CSCI 2330 - Multidimensional Array Exercises

Consider a generic 2-dimensional nested array A declared as follows:

T A[R][C];

where \mathbf{T} is the type of the array, \mathbf{A} is the base pointer of the array, \mathbf{R} is the number of rows, and \mathbf{C} is the number of columns. Assume row-major ordering.

1. Give a formula for the number of bytes needed to store A.
2. Without using array notation, give a formula for the address of row vector \mathbf{i}, i.e., A[i]. Verify by computing zips [2] (should be 116) for the array shown.

3. Without using array notation, give a formula for the address of a single array element $\operatorname{A[i]}[\mathrm{j}]$. Verify by computing zips[1][3] (should be 108).
4. Recall that an alternative approach for storing a 2D array is a multi-level array, in which each row is allocated independently. What is an advantage of a multi-level array over a nested array? Hint: think of the structure that you built in Lab 2 and why it wouldn't have worked well using a nested array.
5. What is an advantage of a nested array over a multi-level array? Hint: think about efficiency and memory accesses.
