CSCI 2330 - Floating Point Exercises

1. Using our toy 8 -bit floating point representation (with $\mathrm{k}=4$ exponent bits and 3 fractional bits), convert 00110100 into a decimal value.
2. Using the same 8-bit representation, convert 10000101 into a decimal value (working with a fraction here is advisable).
3. What is the decimal value of the largest possible 32-bit IEEE floating point number (excluding infinity)? You do not need to compute the final simplified value but should be able to write down the exact expression.
4. If \mathbf{d} is a double in C , does $\mathrm{d}<0.0$ imply ($\left.\left(\mathrm{d}^{*} 2\right)<0.0\right)$? (remember this is not true for ints)
5. You may wonder why IEEE 754 encodes the exponent value \mathbf{E} using an unsigned \exp field and a bias value instead of the simpler option of just making exp encode a signed int. Why might the designers have made this choice?
(Hint: one of the design goals of IEEE 754 was to have floating point numbers ordered in the same way as if they were ints, to allow for easy comparisons -- e.g., $001<010<011$ regardless of whether these numbers are ints or floating point. Think about what an ordering of values would look like if exp was signed.)
