
Lab 5: The Two Towers1

CSCI 2101 – Fall 2021

Due (Section A): Tuesday, November 2, 11:59 pm
Due (Section B): Wednesday, November 3, 11:59 pm
Collaboration Policy: Level 1 (review full policy for details)
Group Policy: Individual

In this week’s lab, you will use Iterators to solve a difficult problem. You will also gain
experience measuring the real-world execution time of programs and an appreciation for the impact
of algorithmic complexity on real-world running times.

Note that while your program this week will be relatively short, the code is somewhat tricky
to grasp conceptually. Also note that unlike the last several labs, this lab must be completed
individually. Plan accordingly!

1 The Two Towers

Suppose that you are given n uniquely sized cubic blocks, where each block has a face area (not
side length) of 1 to n square units. In other words, each block k has a face area of k square units
and a side length of

√
k units. Your goal is simple: you want to use all n blocks to build two towers

such that the heights of the towers are as close as possible.
For example, suppose that n = 15. Below is a possible stacking of the 15 blocks into two

towers. In this particular stacking, the heights of the towers differ by only 129 millionths of a unit.

Figure 1: A possible stacking of n = 15 blocks.

You might be surprised to learn that the stacking configuration depicted in Figure 1 is actually
only the second-best solution for the n = 15 case! This week, you will write a program that can find
the best solution to this problem for any n (with a few practical caveats) by exhaustively checking
every possible pair of tower configurations.

1Adapted from a lab provided with Java Structures, D. Bailey
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2 Program Interface

The basic operation of your program will be quite simple. On startup, the program should prompt
the user for a desired number of blocks (i.e., the value of n):

Enter number of blocks:

Once the block count is entered (which you can assume is at least 2), the program should solve
the two towers problem by checking every configuration and then printing the following information:

1. The optimal tower height (i.e., the height of each tower if they were exactly equal in height).

2. In the best possible tower configuration, the subset of blocks making up the shorter tower
(the taller tower would simply be the rest of the blocks).

3. The height of the (shorter) tower represented by the above subset. This height should be
close to, but not larger than, the optimal tower height.

4. The difference between the height of the best shorter tower and the optimal tower height.

5. The clock time (i.e., actual real-world time) taken to solve the problem, in milliseconds. Note
that this duration may vary from run to run or machine to machine.

Below is example output for n = 10:

Enter number of blocks: 10

Target (optimal) height: 11.23413909310205

Best subset: 1 4 5 8 10

Best height: 11.22677276241436

Distance from optimal: 0.0073663306876898815

Solve duration: 3 ms

3 Problem Analysis

To start, we can determine the total height of all the blocks by just summing their individual
heights. The total height h of all the blocks (which will be divided between the two towers) is:

h =
n∑

i=1

√
i =
√

1 +
√

2 + · · ·+
√
n

If it were possible to produce two towers of exactly equal heights, then the height of each
tower would be precisely h/2. Now consider the best feasible two tower configuration. Of this
configuration, one tower is shorter and one tower is taller (unless it’s perfect, in which case they’re
the same). The shorter tower of this configuration would have a height of (h/2− ε), where ε is as
small as possible but nonnegative. Thus, one way to find this optimal configuration is to enumerate
every possible subset of n blocks, looking for the subset with height closest to but no greater than
h/2. This subset would correspond to the shorter tower in the optimal configuration, while the rest
of the n blocks (i.e., those not in the subset) would correspond to the taller tower.
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In more concrete terms, imagine that we have a List of n values, each of which corresponds to
a block – the values themselves might be, e.g., the height of each block (

√
1,
√

2, etc). The elements
of the list are stored from indices 0 to n − 1. A particular subset of blocks (i.e., a particular
tower configuration) can be represented as a subset of those n indices. In other words, rather than
thinking about enumerating subsets of blocks, we can instead think about enumerating subsets of
list indices (which then correspond to the specific list values at those indices). Thus, what we really
need is a way to systematically generate all possible subsets of the n list indices.

Note that the subset-generation problem we’re describing isn’t at all specific to the two towers
problem. In the specific context of the two towers problem, each subset corresponds to a group of
blocks, but the list over which we’re enumerating subsets of indices could potentially be storing any
kind of data item. Thus, what we’re really doing here is tackling a more general problem (how to
enumerate subsets of list indices), and then applying that general solution to the specific scenario
of the two towers.

To think about how we can represent (and then enumerate) subsets of the n list indices, we’re
going to use a few tricks based on the way that computers represent numbers, as described below.

3.1 Binary Numbers

All computers represent information in binary (base 2) instead of the decimal (base 10) numbering
system that humans generally use. A decimal number consists of digits from 0 to 9, and each digit
represents a power of 10. For example, the decimal number 382 is deconstructed as 3 ∗ 102 + 8 ∗
101 + 2 ∗ 100 = 382. A binary number, on the other hand, is comprised of only 0’s and 1’s, and
is built using powers of 2 instead of powers of 10. For example, the binary number 1101 (that’s
“one-one-zero-one”) is equal to 1 ∗ 23 + 1 ∗ 22 + 0 ∗ 21 + 1 ∗ 20 = 13 in decimal. Each 0 or 1 in a
binary number is referred to as a bit. Note that for an n-bit binary number, the smallest decimal
value is 0 (the n-bit number consisting of all 0 bits, e.g., 0000 = 0) and the largest decimal value
is 2n − 1 (the n-bit number consisting of all 1 bits, e.g., 1111 = 15).

Returning to the subset enumeration problem, we can be clever by noting that we can represent
a subset of n list indices using an n-bit binary number, in which each bit represents the exclusion or
inclusion of the corresponding index as a 0 or 1, respectively. The right-most bit would correspond
to the inclusion or exclusion of index 0, while the left-most bit would correspond to the inclusion
or exclusion of index n− 1. For example, the 4-bit binary number 1101 would represent the index
subset [0, 2, 3], while the binary number 0101 would represent the index subset [0, 2]. Note that if
we considered every 4-bit binary number starting with 0000 (the subset containing nothing) and
ending with 1111 (the subset containing all four indices), we would have considered every possible
subset along the way. When representing the subsets in this way, enumerating all possible subsets
is easy, since all we’re actually doing is counting from 0 (binary 0000 in 4 bits) up to 2n−1 (binary
1111 = decimal 15 in 4 bits).

One notable limitation of this approach is that if we want to represent a subset of n indices,
then we need to use a number that is internally stored using at least n bits. Computers can only
use a finite number of bits to represent a number, with the number of bits used depending on the
data type. In Java, an int is represented using 32 bits, while a long (the larger integer type) is
represented using 64 bits. For maximum flexibility, we can choose to represent the subset using a
long, and should thus be able to represent a subset of up to n = 64 indices.
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3.2 Binary Operations

In order to use the above approach, we’ll need to work with the actual binary representations of
numbers in Java, which will require a few operators that we haven’t seen before. We needn’t worry
too much about the details of how these operators work, but we’ll need to know a few useful tricks:

• The left shift operator “<<” can be used to quickly compute any power of 2. In particular,
the value 2i can be computed by shifting one i places to the left. For example, the expression
1L << 7 computes the value 27 (the L just means that the value is a long, not an int).

• The bitwise and operator “&” can be used to determine the value of a single bit in a number’s
binary representation. In particular, if m is some long, we can check bit i of m by computing
the expression (m & (1L << i)). If bit i of m is a 0, then this expression will evaluate to 0,
while if bit i is a 1, then this expression will evaluate to some nonzero value (specifically, the
value 2i). Note that the operator & is completely different from the logical and operator “&&”
that you’re familiar with for combining boolean expressions (don’t mix them up!).

4 Program Design

Armed with our understanding of how to represent an index subset using a single number, we can
go about writing a program to solve the two towers problem.

4.1 Subset Iterator

First we need to build an Iterator that iterates through all element subsets of a given list. For
example, if we’re iterating over subsets of the list [a, b, c], then the iterator should go about giving
us all eight possible subsets (in no particular order): [], [a], [b], [c], [a, b], [a, c], [b, c], [a, b, c].

Name your new class SubsetIterator. For maximum generality, the list that you’re producing
subsets from could store any type of object (not just integers, as in the above example), so let’s
call that generic type T. In other words, each element (i.e., subset) that the iterator produces will
be of type List<T>. Thus, the generic type of the Iterator interface will be List<T>.

Putting this all together, the declaration of your iterator will be the following (an iterator that
returns a List<T> object every time next is called):

public class SubsetIterator<T> implements Iterator<List<T>>

The constructor of the class should be given the list of elements that you are going to iterate
over (i.e., generate subsets from). In order to implement the Iterator interface, you will then need
to write the two core methods: hasNext, which says whether there are any remaining elements
(subsets) to iterate over, and next, which actually produces and returns the next subset.

Internally, your iterator will need to keep track of the current subset using a long as detailed
in Section 3. This value will increase from 0 (the first subset, containing nothing) all the way to
2n − 1 (the last subset, containing everything) as the iterator progresses.

Once your iterator is implemented, test it by writing a main method in SubsetIterator with
some test code. For example, you could create an ArrayList of integers and add the values from 1
to 7 to it. Then, create a SubsetIterator for this list and use it to print out all possible subsets
of the list. If your iterator works correctly, your code should print out 27 = 128 different subsets
of the 7 integers in the list. Make sure this works before moving on.
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4.2 Two Towers with Iterators

At this point, you should have a functioning SubsetIterator class. Now you can use this class to
solve the two towers problem. Create a new class named TwoTowers, which will just be a container
for your (real) main method. This method should actually run the program as detailed in Section 2.
To solve the two towers problem, create a list holding the heights of the n blocks (i.e., the values√

1,
√

2,
√

3, ...) and use a SubsetIterator to iterate through the subsets of this list. For each
subset, you just need to sum the values to find the height of the corresponding tower, and then
pick the tallest tower (i.e., across all subsets) that’s no taller than h/2. The subset corresponding
to this tower is the best (shorter) tower for the given n. Once you have found the best subset, you
can print out all the information specified in Section 2.

5 Implementation Tips

As usual, here are some implementation pointers as you write your program.

5.1 Subset Enumeration

Programming is all about breaking hard problems down into simpler pieces, solving those pieces
on their own, then putting things back together. When you’re writing the SubsetIterator class,
keep that idea in mind – all you’re doing is writing an iterator to produce subsets of a list, nothing
more. In particular, nothing in the SubsetIterator class should have anything to do with
the two towers problem specifically. Approach your code accordingly – you’re solving the
subset iteration problem first, and only afterwards actually considering the two towers problem.

Remember to import java.util.Iterator in SubsetIterator to use the Iterator interface.

5.2 Timing Code

The final piece of output specified in Section 2 is the amount of time (i.e., wall clock time) taken
to solve the problem. Whenever you want to measure how much real-world time is taken to run a
piece of code, you should include code to have the computer do the timing for you, which is much
more precise than using a stopwatch or any other manual method.

Measuring the time taken to execute code is very simple – just record the current time before
starting to run the relevant code, record the current time after running the relevant code, then
subtract the two times to obtain the duration spent running the code. The standard method to
record the current time in Java is System.currentTimeMillis(), as demonstrated below:

long startTime = System.currentTimeMillis();

doSomething(); // run some code that we want to time

long duration = System.currentTimeMillis() - startTime;

System.out.println("Time executing doSomething was " + duration + " ms");

If you’re curious, the way the current time is represented as a long is that it’s just the number
of milliseconds that have passed since midnight on January 1, 1970 (a very large number). That
particular date is completely arbitrary, but since everyone agrees on it as “time zero”, we can use
a single number like the one returned by System.currentTimeMillis() as a specific timestamp.
This approach is how most computers store dates and times.
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5.3 Math Functions

There are a couple of useful math methods that you may wish to use in your program:

• You can use the Math.sqrt method to compute square roots. Note that Math.sqrt returns
a double, which is the type you should use whenever you need to represent fractional values.

• You can use Math.round to round a double to the nearest int (for instance, if converting a
side length like

√
5 back to its respective block number).

• There is a Math.pow method that can be used to compute powers, but you don’t need to use
it here. You should instead use the shifting trick described in Section 3 whenever you need
to raise a number to a power (which is also much faster than calling Math.pow, although can
only be used if computing a power of 2).

6 Thought Questions

Once you have completed your program, use it to answer the following questions. Write your
answers in the program README file. If your IDE doesn’t automatically create this file, create it
yourself – this file should be a plain text file (not a Word document or other file format), which
you can create in TextEdit on a Mac or Notepad on a PC.

1. What is the best solution to the 15-block problem?

2. Solve the 20-block, 21-block, and 22-block problems and list the times taken to solve each
problem. You might want to run each test two or three times and average the results to get
better measurements. What do you notice about the runtimes? Why does this result make
sense given the design of the program?

3. Based on your empirical results from the previous question and your understanding of the
time complexity of the program, estimate how long it would take to solve the 50-block problem
(you won’t want to actually run this). Specify your answer in some reasonable time unit (hint:
it shouldn’t be milliseconds for this scenario)!

7 Evaluation

Your lab submission will be evaluated both on your answers to the questions above (in your README
file) and on your actual program. As usual, your program will be evaluated for correctness, design,
and style. Make sure that your program is documented appropriately and is in compliance with
the coding and style guide. Lastly, make sure that your name is included in all of your Java files
as well as your README.

8 Submitting Your Program

Submit your program on Blackboard in the usual way. Remember to create a zip file named
with your username and lab number, e.g., sbowdoin-lab5.zip, and upload that file (which should
contain both your Java files and your README).
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