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Clock Synchronization

• Time in unambiguous in centralized systems
– System clock keeps time, all entities use this for time

• Distributed systems: each node has own system clock
– Crystal-based clocks are less accurate (1 part in million)
– Problem: An event that occurred after another may be assigned 

an earlier time
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Physical Clocks: A Primer
• Accurate clocks are atomic oscillators (one part in 1013)
• Most clocks are less accurate (e.g., mechanical watches)

– Computers use crystal-based blocks (one part in million) 
– Results in clock drift

• How do you tell time?
– Use astronomical metrics (solar day)

• Coordinated universal time (UTC) – international standard based on atomic 
time

– Add leap seconds to be consistent with astronomical time
– UTC broadcast on radio (satellite and earth)
– Receivers accurate to 0.1 – 10 ms

• Need to synchronize machines with a master or with one another
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Clock Synchronization

• Each clock has a maximum drift rate ρ
• 1-ρ <= dC/dt <= 1+ρ

– Two clocks may drift by 2ρ Δt  in time Δt
– To limit drift to δ => resynchronize every δ/2ρ seconds
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Cristian’s Algorithm

• Synchronize machines to a 
time server with a UTC 
receiver

• Machine P requests time from 
server every δ/2ρ seconds
– Receives time t from server, P 

sets clock to t+treply where treply 
is the time to send reply to P

– Use (treq+treply)/2 as an estimate 
of treply

– Improve accuracy by making a 
series of measurements
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Berkeley Algorithm

• Used in systems without UTC receiver
– Keep clocks synchronized with one another 
– One computer is master, other are slaves
– Master periodically polls slaves for their times

• Average times and return differences to slaves
• Communication delays compensated as in Cristian’s algo

– Failure of master => election of a new master
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Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock
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31"

NTP Clock Strata"
•  Stratum 0: atomic clocks, GPS clocks, 

radio clocks"

•  Stratum 1: Time servers, attached 
directly to Stratum 0 devices"

•  Stratum 2: Send requests to one or 
more Stratum 1 time servers"

•  Stratum 3: Send requests to one or 
more Stratum 2 computers"

•  And so on…"

•  Up to 256(!) strata levels supported 
in current version of NTP"

32"

NTP Modes"

•  Multicast (for quick LANs, low accuracy)"
•  Server periodically sends its actual time to its 

leaves in the LAN"

•  Procedure call (medium accuracy)"
•  Server responds to requests with actual 

timestamp (like Cristian’s algorithm)"

•  Symmetric mode (high accuracy)"
•  Used to synchronize between pairs of time 

servers "

33"

Synchronizing NTP Servers"
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•  All messages sent using UDP"
•  Each message bears timestamps of recent events:"

•  Local times of Send and Receive of previous message"

•  Local times of Send of current message"

•  Recipient notes the time of receipt Ti (we have Ti-3, Ti-2, Ti-1, Ti)"

34"

Accuracy of NTP"

•  For each pair of messages between two servers, NTP 
estimates an offset o between the two clocks, and a delay di 
(total time for the two messages, which take t and t’)"
Ti-2 = Ti-3 + t + o and Ti = Ti-1 + t’ - o"

•  This gives us (by adding the equations) :"
di = t + t’ = Ti-2  - Ti-3 + Ti  - Ti-1 "

•  Also (by subtracting the equations)"
o = oi + (t’ - t )/2 where oi  = (Ti-2  - Ti-3 + Ti-1  - Ti)/2"

•  Using the fact that t, t’>0 it can be shown that "
oi - di /2 � o � oi + di /2 ."
•  Thus oi is an estimate of the offset and di is a measure of the accuracy"

35"

NTP Summary"

•  Goal is to estimate offset and delay"
•  NTP server filters pairs of <o,d>, saves 8 latest"
•  Use o with smallest d"

36"

Marzullo’s Algorithm"
•  NTP servers filter pairs <oi, di>, estimating reliability from 

variation, allowing them to select “good” peers "

•  NTP servers use an algorithm developed by Keith Marzullo to 
choose a time value given a bunch of varying samples"
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37"

NTP Statistics"

•  In 1999 there were 175,000 hosts running NTP in 
the Internet"

•  Among these there were:"
•  Over 300 valid Stratum 1 servers (they are never 

contacted directly, unless you are a Stratum 2 server)"
•  Over 20,000 servers at Stratum 2"

•  Over 80,000 servers at Stratum 3"

•  Accuracy of 10s of milliseconds over Internet paths 
(even more accurate on LANs)"

38"

Logical Clocks"

39"

Logical Time and Logical Clocks"
•  Instead of synchronizing clocks, event ordering can be used"
•  Rules:"

1. If two events occurred at the same process pi (i = 1, 2, … N) then they 
occurred in the order observed by pi, that is → "

2. When a message m is sent between two processes, send(m) happened 
before receive(m)"

3. The happened before relation is transitive"
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m1

m2

Physical

time

40"

Happened Before Relation"
•  What do we know about events a, b, c, d, e?"

•  Rule 1: a → b (at p1), c → d (at p2)"
•  Rule 2: b → c (by m1), d → f (by of m2)"
•  Rule 3: a → b → c → d → f = a → f "

•  What do we know about a and e?"
•  No relation - they are concurrent: a || e"
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a b
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e f
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Physical

time

41"

Lamport’s Logical Clocks"
•  A logical clock is a monotonically increasing software counter. It need not 

relate to a physical clock."
•  Each process pi has a logical clock, Li which can be used to apply logical 

timestamps to events using the following rules:"
•  LC1: Li  is incremented by 1 before each event at process pi, Li = Li + 1"
•  LC2: "
•  (a) when process pi sends message m, it piggybacks on m the value t =  Li "

•  (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies LC1 before 
timestamping the event receive (m)"
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42"

Lamport’s Logical Clocks"
•  Each of p1, p2, p3 has its logical clock initialized to zero "
•  The clock values on events are those immediately after the event"

•  e.g. 1 for a, 2 for b. "
•  For m1, t = 2 is piggybacked and c gets L2 = max(0,2)+1 = 3 "
•  Note that e → e’ implies L(e) < L(e’)"
•  Does L(e) < L(e') imply e → e’ ?"

•  No! The converse is not true: L(e) < L(e') does not imply e → e’"

•  Example: L(e) < L(b) but b || e"
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43"

Vector Clocks"

•  How can we overcome the limitation of Lamport’s logical 
clocks?"
•  Problem: L(e) < L(e’) does not imply e happened before e’"

•  If L(e) < L(e’), we want to know for sure that e happened 
before e’"

•  Solution: Vector clocks"
•  Vector timestamps (rather than a single number) are used to timestamp 

local events"
•  Vector clock Vi[i] is the number of events that pi has timestamped"
•  Vi[j] (j � i) is the number of events at pj that pi has been affected by"

•  Vector clocks are used in many schemes for replication of 
data to ensure consistency"

44"

Vector Clocks"
•  Vector clock Vi at process pi is an array of N integers"
•  Rules for determining vector clocks:"

•  VC1:  Initially Vi[j] = 0 for i, j = 1, 2, …N"
•  VC2:  Before pi timestamps an event, it sets Vi[i] = Vi[i] +1"
•  VC3:  pi piggybacks t = Vi on every message it sends"

•  VC4:  When pi receives (m,t) it sets Vi[j] := max(Vi[j] , t[j]) j = 1, 2, …N"
–  Then before next event occurs adds I to Vi[i] using VC2"
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Vector Clocks"
•  At p1: a(1,0,0), b(2,0,0), piggyback (2,0,0) on m1"
•  At p2: On receipt of m1 get max ((0,0,0), (2,0,0)) = (2,0,0), and add 1 to 

own element in clock = (2,1,0) for event c"
•  At p3: On receipt of m2 get max ((0,0,1), (2,2,0)) = (2,2,1) and add 1to 

own element in clock"
•  What’s the meaning of =, <=, max etc for vector timestamps?"

•  Compare elements pairwise"
•  Note that e → e’ still implies L(e) < L(e’) "
•  And now the converse is also true (L(e) < L(e’) imples e → e’)"
•  Can you see a pair of parallel events?"

•  c || e because neither V(c) <= V(e) nor V(e) <= V(c)"

46"

Summary: Time and Clocks in 
Distributed Systems "

•  Accurate timekeeping is important for distributed systems"
•  Algorithms (e.g. Cristian’s and NTP) synchronize clocks in 

spite of their drift and the variability of message delays"

•  For ordering of an arbitrary pair of events at different 
computers, clock synchronization is not always practical "

•  The happened-before relation is a partial order on events that 
reflects a flow of information between them"

•  Lamport clocks are counters that are updated according to 
the happened-before relationship between events. "

•  Vector clocks are an improvement on Lamport clocks"
•  We can tell whether two events are ordered by happened-before or 

are concurrent by comparing their vector timestamps"

47"

Moving on…"

48"

Coordination"

•  Distributed processes often need to coordinate their 
activities"

•  If the processes share a resource or collection of 
resources, then mutual exclusion is required to 
ensure consistency"
•  Often called the critical section problem"
•  Discussed in detail in OS courses"

•  In this class we need distributed mutual exclusion"
•  Mutual exclusion that is based solely on message passing "


