CS 2200: Algorithms

Fall, 2018

Administrative Information

- Course Webpage:
- http://www.bowdoin.edu/~smajerci/teaching/cs2200/2018fall/index.html
- Textbook: Coren, Leiserson, Rivest, and Stein. Introduction to Algorithms, $3^{\text {rd }}$ edition, MIT Press, 2009.
- My Office Hours:
- Monday, 6:00-8:00 pm, Searles 224
- Tuesday, 1:00-2:30 pm, Searles 222
- TAs (Office Hours TBA):
- Zoe Aarons
- Luca Ostertag-Hill
- Jack Ward
- Erik Wurman

What you can expect from me

- Strategies for designing algorithms
* When to use those strategies
- Tools for analyzing algorithm efficiency
- Techniques for arguing algorithm correctness (a little)
- Specific algorithms
- Improved problem solving skills
- Improved ability to think abstractly

What I will expect from you

- Labs and Homework Problems (25\%):
- Generally after every two classes
- In-Lab Problems
- Homework Problems
- More a learning tool than a testing tool
- 3 Exams (75\%):
- In class
- Closed book, closed notes
- except for one 8.5×11 sheet of notes (both sides)

Collaboration Levels

- Level 0 (In-Lab and In-Class Problems)
- No restrictions on collaboration
- Level 1 (Homework Problems)
- Verbal collaboration without code sharing
- But many details about what is allowed
- Level 2 (Not used in this course)
- Discussions with TAs only

Collaboration Levels

- Level 0 (In-Lab and In-Class Problems)
- No restrictions on collaboration
- Level 1 (Homework Problems)
- Verbal collaboration without code sharing
- But many details about what is allowed
- Level 2 (Not used in this course)
- Discussions with TAs only

Collaboration Levels

- Level 0 (In-Lab and In-Class Problems)
- No restrictions on collaboration
- Level 1 (Homework Problems)
- Verbal collaboration without code sharing
- But many details about what is allowed
- Level 2 (Not used in this course)
- Discussions with TAs only
- Level 3 (Exams)
- Professor clarifications only

Algorithms is a Difficult Class!

- Much more abstract than Data Structures:
- emphasis is on designing the solution technique, not implementing a solution
- What to do:
- Allow plenty of time to read the materials and do the homework
- Solve all problems (even the optional ones)
- Go to the study groups (TA hours)
- Form a group to work with
- Spaced study

Learning

-What helps you?
-What hinders you?

Algorithms and Programs

- An algorithm is a computational recipe designed to solve a particular problem
- Must be implemented as a program in a particular programming language
- Data structures are critical...
- ...but you already know that.

Making a telephone call to Jill

pick up the phone;
dial Jill' s number;
wait for person to answer;
talk;

Correctness

Waiting at a traffic light

if (light is red) \{ wait a while; accelerate;
\}

Definiteness

Looking for an integer >=0 with property P .

i = 0;
foundIt = testForP(i);
while (!foundIt) \{
i++;
foundIt = testForP(i);
\}

Finite number of steps

Packing for vacation

flip coin;
if (heads)
pack paraglider;
else
pack scuba gear;

Predictability

Desirable Characteristics

- THEORY suggests/requires:
- Correctness
- Definiteness
- Finiteness
- Predictability
- Practice suggests:
- Efficiency
- Clarity
- Brevity

An algorithm is:

...a list of precisely defined steps that can be done by a computer in a finite (and, hopefully, relatively short) amount of time to correctly solve a particular type of problem.

Types of Problems

- STRUCTURING: transform input to satisfy Y (SORT)
- CONSTRUCTION: build X to satisfy property Y (MST)
- OPTIMIZATION: find best X satisfying property Y (TSP)
- DECISION: does the input satisfy property Y (SAT)
- APPROXIMATION: find X that almost satisfies property P and has bounded error (TSP)
- RANDOMIZED: make random choices (QuickSort)
- PARALLEL ALGORITHMS (Factoring)
- ON-LINE ALGORITHMS (Job Scheduling)

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: Find the maximum element of an array

```
arrayMax(A,n)
    currentMax = A[0]
    for i=1 to n-1
    if A[i]> currentMax
        currentMax = A[i]
    return currentMax
```


Pseudocode Details

- Control flow
- if. . . [else...]
- while...
- repeat...until ...
- for...to and for...downto
- Indentation replaces braces
- Method declaration
method (arg [, arg...])
- Method call (pass by value)
method (arg [, arg...])
- Return value
return expression
- Java expressions
- Also: $i=j=k$
- Booleans "short circuit"
- NOTE:
- Will use 0-based indexing, BUT
- CLRS uses 1-based indexing!
- Usual OOP notation
- x.f is the attribute f of object x

Sorting

- Pervasive problem
- Data processing
- Efficient search
- Operations research (e.g. shortest jobs first)
- Event-driven simulation (e.g. what happens first?)
- Sub-routine for other algorithms (e.g. Kruskal's MST)
- Informally
- Bunch of items
- Each has a "key" that allows " <=" comparison
- Put items in ascending (or descending) order according to key comparisons

Sorting

- Bubble Sort
- Selection Sort
- Insertion Sort

What About Efficiency?

- Time
- Space

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like System.currentTimeMilisis() to get a measure of the actual running time
- Plot the results
- Okay?

Not Okay

- Implementation can be difficult
- Results depend on:
- quality of the implementation
- language used
- computer used
- Can only run on a limited number of inputs, which may not be representative
- Difficult to test on very large inputs
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Use a pseudocode description of the algorithm instead of an implementation
- Equate running time with the number of instructions executed
- Characterize this measure of running time as a function of the input size, n.
- Advantages:
- Takes into account all possible inputs
- Can analyze and compare algorithms independently of hardware and software

The Random Access Machine (RAM) Model

- A CPU

- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character

- Memory cells are numbered and accessing any cell in memory takes unit time.

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent of any programming language
- Exact definition not important
- Each assumed to take a constant amount of time
- Each assumed to take the same constant amount of time
- Examples:
- Evaluating a binary expression, e.g. ($a+b$)
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Really?

- Ignores many things, e.g.
- Memory hierarchy
- Processor load
. "Tricks" like:
- Pipelining
- Speculative execution (e.g. branch prediction)
- Some operations really are a lot more expensive
- But, in practice, it works:
- It accurately characterizes the running time.
- It allows us to compare different algorithms.

Counting Primitive Operations

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

$\operatorname{arraySum}(\boldsymbol{A}, \boldsymbol{n})$		\#operations
sum $=0$		1
for $i=0$ to $n-1$		$3 \boldsymbol{n}+2$
sum $=$ sum $+\boldsymbol{A}[i]$		$3 \boldsymbol{n}$
return sum	Total	$6 \boldsymbol{n}+4$

Growth Rate of Running Time

- Algorithm arraySum executes $6 \boldsymbol{n}+4$ primitive operations in the worst case (and the best case).
- Changing the hardware/software environment
- Affects this by a constant factor, but
- Does not alter the growth rate
- The fact that the running time grows at the same rate as the input size is an intrinsic property of algorithm arraySum

Focus on the Rate of Growth: Big-O Notation

- Given functions $f(\boldsymbol{n})$ and $\boldsymbol{g}(\boldsymbol{n})$, we say that $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$ if there is a constant $\boldsymbol{c}>0$ and an integer constant $n_{0}>0$ such that:

$$
f(n) \leq c g(n) \text { for } n \geq n_{0}
$$

- Example 1: $6 \boldsymbol{n}+4$ is $\boldsymbol{O}(\boldsymbol{n})$
- $6 \boldsymbol{n}+4 \leq \boldsymbol{c n}$
- $6+4 / \boldsymbol{n} \leq \boldsymbol{c}$
- Pick $\boldsymbol{c}=7$ and $\boldsymbol{n}_{\mathbf{0}}=4$
- Example 2: n^{2} is not $\boldsymbol{O}(n)$
- $n^{2} \leq c n$
- $n \leq c$

More Big-O Examples

- 7n-2
$7 n-2$ is $O(n)$
need $\mathrm{c}>0$ and $\mathrm{n}_{0}>0$ such that $7 \mathrm{n}-2 \leq \mathrm{cn}$ for $\mathrm{n} \geq \mathrm{n}_{0}$ this is true for $\mathrm{c}=6$ and $\mathrm{n}_{0}=2$

■ $3 n^{3}+20 n^{2}+5$ $3 n^{3}+20 n^{2}+5$ is $O\left(n^{3}\right)$ need $c>0$ and $n_{0}>0$ such that $3 n^{3}+20 n^{2}+5 \leq c n^{3}$ for $n \geq n_{0}$ this is true for $\mathrm{c}=5$ and $\mathrm{n}_{0}=20$

Big-O Rules

- If is $f(n)$ a polynomial of degree d, then $f(n)$ is $\boldsymbol{O}\left(\boldsymbol{n}^{d}\right)$, i.e.,
- Drop lower-order terms
- Drop constant factors
- Use the "smallest" possible class of functions
- Say " $2 \boldsymbol{n}$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $2 \boldsymbol{n}$ is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ "

Two Relative Growth Rate Rules

- Any positive polynomial function with degree greater than 0 grows faster than any poly-log function:

$$
\lg ^{a} n=O\left(n^{b}\right), a>0, b>0
$$

- Any exponential with base greater than 1 grows faster than any polynomial function with degree greater than 0 :

$$
\mathrm{n}^{\mathrm{b}}=\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right), \mathrm{b}>0 \text { and } \mathrm{c}>1
$$

Relative Growth Rates

- $\lg \lg n$
- $\lg n$
- $\lg ^{2} \mathrm{n}$ also written as $(\mathrm{lg} \mathrm{n})^{2}$
- $\sqrt{ } \mathrm{n}$
-n
- $n \lg n$
- n^{2}
- n^{3}
- 2^{n}

Array Sum

- Ignoring constant factors makes things easier!

```
arraySum(A, n)
    sum=0
    for i=0 to n-1
    sum =sum + A[i]
        #operations
    return sum
1
Total 2n+2
```

- Algorithm arraySum runs in $\boldsymbol{O}(\boldsymbol{n})$ time

Relatives of Big-O

- big-Omega
- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is:
- a constant c >0, and
- an integer constant $\mathrm{n}_{0}>0$
such that:
$f(n) \geq c g(n)$ for $n \geq n_{0}$
- big-Theta
- $f(n)$ is $\Theta(g(n))$ if there are:
- constants $\mathrm{c}^{\prime}>0$ and $\mathrm{c}^{\prime \prime}>0$, and
- an integer constant $\mathrm{n}_{0}>0$
such that:
$c^{\prime} g(n) \leq f(n) \leq c^{\prime \prime} g(n)$ for $n \geq n_{0}$
- Notice that the two constants, c^{\prime} and $\mathrm{c}^{\prime \prime}$, can be different, but n_{0} must be the same for both. Just use the max!

Intuition for Asymptotic Notation

big-O

- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$
- usually used to describe worst case
big-Omega
- $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$
- can be used to describe best case

big-Theta

- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$
- if best and worst case are the same

Exercises

- Is $\mathbf{n}^{2} / \mathbf{3}+\mathbf{3 n} \mathbf{O}(\mathbf{n})$?
- Is $\mathbf{n}^{2} / \mathbf{3}+3 \mathbf{n} \Omega(\mathbf{n})$?
- Is $\mathbf{n}^{2} / \mathbf{3}+3 \mathbf{n} \Theta(\mathbf{n})$?
- Is $\mathbf{n}^{2} / \mathbf{3}+\mathbf{3 n} \Theta\left(\mathbf{n}^{2}\right)$?

Asymptotic Analysis is Powerful

- An $\boldsymbol{O}\left(\boldsymbol{n}^{4 / 3} \log n\right)$ algorithm to test a conjecture about pyramid numbers ran about 30,000 times faster than an $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ algorithm at $\boldsymbol{n}=10^{9}$, finishing in 20 minutes instead of just over a year.

Asymptotic Analysis is Powerful

- In a race between two algorithms to solve the maximum-sum subarray problem:
- A $\Theta\left(n^{3}\right)$ algorithm was implemented in tuned C code on a 533MHz Alpha 21164 (this was 2000...)
- A $\Theta(n)$ algorithm was implemented in interpreted Basic on a 2.03 Radio Shack TRS-80 Model II
- The winner?
- The horribly implemented, but asymptotically faster, algorithm started beating the beautifully implemented algorithm at $n=5,800$.
- At $\boldsymbol{n}=10,000$, the $\Theta\left(\boldsymbol{n}^{3}\right)$ algorithm took 7 days compared to 32 minutes for the $\Theta(n)$ algorithm.

How Efficient Are Our Sorting Algorithms?

- Bubble Sort
- worst case?
- best case?
- Selection Sort
- worst case?
- best case?
- Insertion Sort
- worst case?
- best case?

Algorithm Design Principle 1

Sometimes we can devise a new
(possibly better) algorithm by reallocating our computational efforts.

Reallocate Computational Effort: Example 1: Sorting

- Selection Sort
- Picking next element to place is harder (always)
- Placing it is easier
- Insertion Sort
- Picking next element to place is easier
- Placing it is harder (only sometimes)

Reallocate Computational Effort: Example 2: Searching

- Unsorted list
- Easy to add items
- Much harder to find an item
- Sorted list
- Extra effort to add items (need to keep sorted)
- Much easier to find an item

Algorithm Design Principle 2

DIVIDE AND CONQUER!

Better Sorting Through Recursion

Selection Sort \rightarrow Quick Sort

- Insertion Sort \rightarrow Merge Sort

