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QuickSort 

7  4  9  6  2  →  2  4  6  7  9 

4  2  →  2  4 7  9  →  7  9 

2 → 2 9 → 9 



QuickSort 
QuickSort on an input 
sequence S with n 
elements consists of 
three steps: 
n  Divide: partition S into 

two sequences S1 and S2 
of about n/2 elements 
each 

n  Recurse: recursively sort 
S1 and S2 

n  Conquer? 

QuickSort(S) 
if S.size() <= 1 
    return 
 
last = last item in S 
(S1, S2) = partition(S, last)  
QuickSort(S1) 
QuickSort(S2) 
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Partition 
We partition by removing, 
in turn, each element y from S 
and inserting insert y into LE 
(less than or equal to the 
pivot) or G, (greater than the 
pivot)  
Each insertion and removal 
takes constant time, so 
partitioning takes O(n) time 

 

partition(S, pivot) 
 LE = empty list 
 G = empty list 
while S.isEmpty == false 

 y = S.get(0) 
 S.remove(0) 
 if y <= pivot  
  LE.add(y) 
 else   // y > pivot 
  G.add(y) 

return LE and G 
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QuickSort 
Divide: take the last element 
x as the pivot and partition the 
list into  
n  LE, elements <= x 
n  G, elements > x 

Recurse: sort LE and G 

Conquer: Nothing to do! 

Issue: In-Place? 
n  Was MergeSort? 

x 

x 

LE G 

x 
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In-Place Partitioning 
Perform the partition using two indices to split S into LE 
and G. 

Repeat until j and k cross: 
n  Scan j to the right until finding an element > x. 
n  Scan k to the left until finding an element <= x. 
n  Swap elements at indices j and k 

Then swap the element at index j with the pivot. 

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6  9 

j k 

(pivot x = 6) 

j 

3  2  5  1  0  7  3  5  9  2  7  9  8  9  7  6  9 

k 
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Worst-Case Running Time? 
The worst case for quick-sort occurs when the pivot is the unique 
minimum or maximum element 
One of LE and G has size n - 1 and the other has size 0 
The running time is proportional to the sum 

n + (n - 1) + … + 2 + 1 
Thus, the worst-case running time of QuickSort is O(n2) 

depth time 

0 n 

1 n - 1 

… … 

n - 1 1 
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Expected Running Time, Part 1 
Consider a recursive call of quick-sort on a sequence of size s 
n  Good call: the sizes of LE and G are each less than or equal to 3s/4 
n  Bad call: one of LE and G has size greater than 3s/4 

 
A call is good with probability 1/2 
n  1/2 of the possible pivots cause good calls: 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Good pivots Bad pivots Bad pivots 
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Expected Running Time, Part 2 
What is the most number of levels at which we need to get “good” 
splits to get down to an input size of 1? 
The worst “good” split is an n/4, 3n/4 split 
How many worst “good” splits do we need to get down to size 1? 

                                      which means that 
 

Probability Fact: The expected number of coin tosses required in 
order to get k heads is 2k 
“Good” splits happen half the time, but they might all be worst 
“good” splits, so we will need i of them, and the expected number 
of splits needed to get i worst “good” splits is 2i or: 

 
The amount or work done at the nodes of the same depth is O(n) 
Thus, the expected running time of QuickSort is O(n log n) 
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QuickSort: Random is Better 
Choosing the last 
element as the pivot 
can lead to worst-cast 
behavior 
Choosing a pivot 
randomly can still lead 
to worst-case behavior, 
but it’s much less likely 
Random pivot is 
standard 

QuickSort(S) 
if S.size() <= 1 
    return 
 
rItem= random item in S 
(S1, S2) = partition(S, rItem) 
QuickSort(S1) 
QuickSort(S2) 
 



Power of Randomization 
 Can show that randomized QuickSort runs in  
O(n log n) with high probability 
 What if we didn’t choose the pivot randomly? 
n  Not first or last element  
n  Median of 3 

 What would be the best possible pivot? 
 Why not use that? 
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QuickSort Tree 
An execution of QuickSort is depicted by a binary tree 
n  Each node represents a recursive call of quick-sort and stores 

w  Unsorted sequence before the execution and its pivot 
w  Sorted sequence at the end of the execution 

n  The root is the initial call  
n  The leaves are calls on subsequences of size 0 or 1 

7  4  9  6  2  →  2  4  6  7  9 

4  2  →  2  4 7  9  →  7  9 

2 → 2 9 → 9 
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Execution Example 
Pivot selection 

7  2  9  4  →  2  4  7  9 

2 → 2 

7  2  9  4 3  7  6  1  →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 9  4  →  4  9 

9 → 9 4 → 4 
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Execution Example (cont.) 
Partition, recursive call, pivot selection 

 2  4  3  1 →  2  4  7  9 

9  4  →  4  9 

9 → 9 4 → 4 

7  2  9  4  3  7  6  1 →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 2 → 2 
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Execution Example (cont.) 
Partition, recursive call, base case 

  2  4  3  1 →→  2  4  7   

1 → 1 9  4  →  4  9 

9 → 9 4 → 4 

7  2  9  4 3  7  6  1 → →  1  2  3  4  6  7  8  9 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 
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Execution Example (cont.) 
Recursive call, …, base case, join 

3  8  6  1  →  1  3  8  6 

3 → 3 8 → 8 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

9 → 9 4 → 4 
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Execution Example (cont.) 

Recursive call, pivot selection 

7  9  7  1  →  1  3  8  6 

8 → 8 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

9 → 9 4 → 4 

9 → 9 
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Execution Example (cont.) 
Partition, …, recursive call, base case 

7  9  7  1  →  1  3  8  6 

7  2  9  4 3  7  6  1 →  1  2  3  4  6  7  8  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

9 → 9 4 → 4 

7 → 7 9 → 9 
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Execution Example (cont.) 
Join, join 

7  9  7   →  17  7  9 

7  2  9  4  3  7  6  1  → 1  2  3  4  6  7  7  9 

2  4  3  1  →  1  2  3  4 

1 → 1 4  3  →  3  4 

9 → 9 4 → 4 

9 → 9 7 → 7 



QuickSort Visualization 

Sorting Algorithms 
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