Recurrences

Divide-and-Conquer

Outline

- Recurrence Equations
- Solving Recursion Equations
- Recursion trees
- Iterative substitution

Recurrence Equation Analysis

* The conquer step of merge-sort consists of merging two sorted sequences, each with $n / 2$ elements and takes at most n steps, for some constant b, i.e. n steps
- The basis case $(n<2)$ will take 1 step.
* If we let $T(n)$ denote the running time of merge-sort on n items:

$$
T(n)=2 T(n / 2)+n
$$

* We analyze the running time of merge-sort by finding a closed form solution to the above equation, i.e. a solution that has $T(n)$ only on the left-hand side.

Recursion Tree Method

- Draw the recursion tree for the recurrence relation and look for a pattern and then try to prove it is true by induction:

$$
T(n)=2 T(n / 2)+n
$$

T's size

1	n
2	$n / 2$
\ldots	\ldots
2^{i}	$n / 2^{i}$

Total time $=\boldsymbol{n} \lg \boldsymbol{n}$

Iterative Substitution Method

- In the iterative substitution technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern.

$$
\begin{aligned}
T(n) & =2 T(n / 2)+n \\
& =2(2 T(n / 4)+n / 2)+n \\
& =4 T(n / 4)+2 n \\
& =8 T(n / 8)+3 n \\
& =2^{4} T\left(n / 2^{4}\right)+4 n \\
& =\ldots \\
& =2^{i} T\left(n / 2^{i}\right)+i n
\end{aligned}
$$

- We reach the end of the recursion when $2^{\mathrm{i}}=\mathrm{n}$. That is, $\mathrm{i}=\lg \mathrm{n}$.
- So, $T(n)=n+n \lg n$
- Thus, $\mathrm{T}(\mathrm{n})$ is $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$.

Should Prove by Induction

- Parallels the recursion process
- We won't do that. :

Master Method

- Many divide-and-conquer recurrence equations have the form:

$$
T(n)=\left\{\begin{array}{cc}
c & \text { if } n<d \\
a T(n / b)+f(n) & \text { if } n \geq d
\end{array}\right.
$$

- The Master Theorem:

1. if $f(n)$ is $O\left(n^{\log _{b} a-\varepsilon}\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)$
2. if $f(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$, then $T(n)$ is $\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
3. if $f(n)$ is $\Omega\left(n^{\log _{b} a+\varepsilon}\right)$, then $T(n)$ is $\Theta(f(n))$, provided $a f(n / b) \leq \delta f(n)$ for some $\delta<1$.
