QuickSort

QuickSort

- QuickSort on an input sequence S with n elements consists of three steps:
- Divide: partition S into two sequences S_{1} and S_{2} of about $n / 2$ elements each
- Recurse: recursively sort \boldsymbol{S}_{1} and \boldsymbol{S}_{2}
- Conquer?

```
QuickSort(S)
    if S.size()<=1
        return
```

 last \(=\) last item in \(S\)
 \(\left(S_{1}, S_{2}\right)=\operatorname{partition}(S\), last \()\)
 QuickSort(\(\boldsymbol{S}_{1}\))
 QuickSort \(\left(S_{2}\right)\)

Partition

- We partition by removing, in turn, each element y from S and inserting insert y into $L E$ (less than or equal to the pivot) or $G_{\text {, }}$ (greater than the pivot)
- Each insertion and removal takes constant time, so partitioning takes $\boldsymbol{O}(\boldsymbol{n})$ time

```
partition(S, pivot)
    LE = empty list
    G= empty list
    while S.isEmpty == false
        y=S.get(0)
        S.remove(0)
        if }y<=\mathrm{ pivot
        LE.add(y)
        else // y>pivot
        G.add(y)
    return LE and G
```


QuickSort

- Divide: take the last element x as the pivot and partition the list into
- LE, elements <= \boldsymbol{x}
- \boldsymbol{G}, elements $>\boldsymbol{x}$
- Recurse: sort $\boldsymbol{L E}$ and \boldsymbol{G}
- Conquer: Nothing to do!

- Issue: In-Place?
- Was MergeSort?

In-Place Partitioning

- Perform the partition using two indices to split S into LE and G .

$$
\begin{aligned}
& \mathrm{j} \\
& \hline 325107359279897 \underline{\mathbf{6}} 9 \\
& \hline
\end{aligned}(\text { pivot } x=6)
$$

- Repeat until j and k cross:
- Scan j to the right until finding an element $>x$.
- Scan k to the left until finding an element $<=\mathrm{x}$.
- Swap elements at indices j and k
- Then swap the element at index j with the pivot.

Worst-Case Running Time?

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- One of $L E$ and \boldsymbol{G} has size $\boldsymbol{n}-1$ and the other has size 0
- The running time is proportional to the sum

$$
n+(n-1)+\ldots+2+1
$$

- Thus, the worst-case running time of QuickSort is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ depth time

Expected Running Time, Part 1

- Consider a recursive call of quick-sort on a sequence of size s
- Good call: the sizes of $L E$ and G are each less than or equal to $3 s / 4$
- Bad call: one of $L E$ and G has size greater than $3 s / 4$
- A call is good with probability $1 / 2$
- $1 / 2$ of the possible pivots cause good calls:

Expected Running Time, Part 2

- What is the most number of levels at which we need to get "good" splits to get down to an input size of 1 ?
- The worst "good" split is an $\mathrm{n} / 4,3 \mathrm{n} / 4$ split
- How many worst "good" splits do we need to get down to size 1 ?

$$
\left(\frac{3}{4}\right)^{i} n=1 \quad \text { which means that } i=\frac{\lg n}{\lg (4 / 3)}
$$

- Probability Fact: The expected number of coin tosses required in order to get \boldsymbol{k} heads is $2 \boldsymbol{k}$
- "Good" splits happen half the time, but they might all be worst "good" splits, so we will need i of them, and the expected number of splits needed to get i worst "good" splits is $2 i$ or:

$$
\frac{2 \lg n}{\lg (4 / 3)} \approx 4.8 \lg n
$$

- The amount or work done at the nodes of the same depth is $\boldsymbol{O}(\boldsymbol{n})$
- Thus, the expected running time of QuickSort is $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$

QuickSort: Random is Better

- Choosing the last element as the pivot can lead to worst-cast behavior
- Choosing a pivot randomly can still lead to worst-case behavior, but it's much less likely
- Random pivot is standard

```
QuickSort(S)
    if S.size()<=1
        return
    rItem= random item in S
    (S
    QuickSort(S (S)
    QuickSort(S2)
```


Power of Randomization

- Can show that randomized QuickSort runs in $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ with high probability
What if we didn't choose the pivot randomly?
- Not first or last element
- Median of 3
- What would be the best possible pivot?
- Why not use that?

QuickSort Tree

- An execution of QuickSort is depicted by a binary tree
- Each node represents a recursive call of quick-sort and stores
- Unsorted sequence before the execution and its pivot
- Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

Execution Example

- Pivot selection

Execution Example (cont.)

- Partition, recursive call, pivot selection

Execution Example (cont.)

- Partition, recursive call, base case

Execution Example (cont.)

- Recursive call, ..., base case, join

Execution Example (cont.)

- Recursive call, pivot selection

Execution Example (cont.)

- Partition, ..., recursive call, base case

Execution Example (cont.)

- Join, join

QuickSort Visualization

Sorting Algorithms

