

QuickSort

- QuickSort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S₁ and S₂ of about n/2 elements each
 - Recurse: recursively sort
 S₁ and S₂
 - Conquer?

	kSort(S) S.size() <= 1
	return
la	st = last item in S
(S	$(I_1, S_2) = partition(S, last)$
Q	uickSort(S ₁)
Q	uickSort(S ₂)

Partition

 We partition by removing, in turn, each element y from S and inserting insert y into LE (less than or equal to the pivot) or G, (greater than the pivot)

 Each insertion and removal takes constant time, so partitioning takes O(n) time

partition(S, pivot)	
LE = empty list	
G = empty list	
while <i>S.isEmpty</i> == false	
y = S.get(0)	
S.remove(0)	
if y <= pivot	
LE.add(y)	
else // <i>y</i> > <i>pivot</i>	
G.add(y)	
return <i>LE</i> and <i>G</i>	
]

3

QuickSort

- Divide: take the last element x as the pivot and partition the list into
 - *LE*, elements $\leq x$
 - G, elements > x
 - Recurse: sort *LE* and *G*
- Conquer: Nothing to do!
- Issue: In-Place?
 - Was MergeSort?

In-Place Partitioning

 Perform the partition using two indices to split S into LE and G.

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9 (pivot x = 6)

k

5

- Repeat until j and k cross:
 - Scan j to the right until finding an element > x.
 - Scan k to the left until finding an element <= x.</p>
 - Swap elements at indices j and k
- Then swap the element at index j with the pivot.

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 <u>6</u> 9

Worst-Case Running Time?

Expected Running Time, Part 1

• Consider a recursive call of quick-sort on a sequence of size s

- **Good call:** the sizes of *LE* and *G* are each less than or equal to 3*s*/4
- **Bad call:** one of *LE* and *G* has size greater than 3s/4

A call is good with probability 1/2

1/2 of the possible pivots cause good calls:

Expected Running Time, Part 2

- What is the most number of levels at which we need to get "good" splits to get down to an input size of 1?
- The worst "good" split is an n/4, 3n/4 split
 - How many worst "good" splits do we need to get down to size 1?

$$\left(\frac{3}{4}\right)' n = 1$$
 which means that $i = \frac{\lg n}{\lg(4/3)}$

Probability Fact: The expected number of coin tosses required in order to get k heads is 2k

Sood splits happen half the time, but they might all be worst "good" splits, so we will need i of them, and the expected number of splits needed to get i worst "good" splits is 2i or:

 $\frac{2 \lg n}{\lg (4/3)} \approx 4.8 \lg n$

The amount or work done at the nodes of the same depth is O(n)• Thus, the expected running time of QuickSort is $O(n \log n)$

8

QuickSort: Random is Better

- Choosing the last element as the pivot can lead to worst-cast behavior
- Choosing a pivot randomly can still lead to worst-case behavior, but it's much less likely
- Random pivot is standard

QuickSort(S)if S.size() <= 1 return rItem = random item in S(S₁, S₂) = partition(S, rItem) QuickSort(S₁) QuickSort(S₂)

Power of Randomization

Can show that randomized QuickSort runs in
 O(n log n) with high probability

10

- What if we didn't choose the pivot randomly?
 - Not first or last element
 - Median of 3
- What would be the best possible pivot?
- Why not use that?

QuickSort Tree

QuickSort Visualization

Sorting Algorithms

-

