

Outline

 Recurrence Equations Solving Recursion Equations Recursion trees Iterative substitution Divide-and-Conquer 2

Recurrence Equation Analysis

- The conquer step of merge-sort consists of merging two sorted sequences, each with n/2 elements and takes at most n steps, for some constant b, i.e. n steps
- The basis case (n < 2) will take 1 step.
- If we let T(n) denote the running time of merge-sort on n items:

$$T(n) = 2T(n/2) + n$$

We analyze the running time of merge-sort by finding a closed form solution to the above equation, i.e. a solution that has T(n) only on the left-hand side.

Divide-and-Conquer

3

Recursion Tree Method

Draw the recursion tree for the recurrence relation and look for a pattern and then try to prove it is true by induction:

$$T(n) = 2T(n/2) + n$$

Iterative Substitution Method

In the iterative substitution technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern.

T(n) = 2T(n/2) + n= 2(2T(n/4) + n/2) + n = 4T(n/4) + 2n

$$= 8T(n/8) + 3n$$

$$= 2^4 T(n/2^4) + 4n$$

 $= \dots$ $= 2^{i} T(n / 2^{i}) + in$

♦ We reach the end of the recursion when 2ⁱ=n. That is, i = lg n.
♦ So, T(n) = n + n lg n
♦ Thus, T(n) is O(n lg n).

5

Divide-and-Conquer

Should Prove by Induction

Parallels the recursion process We won't do that. (3)

Divide-and-Conquer

6

Master Method

Many divide-and-conquer recurrence equations have the form:

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:
1. if f(n) is O(n^{log_b a-ε}), then T(n) is Θ(n^{log_b a})
2. if f(n) is Θ(n^{log_b a} log^k n), then T(n) is Θ(n^{log_b a} log^{k+1} n)
3. if f(n) is Ω(n^{log_b a+ε}), then T(n) is Θ(f(n)), provided af(n/b) ≤ δf(n) for some δ < 1.

7