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Administrative Information   
Course Webpage: 
n  http://www.bowdoin.edu/~smajerci/teaching/cs2200/2018fall/index.html 

Textbook:  Coren, Leiserson, Rivest, and Stein. 
Introduction to Algorithms, 3rd edition, MIT Press, 2009. 
My Office Hours:   
n  Monday, 6:00-8:00 pm, Searles 224 
n  Tuesday, 1:00-2:30 pm, Searles 222 

TAs (Office Hours TBA):  
n  Zoe Aarons 
n  Luca Ostertag-Hill 
n  Jack Ward 

n  Erik Wurman 
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 Strategies for designing algorithms 
 When to use those strategies 
 Tools for analyzing algorithm efficiency   
 Techniques for arguing algorithm correctness (a little) 
 Specific algorithms 
 Improved problem solving skills 
 Improved ability to think abstractly 

What you can expect from me 
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What I will expect from you 
 Labs and Homework Problems (25%): 
n  Generally after every two classes 
n  In-Lab Problems 
n  Homework Problems 
n  More a learning tool than a testing tool 

 3 Exams (75%): 
n  In class 
n  Closed book, closed notes 

w  except for one 8.5 x 11 sheet of notes (both sides) 
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Collaboration Levels   
Level 0 (In-Lab and In-Class Problems) 
n  No restrictions on collaboration 

Level 1 (Homework Problems) 
n  Verbal collaboration without code sharing 
n  But many details about what is allowed 

Level 2 (Not used in this course) 
n  Discussions with TAs only 
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Collaboration Levels   
Level 0 (In-Lab and In-Class Problems) 
n  No restrictions on collaboration 

Level 1 (Homework Problems) 
n  Verbal collaboration without code sharing 
n  But many details about what is allowed 

Level 2 (Not used in this course) 
n  Discussions with TAs only 

Level 3 (Exams) 
n  Professor clarifications only 
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Algorithms is a Difficult Class! 
Much more abstract than Data Structures:  
n  emphasis is on designing the solution technique, not 

implementing a solution 

What to do: 
n  Allow plenty of time to read the materials and do the homework 
n  Solve all problems (even the optional ones) 
n  Go to the study groups (TA hours) 
n  Form a group to work with 
n  Spaced study 
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Learning   
What helps you? 

What hinders you? 

 



10 

Algorithms and Programs  
An algorithm is a computational recipe designed 
to solve a particular problem 

Must be implemented as a program in a 
particular programming language 

Data structures are critical... 

...but you already know that. 
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Making a telephone call to Jill 

pick up the phone; 
dial Jill’s number; 
wait for person to answer; 
talk; 

Correctness 
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Waiting at a traffic light   

if (light is red) { 
  wait a while; 
  accelerate; 

} 

Definiteness 
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Looking for an integer >= 0 
with property P. 

i = 0; 
foundIt = testForP(i); 
while (!foundIt) { 
       i++; 
  foundIt = testForP(i); 

} 
Finite number of steps 
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Packing for vacation 

flip coin; 
if (heads) 
  pack paraglider; 

else   
  pack scuba gear; 

Predictability 



Desirable Characteristics 
 THEORY suggests/requires: 
n  Correctness 
n  Definiteness 
n  Finiteness 
n  Predictability 

Practice suggests: 
n  Efficiency  
n  Clarity 
n  Brevity  
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An algorithm is: 
…a list of precisely defined steps that can be done by a 

computer in a finite (and, hopefully, relatively short) 
amount of time to correctly solve a particular type of 
problem. 
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Types of Problems 
 STRUCTURING:  transform input to satisfy Y (SORT) 
 CONSTRUCTION:  build X to satisfy property Y (MST) 
 OPTIMIZATION:  find best X satisfying property Y (TSP) 
 DECISION:  does the input satisfy property Y (SAT) 
 APPROXIMATION:  find X that almost satisfies property 
P and has bounded error (TSP) 
 RANDOMIZED: make random choices (QuickSort) 
 PARALLEL ALGORITHMS (Factoring) 
 ON-LINE ALGORITHMS (Job Scheduling) 

17 
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Pseudocode 
High-level description 
of an algorithm 
More structured than 
English prose 
Less detailed than a 
program 
Preferred notation for 
describing algorithms 
Hides program design 
issues 

  

arrayMax(A, n) 

 currentMax = A[0] 
 for i = 1 to n - 1  
  if A[i] > currentMax 
   currentMax = A[i] 
 return currentMax  

Example: Find the maximum 
element of an array 
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Pseudocode Details 
Control flow 
n  if…[else…] 
n  while…  
n  repeat…until … 
n  for…to and for…downto 
n  Indentation replaces braces  

Method declaration 
       method (arg [, arg…]) 

Method call (pass by value) 
method (arg [, arg…]) 

Return value 
return expression 

  

Java expressions 
n  Also: i = j = k 
n  Booleans “short circuit” 

NOTE:  
n  Will use 0-based 

indexing, BUT 
n  CLRS uses 1-based 

indexing! 

Usual OOP notation 
n  x.f is the attribute f of 

object x 
    

  



Sorting 
Pervasive problem 
n  Data processing 
n  Efficient search 
n  Operations research (e.g. shortest jobs first) 
n  Event-driven simulation (e.g. what happens first?) 
n  Sub-routine for other algorithms (e.g. Kruskal’s MST) 

Informally 
n  Bunch of items 
n  Each has a “key” that allows “<=” comparison 
n  Put items in ascending (or descending) order according to key 

comparisons 
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Sorting 
 Bubble Sort 
 Selection Sort 
 Insertion Sort 
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What About Efficiency? 

 Time 
 Space 
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Experimental Studies 
Write a program 
implementing the 
algorithm 
Run the program with 
inputs of varying size and 
composition 
Use a method like 
System.currentTimeMillis() to 
get a measure of the 
actual running time 
Plot the results 
Okay? 
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Not Okay 
Implementation can be difficult 
Results depend on: 
n  quality of the implementation 
n  language used 
n  computer used 

Can only run on a limited number of inputs, which may 
not be representative 
Difficult to test on very large inputs 
In order to compare two algorithms, the same 
hardware and software environments must be used 
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Theoretical Analysis 
Use a pseudocode description of the algorithm 
instead of an implementation 
Equate running time with the number of instructions 
executed  
Characterize this measure of running time as a 
function of the input size, n. 
Advantages: 
n  Takes into account all possible inputs 
n  Can analyze and compare algorithms independently of 

hardware and software 
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The Random Access Machine 
(RAM) Model 

A CPU 

An potentially unbounded bank 
of memory cells, each of 
which can hold an arbitrary 
number or character 

0 
1 
2 

Memory cells are numbered and accessing any 
cell in memory takes unit time. 
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Primitive Operations 
Basic computations performed 
by an algorithm 
Identifiable in pseudocode 
Largely independent of any 
programming language 
Exact definition not important 
Each assumed to take a 
constant amount of time 
Each assumed to take the same 
constant amount of time 

Examples: 
n  Evaluating a binary 

expression,  
    e.g. (a + b) 
n  Assigning a value 

to a variable 
n  Indexing into an 

array 
n  Calling a method 
n  Returning from a 

method 
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Really? 
Ignores many things, e.g. 
n  Memory hierarchy 
n  Processor load 
n  “Tricks” like: 

w  Pipelining 
w  Speculative execution (e.g. branch prediction) 

n  Some operations really are a lot more expensive 

But, in practice, it works:   
n  It accurately characterizes the running time. 
n  It allows us to compare different algorithms. 
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Counting Primitive Operations 

arraySum(A, n) 
                         #operations 
 sum = 0                  1 
 for i = 0 to n - 1             3n + 2 
  sum  = sum  + A[i]               3n   
 return sum            1 

                                                             Total          6n + 4 
 

By inspecting the pseudocode, we can determine the 
maximum number of primitive operations executed by 
an algorithm, as a function of the input size 
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Growth Rate of Running Time 
Algorithm arraySum executes 6n + 4 primitive 
operations in the worst case (and the best case).  
Changing the hardware/software environment  
n  Affects this by a constant factor, but 
n  Does not alter the growth rate 

The fact that the running time grows at the same 
rate as the input size is an intrinsic property of 
algorithm arraySum  
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Focus on the Rate of Growth: 
Big-O Notation 
Given functions f(n) and g(n), we say that f(n) is 
O(g(n)) if there is a constant c > 0 and an 
integer constant n0 > 0 such that:                     

           f(n) ≤ cg(n)  for n ≥ n0 
 

Example 1: 6n + 4 is O(n) 
n  6n + 4 ≤ cn 
n  6 + 4/n ≤ c 
n  Pick c = 7 and n0 = 4 
 

Example 2: n2 is not O(n) 
n  n2 ≤ cn 
n  n ≤ c 
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More Big-O Examples 
7n - 2 

7n - 2 is O(n) 
need c > 0 and n0 > 0 such that 7n - 2 ≤ cn for n ≥ n0 
this is true for c = 6 and n0 = 2 

n 3n3 + 20n2 + 5 
3n3 + 20n2 + 5 is O(n3) 
need c > 0 and n0 > 0 such that 3n3 + 20n2 + 5 ≤ cn3 for n ≥ n0 
this is true for c = 5 and n0 = 20 
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Big-O Rules 
If is f(n) a polynomial of degree d, then f(n) is 
O(nd), i.e., 
n  Drop lower-order terms   
n  Drop constant factors 
 

Use the “smallest” possible class of functions 
n  Say “2n is O(n)” instead of “2n is O(n2)” 
 



 Two Relative Growth Rate Rules 
Any positive polynomial function with degree greater 
than 0 grows faster than any poly-log function: 

            lgan = O(nb), a > 0, b > 0 
 

Any exponential with base greater than 1 grows 
faster than any polynomial function with degree 
greater than 0: 

            nb = O(cn), b > 0 and c > 1 
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Relative Growth Rates 
lg lg n 
lg n 
lg2 n  also written as  (lg n)2 
√n	
n	

n	lg	n	
n2	

n3	

2n 
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Array Sum 

arraySum(A, n) 
                         #operations 
 sum = 0       1 
 for i = 0 to n - 1                 n 
  sum  = sum  + A[i]     n   
 return sum            1 

                                                              Total         2n + 2 

Algorithm arraySum runs in O(n) time  

Ignoring constant factors makes things easier! 
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Relatives of Big-O 
big-Omega 
n  f(n) is Ω(g(n)) if there is: 

n   a constant c > 0, and 
n   an integer constant n0 > 0  

    such that:  
 f(n) ≥ c g(n) for n ≥ n0 

 

n  Notice that the two constants, c’ and c’’, can be different, 
but n0 must be the same for both.  Just use the max! 

 
big-Theta 
n  f(n) is Θ(g(n)) if there are: 

n   constants c’ > 0 and c’’ > 0, and  
n  an integer constant n0 > 0  

   such that: 
   c’ g(n) ≤ f(n) ≤ c’’ g(n) for n ≥ n0 
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Intuition for  
Asymptotic Notation 

 big-O 
n  f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n) 
n  usually used to describe worst case 
 

 big-Omega 
n  f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n) 
n  can be used to describe best case 

 big-Theta 
n  f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n) 
n  if best and worst case are the same 
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Exercises 

n  Is n2/3 + 3n Θ(n)? 

n  Is n2/3 + 3n Ω(n)? 

n  Is n2/3 + 3n O(n)? 

n  Is n2/3 + 3n Θ(n2)? 
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Asymptotic Analysis is Powerful 
An O(n4/3log n) algorithm to test a conjecture about 
pyramid numbers ran about 30,000 times faster than 
an O(n2) algorithm at n = 109, finishing in 20 minutes 
instead of just over a year. 
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Asymptotic Analysis is Powerful 
In a race between two algorithms to solve the 
maximum-sum subarray problem:   
n  A Θ(n3) algorithm was implemented in tuned C code on a 

533MHz Alpha 21164 (this was 2000…) 
n  A Θ(n) algorithm was implemented in interpreted Basic on a 

2.03 Radio Shack TRS-80 Model II 
The winner? 
n  The horribly implemented, but asymptotically faster, 

algorithm started beating the beautifully implemented 
algorithm at n = 5,800.   

n  At  n = 10,000, the Θ(n3) algorithm took 7 days compared to 
32 minutes for the Θ(n) algorithm. 



How Efficient Are  
Our Sorting Algorithms? 

Bubble Sort 
n  worst case? 
n  best case? 

Selection Sort 
n  worst case? 
n  best case? 

  
Insertion Sort 
n  worst case? 
n  best case? 
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Sometimes we can devise a new  
(possibly better) algorithm  

by reallocating our computational efforts. 
   

Algorithm Design Principle 1 
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Reallocate Computational Effort: 
Example 1: Sorting 

 
Selection Sort 
n  Picking next element to place is harder (always) 
n  Placing it is easier 
 

Insertion Sort 
n  Picking next element to place is easier 
n  Placing it is harder (only sometimes) 
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Unsorted list 
n  Easy to add items 
n  Much harder to find an item 

Sorted list 
n  Extra effort to add items (need to keep sorted) 
n  Much easier to find an item 

 
   

Reallocate Computational Effort: 
Example 2: Searching 
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Algorithm Design Principle 2 
 
 
 

DIVIDE AND CONQUER! 



Better Sorting Through Recursion 

 Selection Sort à Quick Sort 

 Insertion Sort à Merge Sort 
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