
1

QuickSort

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

QuickSort
QuickSort on an input
sequence S with n
elements consists of
three steps:
n  Divide: partition S into

two sequences S1 and S2
of about n/2 elements
each

n  Recurse: recursively sort
S1 and S2

n  Conquer?

QuickSort(S)
if S.size() <= 1
 return

last = last item in S
(S1, S2) = partition(S, last)
QuickSort(S1)
QuickSort(S2)

3

Partition
We partition by removing,
in turn, each element y from S
and inserting insert y into LE
(less than or equal to the
pivot) or G, (greater than the
pivot)
Each insertion and removal
takes constant time, so
partitioning takes O(n) time

partition(S, pivot)
 LE = empty list
 G = empty list
while S.isEmpty == false

 y = S.get(0)
 S.remove(0)
 if y <= pivot
 LE.add(y)
 else // y > pivot
 G.add(y)

return LE and G

4

QuickSort
Divide: take the last element
x as the pivot and partition the
list into
n  LE, elements <= x
n  G, elements > x

Recurse: sort LE and G

Conquer: Nothing to do!

Issue: In-Place?
n  Was MergeSort?

x

x

LE G

x

5

In-Place Partitioning
Perform the partition using two indices to split S into LE
and G.

Repeat until j and k cross:
n  Scan j to the right until finding an element > x.
n  Scan k to the left until finding an element <= x.
n  Swap elements at indices j and k

Then swap the element at index j with the pivot.

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

j k

(pivot x = 6)

j

3 2 5 1 0 7 3 5 9 2 7 9 8 9 7 6 9

k

6

Worst-Case Running Time?
The worst case for quick-sort occurs when the pivot is the unique
minimum or maximum element
One of LE and G has size n - 1 and the other has size 0
The running time is proportional to the sum

n + (n - 1) + … + 2 + 1
Thus, the worst-case running time of QuickSort is O(n2)

depth time

0 n

1 n - 1

… …

n - 1 1

7

Expected Running Time, Part 1
Consider a recursive call of quick-sort on a sequence of size s
n  Good call: the sizes of LE and G are each less than or equal to 3s/4
n  Bad call: one of LE and G has size greater than 3s/4

A call is good with probability 1/2
n  1/2 of the possible pivots cause good calls:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Good pivots Bad pivots Bad pivots

8

Expected Running Time, Part 2
What is the most number of levels at which we need to get “good”
splits to get down to an input size of 1?
The worst “good” split is an n/4, 3n/4 split
How many worst “good” splits do we need to get down to size 1?

 which means that

Probability Fact: The expected number of coin tosses required in
order to get k heads is 2k
“Good” splits happen half the time, but they might all be worst
“good” splits, so we will need i of them, and the expected number
of splits needed to get i worst “good” splits is 2i or:

The amount or work done at the nodes of the same depth is O(n)
Thus, the expected running time of QuickSort is O(n log n)

€

3
4
⎛
⎝
⎜
⎞
⎠
⎟
i

n=1

€

i =
lgn

lg(4/3)

€

2lgn
lg(4/3)≈ 4.8lgn

QuickSort: Random is Better
Choosing the last
element as the pivot
can lead to worst-cast
behavior
Choosing a pivot
randomly can still lead
to worst-case behavior,
but it’s much less likely
Random pivot is
standard

QuickSort(S)
if S.size() <= 1
 return

rItem= random item in S
(S1, S2) = partition(S, rItem)
QuickSort(S1)
QuickSort(S2)

Power of Randomization
 Can show that randomized QuickSort runs in
O(n log n) with high probability
 What if we didn’t choose the pivot randomly?
n  Not first or last element
n  Median of 3

 What would be the best possible pivot?
 Why not use that?

10

11

QuickSort Tree
An execution of QuickSort is depicted by a binary tree
n  Each node represents a recursive call of quick-sort and stores

w  Unsorted sequence before the execution and its pivot
w  Sorted sequence at the end of the execution

n  The root is the initial call
n  The leaves are calls on subsequences of size 0 or 1

7 4 9 6 2 → 2 4 6 7 9

4 2 → 2 4 7 9 → 7 9

2 → 2 9 → 9

12

Execution Example
Pivot selection

7 2 9 4 → 2 4 7 9

2 → 2

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8 9 4 → 4 9

9 → 9 4 → 4

13

Execution Example (cont.)
Partition, recursive call, pivot selection

 2 4 3 1 → 2 4 7 9

9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8 2 → 2

14

Execution Example (cont.)
Partition, recursive call, base case

 2 4 3 1 →→ 2 4 7

1 → 1 9 4 → 4 9

9 → 9 4 → 4

7 2 9 4 3 7 6 1 → → 1 2 3 4 6 7 8 9

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

15

Execution Example (cont.)
Recursive call, …, base case, join

3 8 6 1 → 1 3 8 6

3 → 3 8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

16

Execution Example (cont.)

Recursive call, pivot selection

7 9 7 1 → 1 3 8 6

8 → 8

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9

17

Execution Example (cont.)
Partition, …, recursive call, base case

7 9 7 1 → 1 3 8 6

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

7 → 7 9 → 9

18

Execution Example (cont.)
Join, join

7 9 7 → 17 7 9

7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 7 9

2 4 3 1 → 1 2 3 4

1 → 1 4 3 → 3 4

9 → 9 4 → 4

9 → 9 7 → 7

QuickSort Visualization

Sorting Algorithms

19

