

n  Remove the elements in 
sorted order with a series 
of removeMin() operations 

The running time of this 
sorting method depends on 
the priority queue 
implementation 

PQ-Sort(S) 
P = priority queue 
while S.isEmpty == false 

 e = S. get(0) 
 S.remove(0) 
P.insertItem(e, e) 

while P.isEmpty() == false 
 e = P.removeMin() 
S.add(e) 
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Sequence-Based Priority Queue 
Implementation with an 
unsorted list 

Performance: 
n  insertItem takes O(1) time 

since we can insert the item 
at the beginning or end of 
the sequence 

n  removeMin, minKey and 
minElement take O(n) time 
since we have to traverse 
the entire sequence to find 
the smallest key  

Implementation with a 
sorted list 

Performance: 
n  insertItem takes O(n) time 

since we have to find where 
to insert the item 

n  removeMin, minKey and 
minElement take O(1) time 
since the smallest key is at 
the beginning of the 
sequence 

4 5 2 3 1 1 2 3 4 5 



5 

PQ-Sort with Unsorted List PQ 

Running time: 
n  Inserting the elements into the priority queue with n 

insertItem operations takes O(n) time 
n  Removing the elements in sorted order from the priority 

queue with n removeMin operations takes time: 
    1 + 2 + …+ n 

O(n2) time 
(Phase 2 is like SelectionSort)  
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PQ-Sort with Sorted List PQ  

Running time: 
n  Inserting the elements into the priority queue with n 

insertItem operations takes time: 
   1 + 2 + …+ n 

n  Removing the elements in sorted order from the priority 
queue with  a series of n removeMin operations takes 
O(n) time 

O(n2) time  
(Phase 1 is like Insertion Sort) 
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Heaps 
A heap is a binary tree 
storing keys at its nodes 
and satisfying the following 
properties: 
n  Heap Property: for every node 

v other than the root, 
key(v) ≥ key(parent(v)) 

n  Complete Binary Tree:  
w  all levels are full except 

possibly the last one 
w  all the nodes at the last level 

are as far left as possible 

n  Important: A heap storing n 
keys has height O(log n) 
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Heaps and Priority Queues 
We can use a heap to implement a priority queue 
We store a <key, value> pair at each node 
We keep track of the position of the last node 
For simplicity, we show only the keys in subsequent 
pictures 

(2, Sue) 

(6, Mark) (5, Pat) 

(9, Jeff) (7, Anna) 
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Insertion into Heap 
Method insertItem of the 
priority queue ADT 
corresponds to the 
insertion of a key k to 
the heap 
The insertion algorithm 
consists of three steps: 
n  Find the insertion point z 

(the new last node) 
n  Store k at z 
n  Restore the heap property 

(discussed next) 
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Upheap 
After the insertion of a new key k, the heap property may be 
violated 
Algorithm upheap restores the heap property by swapping k along 
an upward path from the insertion node 
Upheap terminates when the key k reaches the root or a node 
whose parent has a key less than or equal to k  
Since a heap has height O(log n), upheap runs in O(log n) time 
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Removal from a Heap 
Method removeMin of 
the priority queue ADT 
corresponds to the 
removal of the root key 
from the heap 
The removal algorithm 
consists of three steps: 
n  Remove the root key 
n  Move the key of the last 

node w to the root 
n  Restore the heap property 

(discussed next) 
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Downheap 
After replacing the root key with the key k of the last node, the 
heap-order property may be violated 
Algorithm downheap restores the heap-order property by 
swapping key k with one of its children along a downward path 
from the root.  Which one? 
Downheap terminates when key k reaches a node whose children 
have keys greater than or equal to k  
Since a heap has height O(log n), downheap runs in O(log n) time 
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Heap Implementation Using 
ArrayLists or Arrays 

We can represent a heap with n 
keys by means of an ArrayList or 
array of length n + 1 
For the node at index i 
n  the left child is at index 2i 
n  the right child is at index 2i + 1 
n  the parent is at index floor(i/2)  

Links between nodes are not 
explicitly stored 
The cell at index 0 is not used 
Operation insertItem corresponds 
to inserting at index n + 1 and 
upheaping 
Operation removeMin corresponds 
to moving the item at index n to 
index 1 and downheaping 
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Given a list S of n items (keys), remove the 
items in S and make a heap-based priority 
queue from the n keys 

Remove the n keys from the heap one at a 
time and add them to S 

 
 

Heap-Sort 
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Insert n keys one at a time 

How long does it take to insert key i? 
 

So: 

Top-Down Heap Construction 

lgi ≈ n lgn
i=0

n

∑

lgi
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We can construct a heap 
storing n given keys 
using a bottom-up 
construction with log n 
phases 
In phase i, pairs of 
heaps with 2i -1 keys are 
merged into heaps with 
2i+1-1 keys 

Bottom-Up Heap Construction 

2i -1 2i -1 

2i+1-1 
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Merging Two Heaps 
We are given two 
heaps and a key k 
We create a new heap 
with the root node 
storing k and with the 
two heaps as subtrees 
We perform downheap 
to restore the heap-
order property  
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Example 
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Example (contd.) 

25 

15 16 

5 

12 4 

11 

9 6 

27 

20 23 

15 

25 16 

4 

12 5 

6 

9 11 

20 

27 23 



20 

Example (contd.) 
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Example (end) 
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Visual Analysis 
We visualize the worst-case time using proxy paths that first go 
right and then repeatedly go left until the bottom of the heap is 
reached (this path may differ from the actual downheap path) 
Since no edge is traversed more than once, the total number of 
nodes of the proxy paths is O(n)  
Thus, bottom-up heap construction runs in O(n) time  
Bottom-up heap construction is faster than n successive insertions 
and speeds up the first phase of heap-sort 



Non-Visual Analysis 
During phase i there are (n+1)/2i+1 pairs of heaps being combined 
Each pair has a downheap path length of i 
Length of all downheap paths during phase i is (n+1)(i/2i+1)< n(i/2i) 
Sum these over the lg n phases: 

 
And use this fact: 

 
 

So: 
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Given a list S of n items (keys), remove the 
items in S and make a heap-based priority 
queue from the n keys: O(n) time 

Remove the n keys from the heap one at a 
time and add them to S: O(?) time 

 
    So: O(n lg n) time 
 

Total: O(n lg n) time 

 
 

Heap-Sort 

lgi ≈ n lgn
i=0

n

∑


