
Sean Barker

Time

1

Sean Barker

Event Ordering in Make

2

CS677: Distributed OSComputer Science Lecture 11, page

Clock Synchronization

• Time in unambiguous in centralized systems
– System clock keeps time, all entities use this for time

• Distributed systems: each node has own system clock
– Crystal-based clocks are less accurate (1 part in million)
– Problem: An event that occurred after another may be assigned

an earlier time

3

CS677: Distributed OSComputer Science Lecture 11, page

Physical Clocks: A Primer
• Accurate clocks are atomic oscillators (one part in 1013)
• Most clocks are less accurate (e.g., mechanical watches)

– Computers use crystal-based blocks (one part in million)
– Results in clock drift

• How do you tell time?
– Use astronomical metrics (solar day)

• Coordinated universal time (UTC) – international standard based on atomic
time

– Add leap seconds to be consistent with astronomical time
– UTC broadcast on radio (satellite and earth)
– Receivers accurate to 0.1 – 10 ms

• Need to synchronize machines with a master or with one another

4

Sean Barker

???

3

Atomic Clock!

Sean Barker

Clock Synchronization

4

CS677: Distributed OSComputer Science Lecture 11, page

Clock Synchronization

• Each clock has a maximum drift rate ρ
• 1-ρ <= dC/dt <= 1+ρ

– Two clocks may drift by 2ρ Δt in time Δt
– To limit drift to δ => resynchronize every δ/2ρ seconds

5

CS677: Distributed OSComputer Science Lecture 11, page

Cristian’s Algorithm

• Synchronize machines to a
time server with a UTC
receiver

• Machine P requests time from
server every δ/2ρ seconds
– Receives time t from server, P

sets clock to t+treply where treply
is the time to send reply to P

– Use (treq+treply)/2 as an estimate
of treply

– Improve accuracy by making a
series of measurements

6

Sean Barker

Cristian’s Algorithm

5

CS677: Distributed OSComputer Science Lecture 11, page

Clock Synchronization

• Each clock has a maximum drift rate ρ
• 1-ρ <= dC/dt <= 1+ρ

– Two clocks may drift by 2ρ Δt in time Δt
– To limit drift to δ => resynchronize every δ/2ρ seconds

5

CS677: Distributed OSComputer Science Lecture 11, page

Cristian’s Algorithm

• Synchronize machines to a
time server with a UTC
receiver

• Machine P requests time from
server every δ/2ρ seconds
– Receives time t from server, P

sets clock to t+treply where treply
is the time to send reply to P

– Use (treq+treply)/2 as an estimate
of treply

– Improve accuracy by making a
series of measurements

6

Sean Barker

Berkeley Algorithm

6

CS677: Distributed OSComputer Science Lecture 11, page

Berkeley Algorithm

• Used in systems without UTC receiver
– Keep clocks synchronized with one another
– One computer is master, other are slaves
– Master periodically polls slaves for their times

• Average times and return differences to slaves
• Communication delays compensated as in Cristian’s algo

– Failure of master => election of a new master

7

CS677: Distributed OSComputer Science Lecture 11, page

Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock

8

Sean Barker

Network Time Protocol (NTP) Strata

7

3/14/14

6

31"

NTP Clock Strata"
•  Stratum 0: atomic clocks, GPS clocks,

radio clocks"

•  Stratum 1: Time servers, attached
directly to Stratum 0 devices"

•  Stratum 2: Send requests to one or
more Stratum 1 time servers"

•  Stratum 3: Send requests to one or
more Stratum 2 computers"

•  And so on…"

•  Up to 256(!) strata levels supported
in current version of NTP"

32"

NTP Modes"

•  Multicast (for quick LANs, low accuracy)"
•  Server periodically sends its actual time to its

leaves in the LAN"

•  Procedure call (medium accuracy)"
•  Server responds to requests with actual

timestamp (like Cristian’s algorithm)"

•  Symmetric mode (high accuracy)"
•  Used to synchronize between pairs of time

servers "

33"

Synchronizing NTP Servers"

T!i!

T!i-1!T!i!-2!

T!i!-!3!

Server B!

Server A!

Time!

m! m'!

Time!

•  All messages sent using UDP"
•  Each message bears timestamps of recent events:"

•  Local times of Send and Receive of previous message"

•  Local times of Send of current message"

•  Recipient notes the time of receipt Ti (we have Ti-3, Ti-2, Ti-1, Ti)"

34"

Accuracy of NTP"

•  For each pair of messages between two servers, NTP
estimates an offset o between the two clocks, and a delay di
(total time for the two messages, which take t and t’)"
Ti-2 = Ti-3 + t + o and Ti = Ti-1 + t’ - o"

•  This gives us (by adding the equations) :"
di = t + t’ = Ti-2 - Ti-3 + Ti - Ti-1 "

•  Also (by subtracting the equations)"
o = oi + (t’ - t)/2 where oi = (Ti-2 - Ti-3 + Ti-1 - Ti)/2"

•  Using the fact that t, t’>0 it can be shown that "
oi - di /2 � o � oi + di /2 ."
•  Thus oi is an estimate of the offset and di is a measure of the accuracy"

35"

NTP Summary"

•  Goal is to estimate offset and delay"
•  NTP server filters pairs of <o,d>, saves 8 latest"
•  Use o with smallest d"

36"

Marzullo’s Algorithm"
•  NTP servers filter pairs <oi, di>, estimating reliability from

variation, allowing them to select “good” peers "

•  NTP servers use an algorithm developed by Keith Marzullo to
choose a time value given a bunch of varying samples"

Sean Barker

NTP Synchronization

8

3/14/14

6

31"

NTP Clock Strata"
•  Stratum 0: atomic clocks, GPS clocks,

radio clocks"

•  Stratum 1: Time servers, attached
directly to Stratum 0 devices"

•  Stratum 2: Send requests to one or
more Stratum 1 time servers"

•  Stratum 3: Send requests to one or
more Stratum 2 computers"

•  And so on…"

•  Up to 256(!) strata levels supported
in current version of NTP"

32"

NTP Modes"

•  Multicast (for quick LANs, low accuracy)"
•  Server periodically sends its actual time to its

leaves in the LAN"

•  Procedure call (medium accuracy)"
•  Server responds to requests with actual

timestamp (like Cristian’s algorithm)"

•  Symmetric mode (high accuracy)"
•  Used to synchronize between pairs of time

servers "

33"

Synchronizing NTP Servers"

T!i!

T!i-1!T!i!-2!

T!i!-!3!

Server B!

Server A!

Time!

m! m'!

Time!

•  All messages sent using UDP"
•  Each message bears timestamps of recent events:"

•  Local times of Send and Receive of previous message"

•  Local times of Send of current message"

•  Recipient notes the time of receipt Ti (we have Ti-3, Ti-2, Ti-1, Ti)"

34"

Accuracy of NTP"

•  For each pair of messages between two servers, NTP
estimates an offset o between the two clocks, and a delay di
(total time for the two messages, which take t and t’)"
Ti-2 = Ti-3 + t + o and Ti = Ti-1 + t’ - o"

•  This gives us (by adding the equations) :"
di = t + t’ = Ti-2 - Ti-3 + Ti - Ti-1 "

•  Also (by subtracting the equations)"
o = oi + (t’ - t)/2 where oi = (Ti-2 - Ti-3 + Ti-1 - Ti)/2"

•  Using the fact that t, t’>0 it can be shown that "
oi - di /2 � o � oi + di /2 ."
•  Thus oi is an estimate of the offset and di is a measure of the accuracy"

35"

NTP Summary"

•  Goal is to estimate offset and delay"
•  NTP server filters pairs of <o,d>, saves 8 latest"
•  Use o with smallest d"

36"

Marzullo’s Algorithm"
•  NTP servers filter pairs <oi, di>, estimating reliability from

variation, allowing them to select “good” peers "

•  NTP servers use an algorithm developed by Keith Marzullo to
choose a time value given a bunch of varying samples"

Sean Barker

Logical Clocks

9

3/14/14

7

37"

NTP Statistics"

•  In 1999 there were 175,000 hosts running NTP in
the Internet"

•  Among these there were:"
•  Over 300 valid Stratum 1 servers (they are never

contacted directly, unless you are a Stratum 2 server)"
•  Over 20,000 servers at Stratum 2"

•  Over 80,000 servers at Stratum 3"

•  Accuracy of 10s of milliseconds over Internet paths
(even more accurate on LANs)"

38"

Logical Clocks"

39"

Logical Time and Logical Clocks"
•  Instead of synchronizing clocks, event ordering can be used"
•  Rules:"

1. If two events occurred at the same process pi (i = 1, 2, … N) then they
occurred in the order observed by pi, that is → "

2. When a message m is sent between two processes, send(m) happened
before receive(m)"

3. The happened before relation is transitive"

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

40"

Happened Before Relation"
•  What do we know about events a, b, c, d, e?"

•  Rule 1: a → b (at p1), c → d (at p2)"
•  Rule 2: b → c (by m1), d → f (by of m2)"
•  Rule 3: a → b → c → d → f = a → f "

•  What do we know about a and e?"
•  No relation - they are concurrent: a || e"

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

41"

Lamport’s Logical Clocks"
•  A logical clock is a monotonically increasing software counter. It need not

relate to a physical clock."
•  Each process pi has a logical clock, Li which can be used to apply logical

timestamps to events using the following rules:"
•  LC1: Li is incremented by 1 before each event at process pi, Li = Li + 1"
•  LC2: "
•  (a) when process pi sends message m, it piggybacks on m the value t = Li "

•  (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies LC1 before
timestamping the event receive (m)"

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

42"

Lamport’s Logical Clocks"
•  Each of p1, p2, p3 has its logical clock initialized to zero "
•  The clock values on events are those immediately after the event"

•  e.g. 1 for a, 2 for b. "
•  For m1, t = 2 is piggybacked and c gets L2 = max(0,2)+1 = 3 "
•  Note that e → e’ implies L(e) < L(e’)"
•  Does L(e) < L(e') imply e → e’ ?"

•  No! The converse is not true: L(e) < L(e') does not imply e → e’"

•  Example: L(e) < L(b) but b || e"

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Sean Barker

Lamport Clocks

10

3/14/14

7

37"

NTP Statistics"

•  In 1999 there were 175,000 hosts running NTP in
the Internet"

•  Among these there were:"
•  Over 300 valid Stratum 1 servers (they are never

contacted directly, unless you are a Stratum 2 server)"
•  Over 20,000 servers at Stratum 2"

•  Over 80,000 servers at Stratum 3"

•  Accuracy of 10s of milliseconds over Internet paths
(even more accurate on LANs)"

38"

Logical Clocks"

39"

Logical Time and Logical Clocks"
•  Instead of synchronizing clocks, event ordering can be used"
•  Rules:"

1. If two events occurred at the same process pi (i = 1, 2, … N) then they
occurred in the order observed by pi, that is → "

2. When a message m is sent between two processes, send(m) happened
before receive(m)"

3. The happened before relation is transitive"

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

40"

Happened Before Relation"
•  What do we know about events a, b, c, d, e?"

•  Rule 1: a → b (at p1), c → d (at p2)"
•  Rule 2: b → c (by m1), d → f (by of m2)"
•  Rule 3: a → b → c → d → f = a → f "

•  What do we know about a and e?"
•  No relation - they are concurrent: a || e"

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

41"

Lamport’s Logical Clocks"
•  A logical clock is a monotonically increasing software counter. It need not

relate to a physical clock."
•  Each process pi has a logical clock, Li which can be used to apply logical

timestamps to events using the following rules:"
•  LC1: Li is incremented by 1 before each event at process pi, Li = Li + 1"
•  LC2: "
•  (a) when process pi sends message m, it piggybacks on m the value t = Li "

•  (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies LC1 before
timestamping the event receive (m)"

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

42"

Lamport’s Logical Clocks"
•  Each of p1, p2, p3 has its logical clock initialized to zero "
•  The clock values on events are those immediately after the event"

•  e.g. 1 for a, 2 for b. "
•  For m1, t = 2 is piggybacked and c gets L2 = max(0,2)+1 = 3 "
•  Note that e → e’ implies L(e) < L(e’)"
•  Does L(e) < L(e') imply e → e’ ?"

•  No! The converse is not true: L(e) < L(e') does not imply e → e’"

•  Example: L(e) < L(b) but b || e"

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Sean Barker

Vector Clocks

11

3/14/14

8

43"

Vector Clocks"

•  How can we overcome the limitation of Lamport’s logical
clocks?"
•  Problem: L(e) < L(e’) does not imply e happened before e’"

•  If L(e) < L(e’), we want to know for sure that e happened
before e’"

•  Solution: Vector clocks"
•  Vector timestamps (rather than a single number) are used to timestamp

local events"
•  Vector clock Vi[i] is the number of events that pi has timestamped"
•  Vi[j] (j � i) is the number of events at pj that pi has been affected by"

•  Vector clocks are used in many schemes for replication of
data to ensure consistency"

44"

Vector Clocks"
•  Vector clock Vi at process pi is an array of N integers"
•  Rules for determining vector clocks:"

•  VC1: Initially Vi[j] = 0 for i, j = 1, 2, …N"
•  VC2: Before pi timestamps an event, it sets Vi[i] = Vi[i] +1"
•  VC3: pi piggybacks t = Vi on every message it sends"

•  VC4: When pi receives (m,t) it sets Vi[j] := max(Vi[j] , t[j]) j = 1, 2, …N"
–  Then before next event occurs adds I to Vi[i] using VC2"

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

45"

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector Clocks"
•  At p1: a(1,0,0), b(2,0,0), piggyback (2,0,0) on m1"
•  At p2: On receipt of m1 get max ((0,0,0), (2,0,0)) = (2,0,0), and add 1 to

own element in clock = (2,1,0) for event c"
•  At p3: On receipt of m2 get max ((0,0,1), (2,2,0)) = (2,2,1) and add 1to

own element in clock"
•  What’s the meaning of =, <=, max etc for vector timestamps?"

•  Compare elements pairwise"
•  Note that e → e’ still implies L(e) < L(e’) "
•  And now the converse is also true (L(e) < L(e’) imples e → e’)"
•  Can you see a pair of parallel events?"

•  c || e because neither V(c) <= V(e) nor V(e) <= V(c)"

46"

Summary: Time and Clocks in
Distributed Systems "

•  Accurate timekeeping is important for distributed systems"
•  Algorithms (e.g. Cristian’s and NTP) synchronize clocks in

spite of their drift and the variability of message delays"

•  For ordering of an arbitrary pair of events at different
computers, clock synchronization is not always practical "

•  The happened-before relation is a partial order on events that
reflects a flow of information between them"

•  Lamport clocks are counters that are updated according to
the happened-before relationship between events. "

•  Vector clocks are an improvement on Lamport clocks"
•  We can tell whether two events are ordered by happened-before or

are concurrent by comparing their vector timestamps"

47"

Moving on…"

48"

Coordination"

•  Distributed processes often need to coordinate their
activities"

•  If the processes share a resource or collection of
resources, then mutual exclusion is required to
ensure consistency"
•  Often called the critical section problem"
•  Discussed in detail in OS courses"

•  In this class we need distributed mutual exclusion"
•  Mutual exclusion that is based solely on message passing "

