
1

Heaps and HeapSort

2

6 5

7 9

2

Priority Queue ADT
A priority queue stores a
collection of items
An item is a pair
(key, element)
Main methods of the Priority
Queue ADT
n  insertItem(k, e)

inserts an item with key k
and element e

n  removeMin()
removes the item with
smallest key and returns its
element

Additional methods
n  minKey()

returns, but does not
remove, the smallest key of
an item

n  minElement()
returns, but does not
remove, the element of an
item with smallest key

n  size(), isEmpty()
Applications:
n  Standby flyers
n  Auctions
n  Stock market

3

Sorting with Priority Queues
We can use a priority
queue to sort a set of
comparable elements
n  Insert the elements one

by one with a series of
insertItem(e, e)
operations

n  Remove the elements in
sorted order with a series
of removeMin() operations

The running time of this
sorting method depends on
the priority queue
implementation

PQ-Sort(S)
P = priority queue
while S.isEmpty == false

 e = S. get(0)
 S.remove(0)
P.insertItem(e, e)

while P.isEmpty() == false
 e = P.removeMin()
S.add(e)

4

Sequence-Based Priority Queue
Implementation with an
unsorted list

Performance:
n  insertItem takes O(1) time

since we can insert the item
at the beginning or end of
the sequence

n  removeMin, minKey and
minElement take O(n) time
since we have to traverse
the entire sequence to find
the smallest key

Implementation with a
sorted list

Performance:
n  insertItem takes O(n) time

since we have to find where
to insert the item

n  removeMin, minKey and
minElement take O(1) time
since the smallest key is at
the beginning of the
sequence

4 5 2 3 1 1 2 3 4 5

5

PQ-Sort with Unsorted List PQ

Running time:
n  Inserting the elements into the priority queue with n

insertItem operations takes O(n) time
n  Removing the elements in sorted order from the priority

queue with n removeMin operations takes time:
 1 + 2 + …+ n

O(n2) time
(Phase 2 is like SelectionSort)

6

PQ-Sort with Sorted List PQ

Running time:
n  Inserting the elements into the priority queue with n

insertItem operations takes time:
 1 + 2 + …+ n

n  Removing the elements in sorted order from the priority
queue with a series of n removeMin operations takes
O(n) time

O(n2) time
(Phase 1 is like Insertion Sort)

7

Heaps
A heap is a binary tree
storing keys at its nodes
and satisfying the following
properties:
n  Heap Property: for every node

v other than the root,
key(v) ≥ key(parent(v))

n  Complete Binary Tree:
w  all levels are full except

possibly the last one
w  all the nodes at the last level

are as far left as possible

n  Important: A heap storing n
keys has height O(log n)

2

6 5

7 9

last node

8

Heaps and Priority Queues
We can use a heap to implement a priority queue
We store a <key, value> pair at each node
We keep track of the position of the last node
For simplicity, we show only the keys in subsequent
pictures

(2, Sue)

(6, Mark) (5, Pat)

(9, Jeff) (7, Anna)

9

Insertion into Heap
Method insertItem of the
priority queue ADT
corresponds to the
insertion of a key k to
the heap
The insertion algorithm
consists of three steps:
n  Find the insertion point z

(the new last node)
n  Store k at z
n  Restore the heap property

(discussed next)

2

6 5

7 9

insertion node

z

2

6 5

7 9 1 z

10

Upheap
After the insertion of a new key k, the heap property may be
violated
Algorithm upheap restores the heap property by swapping k along
an upward path from the insertion node
Upheap terminates when the key k reaches the root or a node
whose parent has a key less than or equal to k
Since a heap has height O(log n), upheap runs in O(log n) time

1

2 5

7 9 6 z

2

1 5

7 9 6 z

2

6 5

7 9 1 z

11

Removal from a Heap
Method removeMin of
the priority queue ADT
corresponds to the
removal of the root key
from the heap
The removal algorithm
consists of three steps:
n  Remove the root key
n  Move the key of the last

node w to the root
n  Restore the heap property

(discussed next)

2

6 5

7 9

last node

w

7

6 5

9

12

Downheap
After replacing the root key with the key k of the last node, the
heap-order property may be violated
Algorithm downheap restores the heap-order property by
swapping key k with one of its children along a downward path
from the root. Which one?
Downheap terminates when key k reaches a node whose children
have keys greater than or equal to k
Since a heap has height O(log n), downheap runs in O(log n) time

7

6 5

9

5

6 7

9

13

Heap Implementation Using
ArrayLists or Arrays

We can represent a heap with n
keys by means of an ArrayList or
array of length n + 1
For the node at index i
n  the left child is at index 2i
n  the right child is at index 2i + 1
n  the parent is at index floor(i/2)

Links between nodes are not
explicitly stored
The cell at index 0 is not used
Operation insertItem corresponds
to inserting at index n + 1 and
upheaping
Operation removeMin corresponds
to moving the item at index n to
index 1 and downheaping

2

6 5

7 9

2 5 6 9 7
1 2 3 4 5 0

14

Given a list S of n items (keys), remove the
items in S and make a heap-based priority
queue from the n keys

Remove the n keys from the heap one at a
time and add them to S

Heap-Sort

15

Insert n keys one at a time

How long does it take to insert key i?

So:

Top-Down Heap Construction

lgi ≈ n lgn
i=0

n

∑

lgi

16

We can construct a heap
storing n given keys
using a bottom-up
construction with log n
phases
In phase i, pairs of
heaps with 2i -1 keys are
merged into heaps with
2i+1-1 keys

Bottom-Up Heap Construction

2i -1 2i -1

2i+1-1

17

Merging Two Heaps
We are given two
heaps and a key k
We create a new heap
with the root node
storing k and with the
two heaps as subtrees
We perform downheap
to restore the heap-
order property

7

3

5 8

2

6 4

3

5 8

2

6 4

2

3

5 8

4

6 7

18

Example

15 16 12 4 9 6 20 23

25

15 16

5

12 4

11

9 6

27

20 23

19

Example (contd.)

25

15 16

5

12 4

11

9 6

27

20 23

15

25 16

4

12 5

6

9 11

20

27 23

20

Example (contd.)

7

15

25 16

4

12 5

8

6

9 11

20

27 23

4

15

25 16

5

12 7

6

8

9 11

20

27 23

21

Example (end)

4

15

25 16

5

12 7

10

6

8

9 11

20

27 23

5

15

25 16

7

12 10

4

6

8

9 11

20

27 23

22

Visual Analysis
We visualize the worst-case time using proxy paths that first go
right and then repeatedly go left until the bottom of the heap is
reached (this path may differ from the actual downheap path)
Since no edge is traversed more than once, the total number of
nodes of the proxy paths is O(n)
Thus, bottom-up heap construction runs in O(n) time
Bottom-up heap construction is faster than n successive insertions
and speeds up the first phase of heap-sort

Non-Visual Analysis
During phase i there are (n+1)/2i+1 pairs of heaps being combined
Each pair has a downheap path length of i
Length of all downheap paths during phase i is (n+1)(i/2i+1)< n(i/2i)
Sum these over the lg n phases:

And use this fact:

So:

And bottom-up heap construction is O(n) time

€

n i
2 i

=
i=1

lg n

∑ n i
2 i

=
i=1

lg n

∑ n i 1
2()i

i=1

lg n

∑

€

ix i =
x

1− x()2i=0

∞

∑ , x <1

€

n i 1
2()i <

i=1

lg n

∑ n i 1
2()i

i=0

∞

∑ = 2n

24

Given a list S of n items (keys), remove the
items in S and make a heap-based priority
queue from the n keys: O(n) time

Remove the n keys from the heap one at a
time and add them to S: O(?) time

 So: O(n lg n) time

Total: O(n lg n) time

Heap-Sort

lgi ≈ n lgn
i=0

n

∑

