
Sean Barker

MapReduce

1

Sean Barker

Programming Model

map (in_key, in_value) ->
 (out_key, intermediate_value) list

reduce (out_key, intermediate_value list) ->
 out_value list

2

Sean Barker

MapReduce Control Flow

3

3/20/14

3

13"

Data store 1 Data store n
map

(key 1,
values ...)

(key 2,
values ...)

(key 3,
values ...)

map

(key 1,
values...)

(key 2,
values ...)

(key 3,
values ...)

Input key *value
pairs

Input key*value
pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,
intermediate

values

key 2,
intermediate

values

key 3,
intermediate

values

final key 1
values

final key 2
values

final key 3
values

...

14"

Parallelism"

•  map() functions run in parallel, creating
different intermediate values from different
input data sets"

•  reduce() functions also run in parallel, each
working on a different output key"

•  All values are processed independently!
•  Bottleneck: reduce phase can’t start until map

phase is completely finished."

15"

Example: Count word occurrences"
map(String input_key, String input_value):

 // input_key: document name
 // input_value: document contents

 for each word w in input_value:

 EmitIntermediate(w, "1");

reduce(String output_key, Iterator
intermediate_values):

 // output_key: a word

 // output_values: a list of counts

 int result = 0;
 for each v in intermediate_values:

 result += ParseInt(v);

 Emit(AsString(result));
16"

Example vs. Actual Source Code"

•  Example is written in pseudo-code"
•  Actual implementation is in C++, using a

MapReduce library"
•  Bindings for Python and Java exist via

interfaces"

•  True code is somewhat more involved
(defines how the input key/values are divided
up and accessed, etc.)"

17"

Locality"

•  Master program divvies up tasks based on
location of data: tries to have map() tasks on
same machine as physical file data, or at least
same rack"

•  map() task inputs are divided into 64 MB
blocks: same size as Google File System
chunks"
"

18"

Fault Tolerance"

•  Master detects worker failures"
•  Re-executes completed & in-progress map() tasks"
•  Re-executes in-progress reduce() tasks"

•  Master notices particular input key/values
cause crashes in map(), and skips those values
on re-execution."
•  Effect: Can work around bugs in third-party

libraries!"

Sean Barker

Word Count Example

4

3/20/14

3

13"

Data store 1 Data store n
map

(key 1,
values ...)

(key 2,
values ...)

(key 3,
values ...)

map

(key 1,
values...)

(key 2,
values ...)

(key 3,
values ...)

Input key *value
pairs

Input key*value
pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,
intermediate

values

key 2,
intermediate

values

key 3,
intermediate

values

final key 1
values

final key 2
values

final key 3
values

...

14"

Parallelism"

•  map() functions run in parallel, creating
different intermediate values from different
input data sets"

•  reduce() functions also run in parallel, each
working on a different output key"

•  All values are processed independently!
•  Bottleneck: reduce phase can’t start until map

phase is completely finished."

15"

Example: Count word occurrences"
map(String input_key, String input_value):

 // input_key: document name
 // input_value: document contents

 for each word w in input_value:

 EmitIntermediate(w, "1");

reduce(String output_key, Iterator
intermediate_values):

 // output_key: a word

 // output_values: a list of counts

 int result = 0;
 for each v in intermediate_values:

 result += ParseInt(v);

 Emit(AsString(result));
16"

Example vs. Actual Source Code"

•  Example is written in pseudo-code"
•  Actual implementation is in C++, using a

MapReduce library"
•  Bindings for Python and Java exist via

interfaces"

•  True code is somewhat more involved
(defines how the input key/values are divided
up and accessed, etc.)"

17"

Locality"

•  Master program divvies up tasks based on
location of data: tries to have map() tasks on
same machine as physical file data, or at least
same rack"

•  map() task inputs are divided into 64 MB
blocks: same size as Google File System
chunks"
"

18"

Fault Tolerance"

•  Master detects worker failures"
•  Re-executes completed & in-progress map() tasks"
•  Re-executes in-progress reduce() tasks"

•  Master notices particular input key/values
cause crashes in map(), and skips those values
on re-execution."
•  Effect: Can work around bugs in third-party

libraries!"

Sean Barker

Stragglers

5

3/20/14

6

31"

Bullet"

•  Overlay based file distribution"
•  30+ seconds for 50/90/130 hosts to connect"

 0"

 20"

 40"

 60"

 80"

 100"

 120"

 0" 5" 10" 15" 20" 25" 30"

N
u

m
b

e
r

o
f

H
o

st
s!

Elapsed time (sec)!

50 hosts"
90 hosts"

130 hosts"

32"

EMAN"

•  Electron Micrograph Analysis"
•  2700+ seconds to complete 98 tasks on 98 hosts"

 0"

 10"

 20"

 30"

 40"

 50"

 60"

 70"

 80"

 90"

 0" 200" 400" 600" 800" 1000" 1200" 1400" 1600" 1800"

T
as

k
s!

Elapsed time (sec)!

Completed tasks"

33"

MapReduce"

•  Application-specific data processing"
•  2500+ seconds to complete 480 map tasks on 30 hosts"

 0"

 50"

 100"

 150"

 200"

 250"

 300"

 350"

 400"

 450"

 0" 50" 100" 150" 200" 250" 300" 350" 400" 450" 500"

T
as

k
s!

Elapsed time (sec)!

Completed tasks"

34"

Dealing with Stragglers"
•  In MapReduce, application developers explicitly dealt with

stragglers"
•  Application-specific algorithm detected slow hosts"

•  Reallocated work from slow hosts to fast hosts"

 0"

 50"

 100"

 150"

 200"

 250"

 300"

 350"

 400"

 450"

 0" 100" 200" 300" 400" 500"

T
as

k
s!

Elapsed time (sec)!

Completed tasks"

Work reallocated"

35"

 0"

 20"

 40"

 60"

 80"

 100"

 120"

 0" 5" 10" 15" 20" 25" 30"

N
u

m
b

e
r

o
f

H
o

st
s!

Elapsed time (sec)!

50 hosts"
90 hosts"

130 hosts"
 0"

 10"
 20"
 30"
 40"
 50"
 60"
 70"
 80"
 90"

 0" 400" 800" 1200" 1600"

T
as

k
s!

Elapsed time (sec)!

Completed tasks"

Dealing with Stragglers"
•  Need a general technique for detecting stragglers in

distributed applications"
•  Ease developers of burden of handling stragglers separately for each

application"
•  Detect “knee” of curve and adjust application"

Bullet" EMAN"

36"

Application Characteristics"

•  Bullet, EMAN, and MapReduce belong to a specific class of
applications "
•  Support mid-computation reconfiguration"

•  Support dynamically degrading computation"

•  Some applications do not support reconfiguration"
•  Degrading computation may reduce accuracy"

•  Require specific number of hosts"

•  For applications that support reconfiguration, we can improve
performance by decreasing completion time using partial
barriers"

Sean Barker

Stragglers

6

3/20/14

6

31"

Bullet"

•  Overlay based file distribution"
•  30+ seconds for 50/90/130 hosts to connect"

 0"

 20"

 40"

 60"

 80"

 100"

 120"

 0" 5" 10" 15" 20" 25" 30"

N
u

m
b

e
r

o
f

H
o

st
s!

Elapsed time (sec)!

50 hosts"
90 hosts"

130 hosts"

32"

EMAN"

•  Electron Micrograph Analysis"
•  2700+ seconds to complete 98 tasks on 98 hosts"

 0"

 10"

 20"

 30"

 40"

 50"

 60"

 70"

 80"

 90"

 0" 200" 400" 600" 800" 1000" 1200" 1400" 1600" 1800"

T
as

k
s!

Elapsed time (sec)!

Completed tasks"

33"

MapReduce"

•  Application-specific data processing"
•  2500+ seconds to complete 480 map tasks on 30 hosts"

 0"

 50"

 100"

 150"

 200"

 250"

 300"

 350"

 400"

 450"

 0" 50" 100" 150" 200" 250" 300" 350" 400" 450" 500"

T
as

k
s!

Elapsed time (sec)!

Completed tasks"

34"

Dealing with Stragglers"
•  In MapReduce, application developers explicitly dealt with

stragglers"
•  Application-specific algorithm detected slow hosts"

•  Reallocated work from slow hosts to fast hosts"

 0"

 50"

 100"

 150"

 200"

 250"

 300"

 350"

 400"

 450"

 0" 100" 200" 300" 400" 500"

T
as

k
s!

Elapsed time (sec)!

Completed tasks"

Work reallocated"

35"

 0"

 20"

 40"

 60"

 80"

 100"

 120"

 0" 5" 10" 15" 20" 25" 30"

N
u

m
b

e
r

o
f

H
o

st
s!

Elapsed time (sec)!

50 hosts"
90 hosts"

130 hosts"
 0"

 10"
 20"
 30"
 40"
 50"
 60"
 70"
 80"
 90"

 0" 400" 800" 1200" 1600"

T
as

k
s!

Elapsed time (sec)!

Completed tasks"

Dealing with Stragglers"
•  Need a general technique for detecting stragglers in

distributed applications"
•  Ease developers of burden of handling stragglers separately for each

application"
•  Detect “knee” of curve and adjust application"

Bullet" EMAN"

36"

Application Characteristics"

•  Bullet, EMAN, and MapReduce belong to a specific class of
applications "
•  Support mid-computation reconfiguration"

•  Support dynamically degrading computation"

•  Some applications do not support reconfiguration"
•  Degrading computation may reduce accuracy"

•  Require specific number of hosts"

•  For applications that support reconfiguration, we can improve
performance by decreasing completion time using partial
barriers"

Sean Barker

Apache Hadoop

7

– 17 –!

Hadoop Project"
File system with files distributed across nodes"
"

"
"

"
"

!  Store multiple (typically 3 copies of each file)"
"  If one node fails, data still available!

!  Logically, any node has access to any file"
"  May need to fetch across network!

Map / Reduce programming environment"
!  Software manages execution of tasks on nodes"

Local Network

CPU"

Node 1

CPU"

Node 2

CPU"

Node n

• • •

Sean Barker

Programming Model

map (in_key, in_value) ->
 (out_key, intermediate_value) list

reduce (out_key, intermediate_value list) ->
 out_value list

8

Sean Barker

Web Log Parsing

9

C
B
B
C

C
A 3 C

1 A

Result File 2 File 1 ResultFile 2File 1

“Count the number of times pages matching A|C were fetched”

(e.g., or matching “bowdoin.edu”)

Sean Barker

Web Log Parsing

10

Map tasks:
(f1, C) -> [(C, 1)]
(f1, B) -> []
(f1, B) -> []
(f1, C) -> [(C, 1)]
(f2, C) -> [(C, 1)]
(f2, A) -> [(A, 1)]

Reduce tasks:
(A, [1]) -> (A, 1)
(C, [1, 1, 1]) -> (C, 3)

C
B
B
C

C
A 3 C

1 A

Result File 2 File 1 ResultFile 2File 1

