
APPSSAT: Approximate Probabilistic Planning

Using Stochastic Satisfiability

Stephen M. Majercik

Bowdoin College, Brunswick ME 04011, USA,
smajerci@bowdoin.edu,

http://www.bowdoin.edu/~smajerci

Abstract. We describe APPSSAT, an anytime probabilistic contingent
planner based on ZANDER, a probabilistic contingent planner that op-
erates by converting the planning problem to a stochastic satisfiability
(Ssat) problem and solving that problem instead [1]. The values of some
of the variables in an Ssat instance are probabilistically determined;
APPSSAT considers the most likely instantiations of these variables
(the most probable situations facing the agent) and attempts to con-
struct an approximation of the optimal plan that succeeds under those
circumstances, improving that plan as time permits. Given more time,
less likely instantiations/situations are considered and the plan is revised
as necessary. In some cases, a plan constructed to address a relatively low
percentage of possible situations will succeed for situations not explic-
itly considered as well, and may return an optimal or near-optimal plan.
This means that APPSSAT can sometimes find optimal plans faster than
ZANDER. And the anytime quality of APPSSAT means that subopti-
mal plans could be efficiently derived in larger time-critical domains in
which ZANDER might not have sufficient time to calculate the optimal
plan. We describe some preliminary experimental results and suggest
further work needed to bring APPSSAT closer to attacking real-world
problems.

1 Introduction

Previous research has extended the planning-as-satisfiability paradigm to sup-
port probabilistic contingent planning; in [1], it was shown that a probabilistic,
partially observable, finite-horizon, contingent planning problem can be encoded
as a stochastic satisfiability (Ssat) [2] instance such that the solution to the Ssat

instance yields a contingent plan with the highest probability of reaching a goal
state. This has been used to construct ZANDER, a competitive probabilistic
contingent planner [1]. APPSSAT is a probabilistic contingent planner based
on ZANDER that produces an approximate contingent plan and improves that
plan as time permits. APPSSAT does this by considering the most probable
situations facing the agent and constructing a plan, if possible, that succeeds un-
der those circumstances. Given more time, less likely situations are considered
and the plan is revised as necessary.

Other researchers have explored the possibility of using approximation to
speed the planning process. In “anytime synthetic projection” a set of control
rules establishes a base plan which has a certain probability of achieving the
goal [3]. Time permitting, the probability of achieving the goal is incrementally
increased by identifying failure situations that are likely to be encountered by the
current plan and synthesizing additional control rules to handle these situations.
Similarly, MAHINUR is a probabilistic partial-order planner that also creates
a base plan with some probability of success and then improves that plan [4].

Exploring approximation techniques in Markov decision processes (MDPs)
and partially observable Markov decision processes (POMDPs) has been a very
active area of research in recent years. In [5] value functions are represented
using decision trees and these decision trees are pruned so that the leaves repre-
sent ranges of values, thereby approximating the value function. Evidence that
the value function of a factored MDP can often be well approximated using
a factored value function has been presented in [6], and it is shown that this
approximation technique can be used as a subroutine in a policy iteration pro-
cess to solve factored MDPs [7]. A method for choosing, with high probability,
approximately optimal actions in an infinite-horizon discounted Markov deci-
sion process using truncated action sequences and random sampling is described
in [8]. In [9] the authors transform a POMDP into a simpler region observable

POMDP in which it is assumed an oracle tells the agent what region its current
state is in. This POMDP is easier to solve and they use its solution to construct
an approximate solution for the original POMDP.

In Section 2, we describe stochastic satisfiability, the basis for both ZAN-

DER and APPSSAT. In Section 3, we describe how ZANDER uses stochastic
satisfiability to solve probabilistic planning problems. In Section 4, we describe
the APPSSAT algorithm for approximate planning and in Section 5 we describe
some preliminary experimental results. We conclude with a discussion of further
work.

2 Stochastic Satisfiability

Ssat, suggested in [10] and explored further in [2], is a generalization of satis-
fiability (SAT) that is similar to quantified Boolean satisfiability (QBF). The
ordered variables of the Boolean formula in an Ssat problem, instead of being
existentially or universally quantified, are existentially or randomly quantified.
Randomly quantified variables are true with a certain probability, and an Ssat

instance is satisfiable with some probability that depends on the ordering of and
interplay between the existential and randomized variables. The goal is to choose
values for the existentially quantified variables that maximize the probability of
satisfying the formula.

More formally, an Ssat problem Φ = Q1v1 . . . Qnvnφ is specified by 1) a
prefix Q1v1 . . . Qnvn that orders a set of n Boolean variables V = {v1, . . . , vn}
and specifies the quantifier Qi associated with each variable vi, and 2) a matrix

φ that is a Boolean formula constructed from these variables. More specifically,

the prefix Q1v1 . . . Qnvn associates a quantifier Qi, either existential (∃i) or
randomized (

Rπi

i), with the variable vi. The value of an existentially quantified
variable can be set arbitrarily by a solver, but the value of a randomly quantified
variable is determined stochastically by πi, an arbitrary rational probability
that specifies the probability that vi will be true. (In the basic Ssat problem
described in [2], every randomized variable is true with probability 0.5, but
it is noted that the probabilities associated with randomized variables can be
arbitrary rational numbers.) In this paper, we will use x1, x2, . . . for existentially
quantified variables and y1, y2, . . . for randomly quantified variables.

The matrix φ is assumed to be in conjunctive normal form (CNF), i.e. a
set of m conjuncted clauses, where each clause is a set of distinct disjuncted
literals. A literal l is either a variable v (a positive literal) or its negation −v

(a negative literal). For a literal l, |l| is the variable v underlying that literal
and l is the “opposite” of l, i.e. if l is v, l is −v; if l is −v, l is v; A literal l

is true if it is positive and |l| has the value true, or if it is negative and |l|
has the value false. A literal is existential (randomized) if |l| is existentially
(randomly) quantified. The probability that a randomly quantified variable v

has the value true (false) is denoted Pr[v] (Pr[−v]). The probability that a
randomized literal l is true is denoted Pr[l]. As in a SAT problem, a clause is
satisfied if at least one literal is true, and unsatisfied, or empty, if all its literals
are false. The formula is satisfied if all its clauses are satisfied.

The solution of an Ssat instance is an assignment of truth values to the
existentially quantified variables that yields the maximum probability of satis-
faction, denoted Pr[Φ]. Since the values of existentially quantified variables can
be made contingent on the values of randomly quantified variables that appear
earlier in the prefix, the solution is, in general, a tree that specifies the optimal
assignment to each existentially quantified variable xi for each possible instanti-
ation of the randomly quantified variables that precede xi in the prefix. A simple
example will help clarify this idea before we define Pr[Φ] formally. Suppose we
have the following Ssat problem:

∃x1,

R0.7
y1, ∃x2{{x1, y1}, {x1, y1}, {y1, x2}, {y1, x2}} . (1)

The form of the solution is a noncontingent assignment for x1 plus two contingent
assignments for x2, one for the case when y1 is true and one for the case when
y1 is false. In this problem, x1 should be set to true (if x1 is false, the first
two clauses become {{y1}, {y1}}, which specify that y1 must be both true and

false), and x2 should be set to true (false) if y1 is false(true). Since it is
possible to satisfy the formula for both values of y1, Pr[Φ] = 1.0. If we add the
clause {y1, x2} to this instance, however, the maximum probability of satisfaction
drops to 0.3: x1 should still be set to true, and when y1 is false, x2 should
still be set to true. When y1 is true, however, we have the clauses {{x2}, {x2}},
which insist on contradictory values for x2. Hence, it is possible to satisfy the
formula only when y1 is false, and, since Pr[−y1] = 0.3, the probability of
satisfaction, Pr[Φ], is 0.3.

We will need the following additional notation to define Pr[Φ] formally. A
partial assignment α of the variables V is a sequence of k ≤ n literals l1; l2; . . . ; lk

such that no two literals in α have the same underlying variable. Given li and
lj in an assignment α, i < j implies that the assignment to |li| was made before
the assignment to |lj |. A positive (negative) literal v (−v) in an assignment α

indicates that the variable v has the value true (false). The notation Φ(α)
denotes the Ssat problem Φ′ remaining when the partial assignment α has been
applied to Φ (i.e. clauses with true literals have been removed from the matrix,
false literals have been removed from the remaining clauses in the matrix, and
all variables and associated quantifiers not in the remaining clauses have been
removed from the prefix) and φ(α) denotes φ′, the matrix remaining when α has
been applied. Similarly, given a set of literals L, such that no two literals in L

have the same underlying variable, the notation Φ(L) denotes the Ssat problem
Φ′ remaining when the assignments indicated by the literals in L have been
applied to Φ, and φ(L) denotes φ′, the matrix remaining when the assignments
indicated by the literals in L have been applied. A literal l 6∈ α is active if some
clause in φ(α) contains l; otherwise it is inactive.

Given an Ssat problem Φ, the maximum probability of satisfaction of Φ,
denoted Pr[Φ], is defined according to the following recursive rules:

1. If φ contains an empty clause, Pr[Φ] = 0.0.

2. If φ is the empty set of clauses, Pr[Φ] = 1.0.

3. If the leftmost quantifier in the prefix of Φ is existential and the variable
thus quantified is v, then Pr[Φ] = max(Pr[Φ(v)], P r[Φ(−v)]).

4. If the leftmost quantifier in φ is randomized and the variable thus quantified
is v, then Pr[Φ] = (Pr[Φ(v)] × Pr[v]) + (Pr[Φ(−v)] × Pr[−v]).

These rules express the intuition that a solver can select the value for an existen-
tially quantified variable that yields the subproblem with the higher probability
of satisfaction, whereas a randomly quantified variable forces the solver to take
the weighted average of the two possible results.

There are simplifications that allow an algorithm implementing this recursive
definition to avoid the often infeasible task of enumerating all possible assign-
ments. Of course, if the empty set of clauses, or an empty clause, is reached
before a complete assignment is made, the solver can immediately return 1.0,
or 0.0, respectively. Further efficiencies are gained by interrupting the normal
left-to-right evaluation of quantifiers to take advantage of unit and pure literals.
A literal l is unit if it is the only literal in some clause; in this case, |l| must be
assigned the value that makes l true. A literal l is pure if l is active and l is
inactive; if l is an existential pure literal, |l| can be set to make l true without
changing Pr[Φ]. These simplifications modify the rules given above for determin-
ing Pr[Φ], but we omit a restatement of the modified rules, instead describing
an algorithm to solve Ssat instances based on the modified rules (Figure 1).
Note that both ZANDER and APPSSAT construct and return the optimal
solution tree (plan), but we omit the details of solution tree construction in the
algorithm description.

SolveSSAT (Φ)

if φ contains an empty clause: return 0.0;

if φ is the empty set of clauses: return 1.0;

if some l is an existential unit literal:

return SolveSSAT (Φ(l));

if some l is a randomized unit literal:

return SolveSSAT (Φ(l)) * Pr[l];

if some l is an existential pure literal:

return SolveSSAT (Φ(l));

if the leftmost quantifier in Φ is ∃ and its variable is v:

return max(SolveSSAT (Φ(v)), SolveSSAT (Φ(-v)));

if the leftmost quantifier in Φ is

R

and its variable is v:

return SolveSSAT (Φ(v)) * Pr[v] + SolveSSAT (Φ(-v)) * Pr[-v];

Fig. 1. The basic algortihm for solving Ssat instances

3 ZANDER

ZANDER works on partially observable probabilistic propositional planning do-
mains consisting of a finite set of distinct propositions , any of which may be true
or false at any discrete time t. A state is an assignment of truth values to these
propositions. A possibly probabilistic initial state is specified by a set of decision
trees, one for each proposition. Goal states are specified by a partial assignment
to the set of propositions; any state that extends this partial assignment is a
goal state. Each of a finite set of actions probabilistically transforms a state at
time t into a state at time t + 1 and so induces a probability distribution over
the set of all states at time t + 1. A subset of the set of propositions is the set of
observable propositions . The task is to find an action for each step t as a function
of the value of observable propositions for steps before t and that maximizes the
probability of reaching a goal state.

ZANDER translates the planning problem into an Ssat problem. Figure 2
shows an example of such an Ssat plan encoding (where all the unit clauses
have been preprocessed). In this problem, a part must be painted, but the paint
action succeeds only with probability 0.7 and it is an error to try to paint the
part if it is already painted. The agent has two time steps, so the best plan is to
paint the part at t = 1 and observe whether the action was successful, painting
again (at t = 2) if it was not, and doing nothing (noop) otherwise.

The variables in an Ssat plan encoding fall into three segments [1]: the
action-observation segment (variables pa1, no1, opd1, pa2, no2 in Figure 2), the
domain uncertainty segment (variables cvp0.7

1
, cvp0.7

2
in Figure 2), and a segment

representing the result of the actions taken given the domain uncertainty (vari-
able pd1 in Figure 2). The action-observation-history segment is an alternating
sequence of existentially quantified variable blocks (one for each action choice)
and randomly quantified variable blocks (one for each set of possible observations
at a time step). We will refer to an instantiation of these variables as an action-

∃pa1∃no1

R

opd1∃pa2∃no2

R

cvp0.7

1

R

cvp0.7

2 ∃pd1

{ {pa1 ∨ no1} ∧ {pa1 ∨ pd1 ∨ opd1} ∧ {pa2 ∨ no2} ∧

{pa1 ∨ no1} ∧ {pa1 ∨ pd1 ∨ opd1} ∧ {pa2 ∨ no2} ∧

{cvp0.7

1
∨ pa1 ∨ pd1} ∧ {pd1 ∨ pa1} ∧ {cvp0.7

2 ∨ pa2 ∨ pd1} ∧

{cvp0.7

1 ∨ pa1 ∨ pd1} ∧ {no1 ∨ opd1} ∧ {pa2 ∨ pd1} ∧

∧ {opd1 ∨ pa1} ∧ {pd1 ∨ pa2} }

Fig. 2. An example of an Ssat plan encoding, where pa1 = (paint at t = 1), no1 =
(noop at t = 1), opd1 = (observe painted after the action at t = 1), pa2 = (paint at
t = 2), no2 = (noop at t = 2), cvp0.7

1 = (chance variable associated with pa1), cvp0.7

2 =
(chance variable associated with pa2), and pd1 = (painted at t = 1)

observation path. The domain uncertainty segment is a single block containing
all the randomly quantified variables that modulate the impact of the actions on
the observation and state variables. The result segment is a single block contain-
ing all the existentially quantified state variables. Essentially, ZANDER uses
the solver described in Section 2 to find an assignment tree that specifies the
assignments to existentially quantified action variables for all possible settings
of the observation variables, such that the probability of satisfaction (which is
also the probability that the plan will reach the goal) is maximized [1]. In what
follows, we will refer to such a tree as an action-observation tree. We will also
sometimes refer to existentially and randomly quantified variables as choice and
chance variables, respectively.

4 APPSSAT

Before we describe APPSSAT it is worth looking at a previous approach to ap-
proximation in this framework. This approach illuminates some of the problems
associated with formulating an approximation algorithm in this framework and
explains some of the choices we made in developing APPSSAT. An algorithm
called randevalssat that uses stochastic local search in a reduced plan space is de-
scribed in [2]. The randevalssat algorithm uses random sampling to select a subset
of possible chance variable instantiations (thus limiting the size of the contin-
gent plans considered) and stochastic local search to find the best size-bounded
plan. There are two problems with this approach. First, since chance variables
are used to describe observations, a random sample of the chance variables de-
scribes an observation sequence as well as an instantiation of the uncertainty
in the domain, and the observation sequence thus produced may not be obser-

vationally consistent , and these inconsistencies can make it impossible to find
a plan, even if one exists. Second, this algorithm returns a partial policy, that
specifies actions only for those situations represented by paths in the random
sampling of chance variables. APPSSAT addresses these two problems by:

1. designating each observation variable as a special type of variable, termed a
branch variable, rather than a chance variable, and

2. evaluating the approximate plan’s performance under all circumstances, not
just those used to generate the plan.

The introduction of branch variables violates the pure Ssat form of the plan
encoding, but is justified, we think, for the sake of conceptual clarity. We could
achieve the same end in the pure Ssat form by making observation variables
chance variables (as in [1]), and not including them when the possible chance-
variable assignments are enumerated. But, rather than taking this circuitous
route, we have chosen to acknowledge the special role played by observation
variables; these variables indicate a potential branch in a contingent plan (hence
the name). As such, the value of an observation variable node in the assignment
tree described above is the sum of the values of its children. This introduces a
minor modification into the ZANDER approach and has the benefit of clarifying
the role of the observation variables.

APPSSAT incrementally constructs the optimal action-observation tree by
updating the probabilities of the possible action-observation paths in that tree as
it processes the instantiations of the chance variables. APPSSAT can stop this
process after any number of chance variable assignments have been considered
and extract and evaluate the best plan for the chance-variable assignments that
have been considered so far (thus yielding an anytime algorithm). The current
best plan is extracted by finding the tree of action-observation paths that has the
highest probability and whose observations are consistent (note that this proba-
bility is a lower bound on the true probability of success of the plan represented
by the tree). The probability of success of that plan is found by evaluating the
full assignment tree using that plan.

If the probability of success of this plan is sufficient (probability 1.0 or ex-
ceeding a user-specified threshold), APPSSAT halts and return the plan and
probability; otherwise, APPSSAT continues processing chance variable assign-
ments. Note that the probability of success of the just-extracted plan can be
used as a new lower threshold in subsequent plan evaluations, often allowing
additional pruning to be done. The quality of the plan produced increases (if the
optimal success probability has not already been attained) with the available
computation time. See Figure 3 for a description of the algorithm.

Because the chance variable instantiations are investigated in descending
order of probability, a plan with a relatively high percentage of the optimal
success probability can potentially be found quickly. An exception is a domain
in which the high probability situations are hopeless and the best that can be
done is to construct a plan that addresses some number of lower probability
situations. Even here, the basic Ssat heuristics used will allow APPSSAT to
quickly discover that no plan is possible for the high-probability situations, and
lead it to focus on the low-probability situations for which a plan is feasible. Of
course, if all chance-variable assignments are considered, the plan extracted is the
optimal plan, but, as we shall see, the optimal plan may sometimes be produced
even after only a relatively small fraction of the chance-variable assignments
have been considered.

APPSSAT (Φ)

nc = number of chance variables;

k = pow(2, nc) = number of chance variable instantiations;

d = number of chance variable instantiations processed per iteration;

pc = current plan, initially empty;

πpc = probability of success of the current plan, initially 0.0;

πthresh = minimum acceptable probability of success;

w = function that maps action-observation paths to probabilities,

initially all 0.0;

i = 0;

while (i < k/d ∧πpc < πthresh);

for j = (i * d) + 1 to (i * d) + d:

cij = jth chance variable instantiation in descending order

of probability;

Pr[cij] = probability of chance variable instantiation cij;

for each action-observation path (aop) that is consistent with cij:

w(aop) = w(aop) + Pr[cij];

pc = current best plan;

πpc = Pr[pc reaches the goal];

return pc and πpc

Fig. 3. The APPSSAT algorithm for solving Ssat instances.

Unlike ZANDER, which, in effect, looks at chance variable instantiations
at a particular time step based on the instantiation of variables (particularly
action variables) at previous times steps, APPSSAT, by enumerating complete
instantiations of the chance variables in descending order of probability, exam-
ines the most likely outcomes of all actions at all time steps. Because it is not
taking variable independencies into account, it does so somewhat inefficiently.
At the same time, however, by instantiating all the chance variables at the same
time, APPSSAT reduces the Ssat problem to a much simpler SAT problem.
Although this approach will also entail the repeated solving of a number of sub-
problems with one or more chance variable settings changed, the conjecture is
that solving a large number of SAT problems will take less time than solving a
large number if Ssat problems. Obviously, this will depend on the relative num-
ber of problems involved, but we have chosen to explore the approach embodied
in APPSSAT first.

In the current implementation of APPSSAT, the user specifies the total
number of chance-variable assignments to be considered, the interval at which
the current plan should be extracted and evaluated (the default is 5% of the total
number of chance-variable assignments being considered), and optional lower and
upper success probability thresholds. If the algorithm finds a plan that meets or
exceeds the upper success probability threshold, it halts and returns that plan.

All of the operations in APPSSAT can be performed as or more efficiently
than the operations necessary in the ZANDER framework. The chance variable

instantiations can be generated in descending order in time linear in the number
of instantiations using a priority queue. Finding all consistent action-observation
paths amounts to a depth-first search of the assignment tree checking for satisfi-
ability using pruning heuristics (the central operation of ZANDER). Note also
that once an action-observation path is instantiated, checking whether it can be
extended to a satisfying assignment amounts to a series of fast unit propagations.
In fact, once the chance variables have all been set, the remaining variables are
all choice variables and the search for all action-observation paths that lead to
satisfying assignments can be accomplished by any efficient SAT solver that finds
all satisfying assignments. Extracting the current best plan involves a depth-first
search of the action-observation tree, which is sped up by the fact that satisfia-
bility does not have to be checked. Finally, plan evaluation requires a depth-first
search of the entire assignment tree, but heuristics speed up the search, and the
resulting probability of success can be used as a lower threshold if the search
continues, thus potentially speeding up subsequent computation.

5 Results

Preliminary results are mixed but indicate that APPSSAT has some potential
as an approximation technique. In some cases, it outperforms ZANDER, in
spite of the burden of the additional approximation machinery. And, in those
cases, where its performance is poorer, there is potential for further performance
improvements (see Further Work).

We tested APPSSAT on three domains that ZANDER was tested on in
[1]. The TIGER problem contains uncertain initial conditions and a noisy ob-
servation; the agent needs the entire observation history in order to act correctly.
The COFFEE-ROBOT problem is a larger problem (7 actions, 2 observation
variables, and 8 state propositions in each of 6 time steps) with uncertain ini-
tial conditions, but perfect causal actions and observations. Finally, the GO

(GENERAL OPERATIONS) problem has no uncertainty in the initial condi-
tions, but requires that probabilistic actions be interleaved with perfect obser-
vations. All experiments were conducted on an 866 MHz Dell Precision 620 with
256 Mbytes of RAM, running Linux 7.1.

In the 4-step TIGER problem, ZANDER found the optimal plan (0.93925
probability of success) in 0.01 CPU seconds. APPSSAT requires 0.42 CPU
seconds to find the same plan (extracting and evaluating the current plan after
every 5% of chance variable instantiations). This is, however, if we insist on
forcing APPSSAT to look for the best possible plan (and, thus, to process all
512 chance variable instantiations), which seems somewhat out of keeping with
the notion of APPSSAT as an approximation technique. If we run APPSSAT

on this problem under similar assumptions, but specify a success probability
threshold of 0.90 (we will accept any plan with a success probability of 0.90 or
higher), APPSSAT returns a plan in 0.02 CPU seconds. The plan returned is, in
fact, the optimal plan, and is found after examining the first 18 chance variable
instantiations.

Table 1. Probability of success increases with number of chance variable instantiations

4-STEP TIGER 6-STEP COFFEE-ROBOT 7-STEP GO

NCVI SECS PROB NCVI SECS PROB NCVI SECS PROB

1 0.0 0.307062 1 2.24 0.5 1 1.06 0.1250

2 0.0 0.614125 2 4.98 0.5 2 1.20 0.1250

3 0.0 0.614125 3 9.12 1.0 3 1.51 0.1250

4 0.0 0.668312 4 15.07 1.0 4 1.74 0.1250

5 0.01 0.668312 – – – 5 1.98 0.1250

6 0.01 0.722500 – – – 6 2.17 0.1250

7 0.01 0.722500 – – – 7 2.47 0.1250

8 0.01 0.722500 – – – 8 2.67 0.1250

9 0.01 0.776687 – – – 9 2.92 0.1250

10 0.01 0.776687 – – – 10 3.07 0.125

11 0.01 0.830875 – – – 11 3.36 0.1875

12 0.01 0.830875 – – – 12 3.62 0.1875

13 0.01 0.885062 – – – 13 3.83 0.1875

14 0.01 0.885062 – – – 14 4.03 0.1875

15 0.01 0.885062 – – – 15 4.26 0.1875

16 0.02 0.885062 – – – 16 4.47 0.1875

17 0.02 0.885062 – – – 17 4.83 0.1875

18 0.02 0.939250 – – – 18 4.97 0.1875

– – – – – – 19 5.16 0.2500

– – – – – – 20 5.44 0.2500

NCVI = number of chance variable instantiations
SECS = time in CPU seconds
PROB = probability of plan success

Table 1 provides an indication of what kind of approximation would be avail-
able if less time were available than what would be necessary to compute the
optimal plan. This table shows how computation time and probability of plan
success increases with the number of chance variable instantiations considered
until the optimal plan is reached at 18 chance-variable instantiations.

The 6-step COFFEE-ROBOT problem provides an interesting counterpoint
to the TIGER problem in that APPSSAT does better than ZANDER. ZAN-

DER is able to find the optimal plan (success probability 1.0) in 19.34 CPU
seconds, while APPSSAT can find the same plan in 9.12 CPU seconds. There
are only 4 chance variable instantiations in the COFFEE-ROBOT problem
and, since extraction and evaluation of the plan at intervals of 5% would result
in intervals of less than one, the algorithm defaults to extracting and evaluating
the plan after each chance variable instantiation is considered. Although one
might conjecture that this constant plan extraction and evaluation is a waste of
time, in this case it leads to the discovery of an optimal plan (success proba-
bility of 1.0) after processing the first 3 chance variable instantiations, and the
resulting solution time of 9.12 CPU seconds (including plan extraction and eval-

uation time) is less than the solution time if we force APPSSAT to wait until all
four chance variable instantiations have been considered before extracting and
evaluating the best plan (15.07 CPU seconds).

This illustrates an interesting tradeoff. In the latter case, although APPSSAT

does not extract and evaluate the plan after each chance variable instantiation,
it does an extra chance variable instantiation, and this turns out to take more
time than the extra plan extractions and evaluations. This is not surprising since
checking a chance variable instantiation involves solving a SAT problem to find
all possible satisfying assignments, while extracting and evaluating the plan re-
quires only depth-first search. This suggests that we should be biased toward
more frequent plan extraction and evaluation; more work is needed to determine
if some optimal frequency can be automatically determined for a given problem.
Table 1 provides an indication of how computation time and probability of plan
success increases with the number of chance variable instantiations considered for
the COFFEE-ROBOT problem. Interestingly, although the probability mass
of the chance variables is spread uniformly across the four chance variable in-
stantiations, APPSSAT is still able to find the optimal plan without considering
all the chance variable instantiations.

The 7-step GO problem shows that this is not necessarily the case when, as
in the GO problem, the probability mass is spread uniformly over many more
(221) chance variable instantiations. In this problem, ZANDER is able to find
the optimal plan (success probability 0.773437) in 2.48 CPU seconds. Because of
the large number of chance variable instantiations to be processed, APPSSAT

cannot approach this speed. APPSSAT needs about 566 CPU seconds to pro-
cess 3000 (0.14%) of the total chance variable instantiations, yielding a plan with
success probability of 0.648438. Table 1 provides an indication of how compu-
tation time and probability of plan success increases with the number of chance
variable instantiations considered for the GO problem.

As the size of the problem increases, however, to the point where ZANDER

might not be able to return an optimal plan in sufficient time, APPSSAT may
be useful if it can return any plan with some probability of success in less time
than it would take ZANDER to find the optimal plan. We tested this conjecture
on the 10-step GO problem (230 = 1073741824 chance variable instantiations).
Here, ZANDER needed 405.35 CPU seconds to find the optimal plan (success
probability 0.945313). APPSSAT was able to find a plan in somewhat less time
(324.92 CPU seconds to process 20 chance variable instantiations), but this plan
has a success probability of only 0.1875.

6 Further Work

We need to improve the efficiency of APPSSAT if it is to be a viable approx-
imation technique, and there are a number of techniques we are in the process
of implementing that should help us to achieve this goal. First, we are imple-
menting an incremental approach: every time a new action-observation path is
added, APPSSAT would incorporate that path into the current plan, checking

to see if it changes that plan by checking values stored in that path from that
point to the root. Whenever this process indicates that the plan has changed,
the plan extraction and evaluation process will be initiated.

Second, when APPSSAT is processing the chance variable instantiations
in descending order, in many cases the difference between two adjacent instan-
tiations is small. We can probably take advantage of this to find the action-
observation paths that satisfy the new chance variable instantiation more quickly.

Third, since we are repeatedly running a SAT solver to find action-observation
paths that lead to satisfying assignments for the chance-variable assignments,
and since two chance variable assignments will frequently generate the same
satisfying action-observation path, it seems likely that we could speed up this
process considerably by incorporating learning into APPSSAT. (We also note
that we could improve performance by taking advantage of the speed available
from current state-of-the-art SAT solvers.)

Finally, we are investigating whether plan simulation (instead of exact calcu-
lation of the plan success probability) would be a more efficient way of evaluating
the current plan.

References

1. Majercik, S.M., Littman, M.L.: Contingent planning under uncertainty via stochas-
tic satisfiability. Artificial Intelligence 147 (2003) 119–162

2. Littman, M.L., Majercik, S.M., Pitassi, T.: Stochastic Boolean satisfiability. Jour-
nal of Automated Reasoning 27 (2001) 251–296

3. Drummond, M., Bresina, J.: Anytime synthetic projection: Maximizing the prob-
ability of goal satisfaction. In: Proceedings of the Eighth National Conference on
Artificial Intelligence, Morgan Kaufmann (1990) 138–144

4. Onder, N., Pollack, M.E.: Contingency selection in plan generation. In: Proceedings
of the Fourth European Conference on Planning. (1997)

5. Boutilier, C., Dearden, R.: Approximating value trees in structured dynamic pro-
gramming. In Saitta, L., ed.: Proceedings of the Thirteenth International Confer-
ence on Machine Learning. (1996)

6. Koller, D., Parr, R.: Computing factored value functions for policies in structured
MDPs. In: Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence, The AAAI Press/The MIT Press (1999) 1332–1339

7. Koller, D., Parr, R.: Policy iteration for factored MDPs. In: Proceedings of the
Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI 2000).
(2000)

8. Kearns, M.J., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal
planning in large markov decision processes. In: IJCAI. (1999) 1324–1331

9. Zhang, N.L., Lin, W.: A model approximation scheme for planning in partially
observable stochastic domains. Journal of Artificial Intelligence Research 7 (1997)
199–230

10. Papadimitriou, C.H.: Games against nature. Journal of Computer Systems Science
31 (1985) 288–301

