CSCI 2330 - Floating Point Exercises

1. Using an 8 -bit IEEE floating point representation (with $\mathrm{k}=4$ exponent bits and 3 fractional bits), convert 00110100 into a decimal value.
2. Using the same 8-bit representation, convert 10000101 into a decimal value (working with a fraction here is advisable).
3. If \mathbf{d} is a double, does $(\mathrm{d}<0.0)$ imply that $\left(\left(d^{*} 2\right)<0.0\right)$? Remember that this property is not guaranteed for integer types.
4. Excluding infinity, write down an expression giving the exact decimal value of the largest 32 -bit IEEE floating point number (no need to simplify the expression).
5. IEEE 754 encodes the exponent value E using the \exp bits as an unsigned value from which bias is subtracted. An alternative approach would be to just make the exp bits encode a signed value and get rid of the bias term. Is there a reason to prefer the unsigned - bias approach?

Hint: This is related to how floating point values can be compared. As an example in the above 8-bit format, consider 01000000 and 00100000 in either the signed or unsigned exp format. Which bit pattern encodes the larger value in each format?

