
CS 2200: Algorithms

Fall, 2018

2

Administrative Information
Course Webpage:
n  http://www.bowdoin.edu/~smajerci/teaching/cs2200/2018fall/index.html

Textbook: Coren, Leiserson, Rivest, and Stein.
Introduction to Algorithms, 3rd edition, MIT Press, 2009.
My Office Hours:
n  Monday, 6:00-8:00 pm, Searles 224
n  Tuesday, 1:00-2:30 pm, Searles 222

TAs (Office Hours TBA):
n  Zoe Aarons
n  Luca Ostertag-Hill
n  Jack Ward

n  Erik Wurman

3

 Strategies for designing algorithms
 When to use those strategies
 Tools for analyzing algorithm efficiency
 Techniques for arguing algorithm correctness (a little)
 Specific algorithms
 Improved problem solving skills
 Improved ability to think abstractly

What you can expect from me

4

What I will expect from you
 Labs and Homework Problems (25%):
n  Generally after every two classes
n  In-Lab Problems
n  Homework Problems
n  More a learning tool than a testing tool

 3 Exams (75%):
n  In class
n  Closed book, closed notes

w  except for one 8.5 x 11 sheet of notes (both sides)

5

Collaboration Levels
Level 0 (In-Lab and In-Class Problems)
n  No restrictions on collaboration

Level 1 (Homework Problems)
n  Verbal collaboration without code sharing
n  But many details about what is allowed

Level 2 (Not used in this course)
n  Discussions with TAs only

6

Collaboration Levels
Level 0 (In-Lab and In-Class Problems)
n  No restrictions on collaboration

Level 1 (Homework Problems)
n  Verbal collaboration without code sharing
n  But many details about what is allowed

Level 2 (Not used in this course)
n  Discussions with TAs only

7

Collaboration Levels
Level 0 (In-Lab and In-Class Problems)
n  No restrictions on collaboration

Level 1 (Homework Problems)
n  Verbal collaboration without code sharing
n  But many details about what is allowed

Level 2 (Not used in this course)
n  Discussions with TAs only

Level 3 (Exams)
n  Professor clarifications only

8

Algorithms is a Difficult Class!
Much more abstract than Data Structures:
n  emphasis is on designing the solution technique, not

implementing a solution

What to do:
n  Allow plenty of time to read the materials and do the homework
n  Solve all problems (even the optional ones)
n  Go to the study groups (TA hours)
n  Form a group to work with
n  Spaced study

9

Learning
What helps you?

What hinders you?

10

Algorithms and Programs
An algorithm is a computational recipe designed
to solve a particular problem

Must be implemented as a program in a
particular programming language

Data structures are critical...

...but you already know that.

11

Making a telephone call to Jill

pick up the phone;
dial Jill’s number;
wait for person to answer;
talk;

Correctness

12

Waiting at a traffic light

if (light is red) {
 wait a while;
 accelerate;

}

Definiteness

13

Looking for an integer >= 0
with property P.

i = 0;
foundIt = testForP(i);
while (!foundIt) {
 i++;
 foundIt = testForP(i);

}
Finite number of steps

14

Packing for vacation

flip coin;
if (heads)
 pack paraglider;

else
 pack scuba gear;

Predictability

Desirable Characteristics
 THEORY suggests/requires:
n  Correctness
n  Definiteness
n  Finiteness
n  Predictability

Practice suggests:
n  Efficiency
n  Clarity
n  Brevity

15

An algorithm is:
…a list of precisely defined steps that can be done by a

computer in a finite (and, hopefully, relatively short)
amount of time to correctly solve a particular type of
problem.

16

Types of Problems
 STRUCTURING: transform input to satisfy Y (SORT)
 CONSTRUCTION: build X to satisfy property Y (MST)
 OPTIMIZATION: find best X satisfying property Y (TSP)
 DECISION: does the input satisfy property Y (SAT)
 APPROXIMATION: find X that almost satisfies property
P and has bounded error (TSP)
 RANDOMIZED: make random choices (QuickSort)
 PARALLEL ALGORITHMS (Factoring)
 ON-LINE ALGORITHMS (Job Scheduling)

17

18

Pseudocode
High-level description
of an algorithm
More structured than
English prose
Less detailed than a
program
Preferred notation for
describing algorithms
Hides program design
issues

arrayMax(A, n)

 currentMax = A[0]
 for i = 1 to n - 1
 if A[i] > currentMax
 currentMax = A[i]
 return currentMax

Example: Find the maximum
element of an array

19

Pseudocode Details
Control flow
n  if…[else…]
n  while…
n  repeat…until …
n  for…to and for…downto
n  Indentation replaces braces

Method declaration
 method (arg [, arg…])

Method call (pass by value)
method (arg [, arg…])

Return value
return expression

Java expressions
n  Also: i = j = k
n  Booleans “short circuit”

NOTE:
n  Will use 0-based

indexing, BUT
n  CLRS uses 1-based

indexing!

Usual OOP notation
n  x.f is the attribute f of

object x

Sorting
Pervasive problem
n  Data processing
n  Efficient search
n  Operations research (e.g. shortest jobs first)
n  Event-driven simulation (e.g. what happens first?)
n  Sub-routine for other algorithms (e.g. Kruskal’s MST)

Informally
n  Bunch of items
n  Each has a “key” that allows “<=” comparison
n  Put items in ascending (or descending) order according to key

comparisons

20

Sorting
 Bubble Sort
 Selection Sort
 Insertion Sort

21

What About Efficiency?

 Time
 Space

22

23

Experimental Studies
Write a program
implementing the
algorithm
Run the program with
inputs of varying size and
composition
Use a method like
System.currentTimeMillis() to
get a measure of the
actual running time
Plot the results
Okay?

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e
 (

m
s)

24

Not Okay
Implementation can be difficult
Results depend on:
n  quality of the implementation
n  language used
n  computer used

Can only run on a limited number of inputs, which may
not be representative
Difficult to test on very large inputs
In order to compare two algorithms, the same
hardware and software environments must be used

25

Theoretical Analysis
Use a pseudocode description of the algorithm
instead of an implementation
Equate running time with the number of instructions
executed
Characterize this measure of running time as a
function of the input size, n.
Advantages:
n  Takes into account all possible inputs
n  Can analyze and compare algorithms independently of

hardware and software

26

The Random Access Machine
(RAM) Model

A CPU

An potentially unbounded bank
of memory cells, each of
which can hold an arbitrary
number or character

0
1
2

Memory cells are numbered and accessing any
cell in memory takes unit time.

27

Primitive Operations
Basic computations performed
by an algorithm
Identifiable in pseudocode
Largely independent of any
programming language
Exact definition not important
Each assumed to take a
constant amount of time
Each assumed to take the same
constant amount of time

Examples:
n  Evaluating a binary

expression,
 e.g. (a + b)
n  Assigning a value

to a variable
n  Indexing into an

array
n  Calling a method
n  Returning from a

method

28

Really?
Ignores many things, e.g.
n  Memory hierarchy
n  Processor load
n  “Tricks” like:

w  Pipelining
w  Speculative execution (e.g. branch prediction)

n  Some operations really are a lot more expensive

But, in practice, it works:
n  It accurately characterizes the running time.
n  It allows us to compare different algorithms.

29

Counting Primitive Operations

arraySum(A, n)
 #operations
 sum = 0 1
 for i = 0 to n - 1 3n + 2
 sum = sum + A[i] 3n
 return sum 1

 Total 6n + 4

By inspecting the pseudocode, we can determine the
maximum number of primitive operations executed by
an algorithm, as a function of the input size

30

Growth Rate of Running Time
Algorithm arraySum executes 6n + 4 primitive
operations in the worst case (and the best case).
Changing the hardware/software environment
n  Affects this by a constant factor, but
n  Does not alter the growth rate

The fact that the running time grows at the same
rate as the input size is an intrinsic property of
algorithm arraySum

31

Focus on the Rate of Growth:
Big-O Notation
Given functions f(n) and g(n), we say that f(n) is
O(g(n)) if there is a constant c > 0 and an
integer constant n0 > 0 such that:

 f(n) ≤ cg(n) for n ≥ n0

Example 1: 6n + 4 is O(n)
n  6n + 4 ≤ cn
n  6 + 4/n ≤ c
n  Pick c = 7 and n0 = 4

Example 2: n2 is not O(n)
n  n2 ≤ cn
n  n ≤ c

32

More Big-O Examples
7n - 2

7n - 2 is O(n)
need c > 0 and n0 > 0 such that 7n - 2 ≤ cn for n ≥ n0
this is true for c = 6 and n0 = 2

n 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 > 0 such that 3n3 + 20n2 + 5 ≤ cn3 for n ≥ n0
this is true for c = 5 and n0 = 20

33

Big-O Rules
If is f(n) a polynomial of degree d, then f(n) is
O(nd), i.e.,
n  Drop lower-order terms
n  Drop constant factors

Use the “smallest” possible class of functions
n  Say “2n is O(n)” instead of “2n is O(n2)”

 Two Relative Growth Rate Rules
Any positive polynomial function with degree greater
than 0 grows faster than any poly-log function:

 lgan = O(nb), a > 0, b > 0

Any exponential with base greater than 1 grows
faster than any polynomial function with degree
greater than 0:

 nb = O(cn), b > 0 and c > 1

34

Relative Growth Rates
lg lg n
lg n
lg2 n also written as (lg n)2
√n	
n	

n	lg	n	
n2	

n3	

2n

35

36

Array Sum

arraySum(A, n)
 #operations
 sum = 0 1
 for i = 0 to n - 1 n
 sum = sum + A[i] n
 return sum 1

 Total 2n + 2

Algorithm arraySum runs in O(n) time

Ignoring constant factors makes things easier!

37

Relatives of Big-O
big-Omega
n  f(n) is Ω(g(n)) if there is:

n  a constant c > 0, and
n  an integer constant n0 > 0

 such that:
 f(n) ≥ c g(n) for n ≥ n0

n  Notice that the two constants, c’ and c’’, can be different,
but n0 must be the same for both. Just use the max!

big-Theta
n  f(n) is Θ(g(n)) if there are:

n  constants c’ > 0 and c’’ > 0, and
n  an integer constant n0 > 0

 such that:
 c’ g(n) ≤ f(n) ≤ c’’ g(n) for n ≥ n0

38

Intuition for
Asymptotic Notation

 big-O
n  f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
n  usually used to describe worst case

 big-Omega
n  f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)
n  can be used to describe best case

 big-Theta
n  f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)
n  if best and worst case are the same

39

Exercises

n  Is n2/3 + 3n Θ(n)?

n  Is n2/3 + 3n Ω(n)?

n  Is n2/3 + 3n O(n)?

n  Is n2/3 + 3n Θ(n2)?

40

Asymptotic Analysis is Powerful
An O(n4/3log n) algorithm to test a conjecture about
pyramid numbers ran about 30,000 times faster than
an O(n2) algorithm at n = 109, finishing in 20 minutes
instead of just over a year.

41

Asymptotic Analysis is Powerful
In a race between two algorithms to solve the
maximum-sum subarray problem:
n  A Θ(n3) algorithm was implemented in tuned C code on a

533MHz Alpha 21164 (this was 2000…)
n  A Θ(n) algorithm was implemented in interpreted Basic on a

2.03 Radio Shack TRS-80 Model II
The winner?
n  The horribly implemented, but asymptotically faster,

algorithm started beating the beautifully implemented
algorithm at n = 5,800.

n  At n = 10,000, the Θ(n3) algorithm took 7 days compared to
32 minutes for the Θ(n) algorithm.

How Efficient Are
Our Sorting Algorithms?

Bubble Sort
n  worst case?
n  best case?

Selection Sort
n  worst case?
n  best case?

Insertion Sort
n  worst case?
n  best case?

42

43

Sometimes we can devise a new
(possibly better) algorithm

by reallocating our computational efforts.

Algorithm Design Principle 1

44

Reallocate Computational Effort:
Example 1: Sorting

Selection Sort
n  Picking next element to place is harder (always)
n  Placing it is easier

Insertion Sort
n  Picking next element to place is easier
n  Placing it is harder (only sometimes)

45

Unsorted list
n  Easy to add items
n  Much harder to find an item

Sorted list
n  Extra effort to add items (need to keep sorted)
n  Much easier to find an item

Reallocate Computational Effort:
Example 2: Searching

46

Algorithm Design Principle 2

DIVIDE AND CONQUER!

Better Sorting Through Recursion

 Selection Sort à Quick Sort

 Insertion Sort à Merge Sort

47

