FOXES TEAM
Reference for clsMathParser

- clsMathParser -
A Class for Math Expressions Evaluation in Visual Basic
REFERENCE FOR

- clsMathParser

v. 4.2 Oct. 2006-

Leonardo Volpi
Foxes Team

Index

SUMMARY .. 3

CLSMATHPARSER 4... 3
SYMBOLS AND OPERATORS ... 7
MAIN APPLICATIONS .. 10
CLASS.. 11
Methods... 11
Properties... 14
PARSER ... 20
The Conceptual Model Method .. 20
The Variable Table and Expression Table .. 20
EVAL... 22

PARSER ALGORITHM STEP-BY-STEP .. 23
Parser Steps ... 23
HOW TO PARSE FUNCTIONS ... 26
Monovariable functions .. 26
Exceptions: functions x! and |x| ... 27
Bivariable functions .. 27
Multivariable functions .. 28
Physical numbers .. 30
Minus Sign .. 30
Conditioned Branch .. 31
HOW TO IMPROVE SPEED IN LOOP COMPUTATION ... 33

ERROR MESSAGES.. 34
DESCRIPTION PROPERTY .. 34
ERROR RAISE .. 34

COMPUTATION TIME TEST ... 35
RESULTS ... 35
TIME TEST CODE .. 35

CONCLUSIONS ... 37

CREDITS... 37

LICENCE ... 38

HISTORY REVIEW .. 39

APPENDIX ... 45
SOURCE CODE EXAMPLES IN VB .. 45
EXAMPLES OF FORMULA PARSING .. 45
LIST OF MULTIPLYING FACTORS ... 56
LIST OF UNIT OF MEASURE SYMBOLS .. 56
SPECIAL FUNCTIONS .. 57
SPECIAL PERIODIC FUNCTIONS ... 61
ERROR MESSAGE TABLE ... 64
Summary

MathParser - clsMathParser 4. - is a parser-evaluator for mathematical and physical string expressions.

This software, based on the original MathParser 2 developed by Leonardo Volpi, has been modified with the collaboration of Michael Ruder to extend the computation also to the physical variables like "3.5s" for 3.5 seconds and so on. In advance, a special routine has been developed to find out in which order the variables appear in a formula string. Thomas Zeutschler has kindly revised the code improving general efficiency by more than 200%. Lieven Dossche has finally encapsulated the core in a nice, efficient and elegant class. In addition, starting from the v.3 of MathParser, Arnoud has created a sophisticated class- clsMathParserC - for complex numbers adding a large, good collection of complex functions and operators in a separate, reusable module.

clsMathParser 4

This document describes the clsMathParser 4.x class evaluating real math expressions. In some instances, you might want to allow users to type in their own numeric expression in ASCII text that contains a series of numeric expressions and then produce a numeric result of this expression. This class does just that task. It accepts as input any string representing an arithmetic or algebraic expression and a list of the variable's values and returns a double-precision numeric value. clsMathParser can be used to calculate formulas (expressions) given at runtime, for example, for plotting and tabulating functions, making numerical computations and many other. It works in VB 6, and VBA.

Generally speaking clsMathParser is a numeric evaluator - not compiled - optimized for fast loop evaluations. The set of expression strings, physical expressions, constants and international units of measure is very wide. Typical mixed math-physical expressions are:

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+(2-5)*3+8/(5+3)^2</td>
<td>9.54979494795649</td>
</tr>
<tr>
<td>(a+b)*(a-b)</td>
<td>x^2+3*x+1</td>
</tr>
<tr>
<td>300 km + 123000 m</td>
<td>(3000000 km/s)/144 Mhz</td>
</tr>
<tr>
<td>256.33*Exp(-t/12 us)</td>
<td>(1+(2-5)*3+8/(5+3)^2)/sqr(5^2+3^2)</td>
</tr>
<tr>
<td>2+3x+2x^2</td>
<td>0.25x + 3.5y + 1</td>
</tr>
<tr>
<td>0.1uF*6.8kohm</td>
<td>sqr(4^2+3^2)</td>
</tr>
<tr>
<td>(12.3 mm)/(856.6 us)</td>
<td>(-1)^(2n+1)*x^n/n!</td>
</tr>
<tr>
<td>And((x<2),(x<=5))</td>
<td>sin(2pix)+cos(2pix)</td>
</tr>
</tbody>
</table>

Variables can be any alphanumeric string and must start with a letter

x y a1 a2 time alpha beta

Also the symbol "_" is accepted for writing variables in "programming style".

time_1 alpha_b1 rise_time

Implicit multiplication is not supported because of its intrinsic ambiguity. So "xy" stands for a variable named "xy" and not for x*y. The multiplication symbol "*" cannot generally be omitted.

It can be omitted only for coefficients of the classic math variables x, y, z. This means that strings like “2x” and “2*x” are equivalent

2x 3.141y 338z^2 ⇔ 2*x 3.141*y 338*z^2

On the contrary, the following expressions are illegal.

2a 3(x+1) 334omega 2pi

Constant numbers can be integers, decimal, or exponential

2 -3234 1.3333 -0.00025 1.2345E-12

From version 4.2, MathParser accepts both decimal symbols "," or ".". See international setting.
Physical numbers are numbers followed by a unit of measure:

"1 s" for 1 second "200 m" for 200 meters "25 kg" for 25 kilograms

For better reading they may contain blanks:

"1 s" "200 m" "25 kg" "150 MHz" "0.15 uF" "3600 kohm"

They may also contain the following multiplying factors:

T=10^12 G=10^9 M=10^6 k=10^3 m=10^-3 u=10^-6 n=10^-9 p=10^-12

Functions are called by their function-name followed by parentheses. Function arguments can be: numbers, variables, expressions, or even other functions:

\[\sin(x) \quad \log(x) \quad \cos(2\pi t + \phi) \quad \text{atan}(4 \sin(x)) \]

For functions which have more than one argument, the successive arguments are separated by commas (default):

\[\max(a,b) \quad \text{root}(x,y) \quad \text{BesselJ}(x,n) \quad \text{HypGeom}(x,a,b,c) \]

Logical expressions are supported:

\[x < 1 \quad x + 2y \geq 4 \quad x^2 + 5x - 1 > 0 \quad t < 0 \quad (0 < x < 1) \]

Logical expressions return always 1 (True) or 0 (False). Compact expressions, like “0<x<1”, are supported. We can enter \((0<x<1)\) or \((0<x)*(x<1)\) as well.

Numerical range can be inserted using logical symbols and boolean functions. For example:

For 2<x<5 insert \((2<x)*(x<5)\) or also \((2<x<5)\)

For x<2 , x>=10 insert \(\text{OR}(x<2, x>=10)\) or also \((x<2)+(x>=10)\)

For -1<x<1 insert \((x>-1)*(x<1)\) , or \((-1<x<1)\) , or also \(|x|<1\)

Piecewise Functions. Logical expressions can also be useful for defining piecewise functions, such as:

\[
\begin{align*}
\text{f(x)} &= \begin{cases}
2x-1-\ln(2) & \text{if } x \leq 0.5 \\
\ln(x) & \text{if } 0.5 < x < 2 \\
x/2-1+\ln(2) & \text{if } x \geq 2
\end{cases}
\end{align*}
\]

The above function can be written as:

\[
f(x) = (x<=0.5)*(2*x-1-\ln(2))+(0.5<x<2)*\ln(x)+(x>=2)*(x/2-1+\ln(2))
\]

Starting from v3.4, the parser adopts a new algorithm for evaluating math expressions depending on logical expressions, which are evaluated only when the correspondent logical condition is true (Conditioned-Branch algorithm). Thus, the above piecewise expression can be evaluated for any real value x without any domain error. Note that without this features the formula could be evaluated only for x>0. Another way to compute piecewise functions is splitting it into several formulas (see example 6).

Percentage. it simply returns the argument divided by 100

\[
3\% \rightarrow \text{returns the number } 3/100 = 0.03
\]

Math Constants supported are: Pi Greek (π), Euler-Mascheroni (γ), Euler-Napier’s (e), Goldean mean (ϕ). Constant numbers must be suffixed with # symbol (except pi-greek that can written also without a suffix for compatibility with previous versions)

\[
\pi = 3.14159265358979 \quad \text{or} \quad \pi# = 3.14159265358979
\]
pi2# = 1.5707963267949 \ (\pi/2)\), \ pi4# = 0.785398163397448 \ (\pi/4)\)

eu# = 0.577215664901533
e# = 2.71828182845905
phi# = 1.61803398874989

Note: pi-greek constant can be indicated with “pi” or “PI” as well. All other constants are case sensitive.

Angle expressions

This version supports angles in radians, sexagesimal degrees and centesimal degrees. The right angle unit can be set by the property AngleUnit (“RAD” is the default unit). This affects all angle computation of the parser.

For example if you set the unit "DEG", all angles will be read and converted in degree

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin(120) => 0.86602540378444</td>
<td></td>
</tr>
<tr>
<td>asin(0.86602540378444) => 60</td>
<td></td>
</tr>
<tr>
<td>rad(pi/2) => 90</td>
<td></td>
</tr>
<tr>
<td>grad(400) => 360</td>
<td></td>
</tr>
<tr>
<td>deg(360) => 360</td>
<td></td>
</tr>
</tbody>
</table>

Angles can also be written in **dd:mm:ss** format like for example 45d 12m 13s

<table>
<thead>
<tr>
<th>Expression</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>sin(29d 59m 60s) => 0.5</td>
<td></td>
</tr>
<tr>
<td>29d 59s 60m => 30</td>
<td></td>
</tr>
</tbody>
</table>

Note This format is only for sexagesimal degree. It’s independent from the unit set

Note The old format 45° 12’ 13” is no more supported

Physical Constants

<table>
<thead>
<tr>
<th>Physical Constant</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planck constant</td>
<td>h#</td>
<td>6.6260755e-34 J s</td>
</tr>
<tr>
<td>Boltzmann constant</td>
<td>K#</td>
<td>1.380658e-23 J/K</td>
</tr>
<tr>
<td>Elementary charge</td>
<td>q#</td>
<td>1.60217733e-19 C</td>
</tr>
<tr>
<td>Avogadro number</td>
<td>A#</td>
<td>6.0221367e23 particles/mol</td>
</tr>
<tr>
<td>Speed of light</td>
<td>c#</td>
<td>2.99792458e8 m/s</td>
</tr>
<tr>
<td>Permeability of vacuum</td>
<td>mu#</td>
<td>12.566370614e-7 T m/J</td>
</tr>
<tr>
<td>Permittivity of vacuum</td>
<td>eps#</td>
<td>8.854187817e-12 C^2/Jm</td>
</tr>
<tr>
<td>Electron rest mass</td>
<td>me#</td>
<td>9.1093897e-31 kg</td>
</tr>
<tr>
<td>Proton rest mass</td>
<td>mp#</td>
<td>1.6726231e-27 kg</td>
</tr>
<tr>
<td>Neutron rest mass</td>
<td>mn#</td>
<td>n1.6749286e-27 kg</td>
</tr>
<tr>
<td>Gas constant</td>
<td>R#</td>
<td>8.31451 m^2 kg/s/k mol</td>
</tr>
<tr>
<td>Gravitational constant</td>
<td>G#</td>
<td>6.672e-11 m^3/kg s^2</td>
</tr>
<tr>
<td>Acceleration due to gravity</td>
<td>g#</td>
<td>9.80665 m/s^2</td>
</tr>
</tbody>
</table>

Physical constants can be used like any other symbolic math constant. Just remember that they have their own dimension units listed in the above table.

Example of physical formulas are:

- \(m*c#^2\)
- \(1/(4*pi*eps#)*q#/r^2\)
- \(eps#*S/d\)
- \(\sqrt{(m*h*g#)}\)
- \(s0+v*t+0.5*g*t^2\)

Multivariable functions. Starting from 4.0, clsMathParser also recognizes and calculates functions with more than 2 variables. Usually they are functions used in applied math, physics, engineering, etc. Arguments are separated by commas (default)

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HypGeom(a,b,c,x)</td>
<td>HypoGeometric distribution</td>
</tr>
<tr>
<td>Clip(x,a,b)</td>
<td>Clip function</td>
</tr>
<tr>
<td>betaI(x,a,b)</td>
<td>Beta integral</td>
</tr>
<tr>
<td>DNorm(x,\mu,\sigma)</td>
<td>Normal distribution</td>
</tr>
<tr>
<td>etc.</td>
<td>etc.</td>
</tr>
</tbody>
</table>

Functions with variable number of arguments. clsMathParser accepts and calculates functions with variable number of arguments (max 20). Usually they are functions used in statistic and number theory.
The max argument limit is set by the global constant \texttt{HiARG}

Time functions. These functions return the current date, time and timestamp of the system. They have no argument and are recognized as intrinsic constants

<table>
<thead>
<tr>
<th>Date#</th>
<th>current system date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time#</td>
<td>current system time</td>
</tr>
<tr>
<td>Now#</td>
<td>current system timestamp (date + time)</td>
</tr>
</tbody>
</table>

International setting. Form 4.2, clsMathParser can accept both decimal separators symbols "." or ",". Setting the global constant \texttt{DP_SET = False}, the programmer can force the parser to follow the international setting of the machine. This means that possible decimal numbers in the input string must follow the local international setting.

Example: the expression

\[(5.18.01(0125.0 \quad 2 \quad x x - + \) \]

must be written as

\[0.0125^2 (1 + 0.8x - 1.5x^2) \]

if you system is set for decimal point "." or, on the contrary, must be written

\[0,0125^2 (1+0,8x-1,5x^2) \]

for system working with decimal comma ",".

Setting \texttt{DP_SET = True}, the parser, as in the previous releases, ignores the international setting of the system. In this case the only valid decimal separator is "." (point). This means that the math input strings are always valid independently from the platform local setting.

Of course, the argument separator symbol changes consequently to the decimal separator in order to avoid conflict. The parser automatically adopts the argument separator "," if the decimal separator is point "." or adopts ";" if the decimal separator is "," comma.

The following table shows all possible combinations.

<table>
<thead>
<tr>
<th>System setting</th>
<th>Parser setting \texttt{DP_SET}</th>
<th>Decimal separator</th>
<th>Arguments separator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decimal is point "."</td>
<td>False</td>
<td>3.141</td>
<td>\texttt{COMB(35,12)}</td>
</tr>
<tr>
<td>Decimal is comma ","</td>
<td>False</td>
<td>3,141</td>
<td>\texttt{COMB(35;12)}</td>
</tr>
<tr>
<td>Any</td>
<td>True</td>
<td>3.141</td>
<td>\texttt{COMB(35,12)}</td>
</tr>
</tbody>
</table>
Symbols and operators.

This version recognizes more than 150 functions and operators.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>addition</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>subtraction</td>
<td></td>
</tr>
<tr>
<td>*</td>
<td>multiplication</td>
<td></td>
</tr>
<tr>
<td>/</td>
<td>division</td>
<td>35/4 = 8.75</td>
</tr>
<tr>
<td>%</td>
<td>percentage</td>
<td>35% = 0.35</td>
</tr>
<tr>
<td>\</td>
<td>integer division</td>
<td>35 \ 4 = 8</td>
</tr>
<tr>
<td>^</td>
<td>raise to power</td>
<td>3^1.8 = 7.22467405584208 (*)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>absolute value</td>
</tr>
<tr>
<td>!</td>
<td>factorial</td>
<td>5! = 120 (the same as fact)</td>
</tr>
<tr>
<td>abs(x)</td>
<td>absolute value</td>
<td>abs(-5) = 5</td>
</tr>
<tr>
<td>atn(x), atan(x)</td>
<td>inverse tangent</td>
<td>atn(pi/4) = 1</td>
</tr>
<tr>
<td>cos(x)</td>
<td>cosine</td>
<td>argument in radiant</td>
</tr>
<tr>
<td>sin(x)</td>
<td>sin</td>
<td>argument in radiant</td>
</tr>
<tr>
<td>exp(x)</td>
<td>exponential</td>
<td>exp(1) = 2.71828182845905</td>
</tr>
<tr>
<td>fix(x)</td>
<td>integer part</td>
<td>fix(3.8) = 3</td>
</tr>
<tr>
<td>int(x)</td>
<td>integer part</td>
<td>int(-3.8) = -4</td>
</tr>
<tr>
<td>dec(x)</td>
<td>decimal part</td>
<td>dec(-3.8) = -0.8</td>
</tr>
<tr>
<td>ln(x), log(x)</td>
<td>logarithm natural</td>
<td>argument x>0</td>
</tr>
<tr>
<td>logN(x,n)</td>
<td>N-base logarithm</td>
<td>logN(16,2) = 4</td>
</tr>
<tr>
<td>rnd(x)</td>
<td>random</td>
<td>returns a random number between x and 0</td>
</tr>
<tr>
<td>sgn(x)</td>
<td>sign</td>
<td>returns 1 if x >0 , 0 if x=0, -1 if x<0</td>
</tr>
<tr>
<td>sqr(x)</td>
<td>square root</td>
<td>sqr(2) = 1.4142135623731, also 2^(1/2)</td>
</tr>
<tr>
<td>cbr(x)</td>
<td>cube root</td>
<td>∀x, example cbr(2) = 1.2599, cbr(-2) = -1.2599</td>
</tr>
<tr>
<td>tan(x)</td>
<td>tangent</td>
<td>argument (in radian) x ≠ k*π/2 with k = ±1, ±2…</td>
</tr>
<tr>
<td>acos(x)</td>
<td>inverse cosine</td>
<td>argument -1 ≤ x ≤ 1</td>
</tr>
<tr>
<td>asin(x)</td>
<td>inverse sine</td>
<td>argument -1 ≤ x ≤ 1</td>
</tr>
<tr>
<td>sinh(x)</td>
<td>hyperbolic sine</td>
<td>∀ x</td>
</tr>
<tr>
<td>cosh(x)</td>
<td>hyperbolic cosine</td>
<td>∀ x</td>
</tr>
<tr>
<td>tanh(x)</td>
<td>hyperbolic tangent</td>
<td>∀ x</td>
</tr>
<tr>
<td>acosh(x)</td>
<td>inverse hyperbolic cosine</td>
<td>argument x ≥ 1</td>
</tr>
<tr>
<td>asinh(x)</td>
<td>inverse hyperbolic sine</td>
<td>∀ x</td>
</tr>
<tr>
<td>atanh(x)</td>
<td>inverse hyperbolic tangent</td>
<td>-1 < x < 1</td>
</tr>
<tr>
<td>root(x,n)</td>
<td>n-th root (the same as x^(1/n))</td>
<td>argument n ≠ 0 , x ≥ 0 if n even , ∀x if n odd</td>
</tr>
<tr>
<td>mod(a,b)</td>
<td>modulus</td>
<td>mod(29,6) = 5 , mod(13,4) = 3</td>
</tr>
<tr>
<td>fact(x)</td>
<td>factorial</td>
<td>argument 0 ≤ x ≤ 170</td>
</tr>
<tr>
<td>comb(n,k)</td>
<td>combinations</td>
<td>comb(6,3) = 20 , comb(6,6) = 1</td>
</tr>
<tr>
<td>perm(n,k)</td>
<td>permutations</td>
<td>perm(8,4) = 1680</td>
</tr>
<tr>
<td>min(a,b,...)</td>
<td>minimum</td>
<td>min(13,24) = 13</td>
</tr>
<tr>
<td>max(a,b,...)</td>
<td>maximum</td>
<td>max(13,24) = 24</td>
</tr>
<tr>
<td>mcd(a,b,...)</td>
<td>maximum common divisor</td>
<td>mcd(4346,174) = 2</td>
</tr>
<tr>
<td>mcm(a,b,...)</td>
<td>minimum common multiple</td>
<td>mcm(1440,378,1560,72,1650) = 21621600</td>
</tr>
<tr>
<td>gcd(a,b,...)</td>
<td>greatest common divisor</td>
<td>The same as mcd</td>
</tr>
<tr>
<td>lcm(a,b,...)</td>
<td>lowest common multiple</td>
<td>The same as mcm</td>
</tr>
<tr>
<td>csc(x)</td>
<td>cosecant</td>
<td>argument (in radiant) x ≠ k*π with k = 0, ±1, ±2…</td>
</tr>
<tr>
<td>sec(x)</td>
<td>secant</td>
<td>argument (in radiant) x ≠ k*π/2 with k = ±1, ±2…</td>
</tr>
<tr>
<td>cot(x)</td>
<td>cotangent</td>
<td>argument (in radiant) x ≠ k*π with k = 0, ±1, ±2…</td>
</tr>
<tr>
<td>acsc(x)</td>
<td>inverse cosecant</td>
<td>argument x≠0</td>
</tr>
<tr>
<td>asec(x)</td>
<td>inverse secant</td>
<td>argument x≠0</td>
</tr>
<tr>
<td>acot(x)</td>
<td>inverse cotangent</td>
<td>argument x≠0</td>
</tr>
<tr>
<td>csch(x)</td>
<td>hyperbolic cosecant</td>
<td>argument x≠0</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
<td>Note</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>sech(x)</td>
<td>hyperbolic secant</td>
<td>argument x>1</td>
</tr>
<tr>
<td>coth(x)</td>
<td>hyperbolic cotangent</td>
<td>argument x>2</td>
</tr>
<tr>
<td>acsch(x)</td>
<td>inverse hyperbolic cosecant</td>
<td></td>
</tr>
<tr>
<td>asech(x)</td>
<td>inverse hyperbolic secant</td>
<td>argument 0 ≤ x ≤ 1</td>
</tr>
<tr>
<td>acoth(x)</td>
<td>inverse hyperbolic cotangent</td>
<td>argument x<-1 or x>1</td>
</tr>
<tr>
<td>rad(x)</td>
<td>radiant conversion</td>
<td>converts radiant into current unit of angle</td>
</tr>
<tr>
<td>deg(x)</td>
<td>degree sess. conversion</td>
<td>converts sess. degree into current unit of angle</td>
</tr>
<tr>
<td>round(x, d)</td>
<td>round a number with d decimal</td>
<td></td>
</tr>
<tr>
<td>></td>
<td>greater than</td>
<td>return 1 (true) 0 (false)</td>
</tr>
<tr>
<td>>=</td>
<td>equal or greater than</td>
<td>return 1 (true) 0 (false)</td>
</tr>
<tr>
<td><</td>
<td>less than</td>
<td>return 1 (true) 0 (false)</td>
</tr>
<tr>
<td><=</td>
<td>equal or less than</td>
<td>return 1 (true) 0 (false)</td>
</tr>
<tr>
<td><></td>
<td>not equal</td>
<td>return 1 (true) 0 (false)</td>
</tr>
<tr>
<td>and</td>
<td>logic and</td>
<td>and(a,b) = return 0 (false) if a=0 or b=0</td>
</tr>
<tr>
<td>or</td>
<td>logic or</td>
<td>or(a,b) = return 0 (false) only if a=0 and b=0</td>
</tr>
<tr>
<td>not</td>
<td>logic not</td>
<td>not(a) = return 0 (false) if a ≠ 0 , else 1</td>
</tr>
<tr>
<td>xor</td>
<td>logic exclusive-or</td>
<td>xor(a,b) = return 1 (true) only if a ≠ b</td>
</tr>
<tr>
<td>nand</td>
<td>logic nand</td>
<td>nand(a,b) = return 1 (true) if a=1 or b=1</td>
</tr>
<tr>
<td>nor</td>
<td>logic nor</td>
<td>nor(a,b) = return 1 (true) only if a=0 and b=0</td>
</tr>
<tr>
<td>nxor</td>
<td>logic exclusive-nor</td>
<td>nxor(a,b) = return 1 (true) only if a=b</td>
</tr>
<tr>
<td>Psi(x)</td>
<td>Function psi</td>
<td></td>
</tr>
<tr>
<td>DN(x)</td>
<td>Normal density function</td>
<td>∀x, μ > 0, σ > 0</td>
</tr>
<tr>
<td>CN(x)</td>
<td>Normal cumulative function</td>
<td>∀x, μ > 0, σ > 1</td>
</tr>
<tr>
<td>DP(x)</td>
<td>Poisson density function</td>
<td>x >0, k = 1, 2, 3,...</td>
</tr>
<tr>
<td>CP(x)</td>
<td>Poisson cumulative function</td>
<td>x >0, k = 1, 2, 3,...</td>
</tr>
<tr>
<td>DBinom(k,n,x)</td>
<td>Binomial density for k successes for n trials</td>
<td>k , n = 1, 2, 3,... , k < n , x ≤ 1</td>
</tr>
<tr>
<td>CBinom(k,n,x)</td>
<td>Binomial cumulative for k successes for n trials</td>
<td>k , n = 1, 2, 3,... , k < n , x ≤ 1</td>
</tr>
<tr>
<td>Si(x)</td>
<td>Sine integral</td>
<td>∀ x</td>
</tr>
<tr>
<td>Ci(x)</td>
<td>Cosine integral</td>
<td>x >0</td>
</tr>
<tr>
<td>FresnelS(x)</td>
<td>Fresnel's sine integral</td>
<td>∀ x</td>
</tr>
<tr>
<td>FresnelC(x)</td>
<td>Fresnel's cosine integral</td>
<td>∀ x</td>
</tr>
<tr>
<td>J0(x)</td>
<td>Bessel's function of 1st kind</td>
<td>x ≥0</td>
</tr>
<tr>
<td>Y0(x)</td>
<td>Bessel's function of 2nd kind</td>
<td>x ≥0</td>
</tr>
<tr>
<td>I0(x)</td>
<td>Bessel's function of 1st kind, modified</td>
<td>x >0</td>
</tr>
<tr>
<td>K0(x)</td>
<td>Bessel's function of 2nd kind, modified</td>
<td>x >0</td>
</tr>
<tr>
<td>BesselJ1(x,n)</td>
<td>Bessel's function of 1st kind, nth order</td>
<td>x ≥0 , n = 0, 1, 2, 3,...</td>
</tr>
<tr>
<td>BesselY1(x,n)</td>
<td>Bessel's function of 2nd kind, nth order</td>
<td>x ≥0 , n = 0, 1, 2, 3,...</td>
</tr>
<tr>
<td>BesselJ2(x,n)</td>
<td>Bessel's function of 1st kind, nth order, modified</td>
<td>x ≥0 , n = 0, 1, 2, 3,...</td>
</tr>
<tr>
<td>BesselY2(x,n)</td>
<td>Bessel's function of 2nd kind, nth order, modified</td>
<td>x ≥0 , n = 0, 1, 2, 3,...</td>
</tr>
<tr>
<td>HypGeom(a,b,c,x)</td>
<td>Hypergeometric function</td>
<td>-1 < x < 1 , a,b>0 , c ≠ 0, -1, -2,...</td>
</tr>
<tr>
<td>PolyCh(x,n)</td>
<td>Chebyshev's polynomials</td>
<td>∀ x , orthog. for -1 ≤ x ≤ 1</td>
</tr>
<tr>
<td>PolyLe(x,n)</td>
<td>Legendre's polynomials</td>
<td>∀ x , orthog. for -1 ≤ x ≤ 1</td>
</tr>
<tr>
<td>PolyLa(x,n)</td>
<td>Laguerre's polynomials</td>
<td>∀ x , orthog. for 0 ≤ x ≤ 1</td>
</tr>
<tr>
<td>PolyHe(x,n)</td>
<td>Hermite's polynomials</td>
<td>∀ x , orthog. for -∞ ≤ x ≤ +∞</td>
</tr>
<tr>
<td>AiryA(x)</td>
<td>Airy function Ai(x)</td>
<td>∀ x</td>
</tr>
<tr>
<td>AiryB(x)</td>
<td>Airy function Bi(x)</td>
<td>∀ x</td>
</tr>
<tr>
<td>Ell1(x)</td>
<td>Elliptic integral of 1st kind</td>
<td>∀ φ , 0 < k < 1</td>
</tr>
<tr>
<td>Ell2(x)</td>
<td>Elliptic integral of 2st kind</td>
<td>∀ φ , 0 < k < 1</td>
</tr>
<tr>
<td>Erf(x)</td>
<td>Error Gauss's function</td>
<td>x >0</td>
</tr>
<tr>
<td>gamma(x)</td>
<td>Gamma function</td>
<td>∀ x, x = 0, -1,-2,-3,... (x > 172 overflow error)</td>
</tr>
<tr>
<td>gamma1(x)</td>
<td>Logarithm Gamma function</td>
<td>x >0</td>
</tr>
<tr>
<td>gammaln(x)</td>
<td>Gamma Incomplete function</td>
<td>∀ x, a > 0</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
<td>Note</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>digamma(x) psi(x)</td>
<td>Digamma function</td>
<td>$x \neq 0, \ -1, \ -2,\ -3...$</td>
</tr>
<tr>
<td>beta(a,b)</td>
<td>Beta function</td>
<td>$a > 0, \ b > 0$</td>
</tr>
<tr>
<td>betaI(x,a,b)</td>
<td>Beta Incomplete function</td>
<td>$x > 0, \ a > 0, \ b > 0$</td>
</tr>
<tr>
<td>Ei(x)</td>
<td>Exponential integral</td>
<td>$x \neq 0$</td>
</tr>
<tr>
<td>Ein(x,n)</td>
<td>Exponential integral of n order</td>
<td>$x > 0, \ n = 1, 2, 3...$</td>
</tr>
<tr>
<td>zeta(x)</td>
<td>zeta Riemman's function</td>
<td>$x < 1 \ or \ x > 1$</td>
</tr>
<tr>
<td>Clip(x,a,b)</td>
<td>Clipping function</td>
<td>return a if $x < a$, return b if $x > b$, otherwise return x.</td>
</tr>
<tr>
<td>WTRI(t,p)</td>
<td>Triangular wave</td>
<td>$t = \text{time}, \ p = \text{period}$</td>
</tr>
<tr>
<td>WSQR(t,p)</td>
<td>Square wave</td>
<td>$t = \text{time}, \ p = \text{period}$</td>
</tr>
<tr>
<td>WRECT(t,p,d)</td>
<td>Rectangular wave</td>
<td>$t = \text{time}, \ p = \text{period}, \ d = \text{duty-cycle}$</td>
</tr>
<tr>
<td>WTRAPEZ(t,p,d)</td>
<td>Trapez. wave</td>
<td>$t = \text{time}, \ p = \text{period}, \ d = \text{duty-cycle}$</td>
</tr>
<tr>
<td>WSAW(t,p)</td>
<td>Saw wave</td>
<td>$t = \text{time}, \ p = \text{period}$</td>
</tr>
<tr>
<td>WRAISE(t,p)</td>
<td>Rampa wave</td>
<td>$t = \text{time}, \ p = \text{period}$</td>
</tr>
<tr>
<td>WLIN(t,p,d)</td>
<td>Linear wave</td>
<td>$t = \text{time}, \ p = \text{period}, \ d = \text{duty-cycle}$</td>
</tr>
<tr>
<td>WPULSE(t,p,d)</td>
<td>Rectangular pulse wave</td>
<td>$t = \text{time}, \ p = \text{period}, \ d = \text{duty-cycle}$</td>
</tr>
<tr>
<td>WSTEPS(t,p,n)</td>
<td>Steps wave</td>
<td>$t = \text{time}, \ p = \text{period}, \ n = \text{steps number}$</td>
</tr>
<tr>
<td>WEXP(t,p,a)</td>
<td>Exponential pulse wave</td>
<td>$t = \text{time}, \ p = \text{period}, \ a = \text{damping factor}$</td>
</tr>
<tr>
<td>WEXPB(t,p,a)</td>
<td>Exponential bipolar pulse wave</td>
<td>$t = \text{time}, \ p = \text{period}, \ a = \text{damping factor}$</td>
</tr>
<tr>
<td>WPULSEF(t,p,a)</td>
<td>Filtered pulse wave</td>
<td>$t = \text{time}, \ p = \text{period}, \ a = \text{damping factor}$</td>
</tr>
<tr>
<td>WRING(t,p,a,fm)</td>
<td>Ringing wave</td>
<td>$t = \text{time}, \ p = \text{period}, \ a = \text{damping factor}, \ fm = \text{frequency}$</td>
</tr>
<tr>
<td>WPARAB(t,p)</td>
<td>Parabolic pulse wave</td>
<td>$t = \text{time}, \ p = \text{period}$</td>
</tr>
<tr>
<td>WRIPPLE(t,p,a)</td>
<td>Ripple wave</td>
<td>$t = \text{time}, \ p = \text{period}, \ a = \text{damping factor}$</td>
</tr>
<tr>
<td>WAM(t,fo,fm,m)</td>
<td>Amplitude modulation</td>
<td>$t = \text{time}, \ p = \text{period}, \ fo = \text{carrier freq.}, \ fm = \text{modulation freq.}, \ m = \text{modulation factor}$</td>
</tr>
<tr>
<td>WFM(t,fo,fm,m)</td>
<td>Frequency modulation</td>
<td>$t = \text{time}, \ p = \text{period}, \ fo = \text{carrier freq.}, \ fm = \text{modulation freq.}, \ m = \text{modulation factor}$</td>
</tr>
<tr>
<td>Year(d)</td>
<td>year</td>
<td>$d = \text{dateserial}$</td>
</tr>
<tr>
<td>Month(d)</td>
<td>month</td>
<td>$d = \text{dateserial}$</td>
</tr>
<tr>
<td>Day(d)</td>
<td>day</td>
<td>$d = \text{dateserial}$</td>
</tr>
<tr>
<td>Hour(d)</td>
<td>hour</td>
<td>$d = \text{dateserial}$</td>
</tr>
<tr>
<td>Minute(d)</td>
<td>minute</td>
<td>$d = \text{dateserial}$</td>
</tr>
<tr>
<td>Second(d)</td>
<td>second</td>
<td>$d = \text{dateserial}$</td>
</tr>
<tr>
<td>DateSerial(a,m,d)</td>
<td>Dateserial from date</td>
<td>$a = \text{year}, \ m = \text{month}, \ d = \text{day}$</td>
</tr>
<tr>
<td>TimeSerial(h,m,s)</td>
<td>Timeserial from time</td>
<td>$h = \text{hour}, \ m = \text{minute}, \ s = \text{second}$</td>
</tr>
<tr>
<td>time#</td>
<td>system time</td>
<td></td>
</tr>
<tr>
<td>date#</td>
<td>system date</td>
<td></td>
</tr>
<tr>
<td>now#</td>
<td>system timestamp</td>
<td></td>
</tr>
<tr>
<td>Sum(a,b,...)</td>
<td>Sum</td>
<td>sum$(8,9,12,9,7,10) = 55$</td>
</tr>
<tr>
<td>Mean(a,b,...)</td>
<td>Arithmetic mean</td>
<td>mean$(8,9,12,9,7,10) = 9.16666666666667$</td>
</tr>
<tr>
<td>Meanq(a,b,...)</td>
<td>Quadratic mean</td>
<td>meanq$(8,9,12,9,7,10) = 9.3053761886914$</td>
</tr>
<tr>
<td>Meang(a,b,...)</td>
<td>Arithmetic mean</td>
<td>mean$(8,9,12,9,7,10) = 9.03598945281812$</td>
</tr>
<tr>
<td>Var(a,b,...)</td>
<td>Variance</td>
<td>var$(1,2,3,4,5,6,7) = 4.66666666666667$</td>
</tr>
<tr>
<td>Varp(a,b,...)</td>
<td>Variance pop.</td>
<td>varp$(1,2,3,4,5,6,7) = 4$</td>
</tr>
<tr>
<td>Stdev(a,b,...)</td>
<td>Standard deviation</td>
<td>Stdev$(1,2,3,4,5,6,7) = 2.16024689946929$</td>
</tr>
<tr>
<td>Stdevp(a,b,...)</td>
<td>Standard deviation pop.</td>
<td>Stdevp$(1,2,3,4,5,6,7) = 2$</td>
</tr>
<tr>
<td>Step(x,a)</td>
<td>Haveside's step function</td>
<td>Returns 1 if $x \geq a$, 0 otherwise</td>
</tr>
</tbody>
</table>

(*) the operation $0^0 (0 \text{ raises to } 0)$ is not allowed here.
Symbol "!" is the same as "Fact"; symbol "%" is percentage; symbol "\" is integer division; symbol "\| . \|" is the same as Abs.
Logical functions and operators return 1 (true) or 0 (false)
Functions with (a,b,...) accept up to 20 arguments
Limits of 4.2.

max operations/functions = 200; max variables = 100; max function types = 140; max arguments for function = 20; max nested functions = 20; max expressions stored at the same time = undefined. Increasing these limits is easy. For example, if you want to parse long strings up to 500 operations or functions with 60 max arguments, and max 250 variables, simply set the variable

```vbnet
Const HiVT As Long = 250
Const HiET As Long = 500
Const HiARG As Long = 60
```

The ET table can now contain up to 400 rows, each of one is a math operator or function.

Main Applications

In some instances, you might want to allow users to type their own numeric expression in a TextBox and then evaluate it. The user may also type symbolic variables “x”, “y”, “a”, “b”, etc. in the expression and then calculate it for several different numeric values assigned to the variables.

The expression is created at runtime and will be interpreted and calculated by your VB program. This Parser is the black-box that just performs this task.

```
\[ a^2 \cdot e^{x/T} - y \]  
\[ x = 1, \quad y = -1 \]  
\[ a = 1.2, \quad T = 0.5 \]
```

a math calculation in math language…
…is translated into plain ascii text…
…and finally interpreted and calculated by the parser

The final response that is retrieved to the user can be either a numeric result or an error message.

Another case: the user wants to approximate a series. Usually the input of these operations is a function defined by mathematical expressions. This parser is suitable for performing many computation of the same expression with different variable values (loop). The interface program implements the algorithm performing the series and demanding the evaluation of the function to the MathParser. For programmers, the complication of the function calculation is totally transparent.

```
\[ \sum_{k=0}^{m} (-1)^k \frac{x^k}{k!} \]  
\[ x = 0.7, \quad m = 100 \]
```

a math calculation in math language…
…is translated into plain ascii text, repeating the evaluation of f(x, k) for k = 0, 1, 2…m. Each partial result is accumulated and the total is retrieved to the user

The final response that is retrieved to the user can be either a numeric result or an error message.

The isolation between the main algorithm and the function calculation is the main goal of the MathParser.
Class

This software is structured following the object programming rules, consisting of a set of methods and properties.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StoreExpression</td>
<td>Stores, parses, and checks syntax errors of the formula “f”</td>
</tr>
<tr>
<td>Eval</td>
<td>Evaluates expression</td>
</tr>
<tr>
<td>Eval1(x)</td>
<td>Evaluates mono-variable expression f(x)</td>
</tr>
<tr>
<td>EvalMulti(x(), id)</td>
<td>Evaluates expression for a vector of values</td>
</tr>
<tr>
<td>ET_Dump</td>
<td>Dumps the internal ET table (debug only)</td>
</tr>
</tbody>
</table>

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expression</td>
<td>Gets the current expression stored (R)</td>
</tr>
<tr>
<td>VarTop</td>
<td>Gets the top of the var array (R)</td>
</tr>
<tr>
<td>VarName(i)</td>
<td>Gets name of variable of index=i (R)</td>
</tr>
<tr>
<td>Variable(x)</td>
<td>Sets/gets the value of variable passes by index/name (R/W)</td>
</tr>
<tr>
<td>AngleUnit</td>
<td>Sets/gets the angle unit of measure (R/W)</td>
</tr>
<tr>
<td>ErrorDescription</td>
<td>Gets error description (R)</td>
</tr>
<tr>
<td>ErrorID</td>
<td>Error message number</td>
</tr>
<tr>
<td>ErrorPos</td>
<td>Error position</td>
</tr>
<tr>
<td>OpAssignExplicit</td>
<td>Option: Sets/gets the explicit variables assignment (R/W)</td>
</tr>
<tr>
<td>OpUnitConv</td>
<td>Enable/disable unit conversion</td>
</tr>
<tr>
<td>OpDMSConv</td>
<td>Enable/disable DMS angle conversion</td>
</tr>
</tbody>
</table>

Note. The old properties `VarValue` and `VarSymb` are obsolete, being substituted by the `Variable` property. However, they are still supported for compatibility.

R = read only, R/W = read/write

Syntax

```
object. StoreExpression(ByVal strExpr As String) As Boolean
```

Where:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Object</td>
<td>Obligatory. It is always the clsMathParser object.</td>
</tr>
<tr>
<td>strExpr</td>
<td>Math expression to evaluate.</td>
</tr>
</tbody>
</table>

This method can be invoked after a new instance of the class has been created. It activates the parse routine.

Example

```vbnet
Dim OK as Boolean
Dim Fun As New clsMathParser
......
OK = Fun.StoreExpression(txtFormula)
```

Notes

Typical mixed math-physical expressions are:

- \((a+b)*(a-b)\)
- \((a+b)*(a-b)\)
- \((-1)^{(2n+1)*x^n/n!}\)
- \(x^2+3x+1\)
- \(256.33*\text{Exp}(-t/12 \text{ us})\)
- \((3000000 \text{ km/s})/144 \text{ Mhz}\)
- \(0.25x+3.5y+1\)
- space/time
Variables can be any alphanumeric string and must start with a letter:

\[x \quad y \quad a1 \quad a2 \quad time \quad alpha \quad beta \]

Implicit multiplication is not supported because of its intrinsic ambiguity. So "xy" stand for a variable named "xy" and not for x'y. The multiplication symbol "*" cannot generally be omitted. It can be omitted only for coefficients of the classic math variables x, y, z. It means that strings like 2x and 2*x are equivalent:

\[2x \quad 3.141y \quad 338z^2 \quad \Leftrightarrow \quad 2\times x \quad 3.141\times y \quad 338\times z^2 \]

On the contrary, the following expressions are illegal: 2a, 3(x+1), 334omega

Constant numbers can be integers, decimal, or exponential:

\[2 \quad -3234 \quad 1.3333 \quad -0.00025 \quad 1.2345E-12 \]

Physical numbers are alphanumeric strings that must begin with a number:

"1s" for 1 second "200m" for 200 meters "25kg" for 25 kilograms.

For better reading they may contain a blank:

"1 s" "200 m" "25 kg" "150 MHz" "0.15 uF" "3600 kOhm"

They may also contain the following **multiplying factor**:

\[T=10^{12} \quad G=10^9 \quad M=10^6 \quad k=10^3 \quad m=10^{-3} \quad u=10^{-6} \quad n=10^{-9} \quad p=10^{-12} \]

Eval

Evaluates the previously stored expression and returns its value.

Syntax

\[object. \text{Eval}() \text{ As Double} \]

Where:

Parts

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
</tr>
</tbody>
</table>

Obligatory. It is always the clsMathParser object.

This method substitutes the variables values previously stored with the **Variable** property and performs numeric evaluation.

Notes

The error detected by this method is any computational domain error. This happens when variable values are out of the domain boundary. Typical domain errors are:

\[\log(-x) \quad \log(0) \quad \sqrt{-x} \quad x/0 \quad \arcsin(2) \]

They cannot be intercepted by the parser routine because they are not syntax errors but depend only on the wrong numeric substitution of the variable. When this kind of error is intercepted, this method raises an error and its text is copied into the **ErrDescription** property of the clsMathParser object and also into the same property of the global **Err** object.
Eval1 Evaluates a monovariable function and returns its value

Syntax

object. Eval1(ByVal x As Double) As Double

Where:

Parts Description
object Obligatory. It is always the clsMathParser object.
x Variable value

Notes
This method is a simplified version of the general Eval method
It is adapted for monovariable function f(x)

Dim OK As Boolean, x As Double, f As Double
Dim Funct As New clsMathParser

On Error Resume Next
OK = Funct.StoreExpression("(x^2+1)/(x^2-1)") 'parse function
If Not OK Then
 Debug.Print Funct.ErrorDescription
Else
 x = 3
 f = Funct.Eval1(x) 'evaluate function value
 If Err = 0 Then
 Debug.Print "x="; x, "f(x)="; f
 Else
 Debug.Print "x="; x, "f(x)="; Funct.ErrorDescription
End If
End If

Note in this case how the code is simple and compact. This method is also about 11% faster than the general Eval method.

EvalMulti Substitutes and evaluates a vector of values

Syntax

object.EvalMulti(ByRef VarValue() As Double, Optional ByVal VarName)

Where:

Parts Description
Object Obligatory. It is always the clsMathParser object.
VarValue() Vector of variable values
VarName Name or index of the variable to be substituted

Notes
This property is very useful to assign a vector to a variable obtaining of a vector values in a very easy way. It is also an efficient method, saving more than 25% of elaboration time.
The formula expression can have several variables, but only one of them can receive the array.
Let’s see this example in which we will compute 10000 values of the same expression in a flash.
Evaluate with the following

\[
f(x,y,T,a) = (a^2*exp(x/T)-y)
\]
for: \(x = 0...1\) (1000 values), \(y = 0.123\), \(T = 0.4\), \(a = 100\)

Sub test_array()
Dim x() As Double, F, Formula, h
Dim Loops&, i&
Dim Funct As New clsMathParser
'--
Formula = "(a^2*exp(x/T)-y)"
Loops = 10000
x0 = 0
x1 = 1
h = (x1 - x0) / Loops
'load x-samples
ReDim x(Loops)
For i = 1 To Loops
 x(i) = i * h + x0
Next i
If Funct.StoreExpression(Formula) Then
 On Error GoTo Error_Handler
 T0 = Timer
 Funct.Variable("y") = 0.123
 Funct.Variable("T") = 0.4
 Funct.Variable("a") = 100
 F = Funct.EvalMulti(x, "x") 'evaluate in one shot 10000 values
 T1 = Timer - T0
 T2 = T1 / Loops
 Debug.Print T1, T2
Else
 Debug.Print Funct.ErrorDescription
End If
Exit Sub
Error_Handler:
 Debug.Print Funct.ErrorDescription
End Sub

ET_Dump Return the ET internal table (only for debugging)

Sintax
object. ET_Dump(ByRef Etable as Variant)

Where:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Obligatory. It is always the clsMathParser object.</td>
</tr>
<tr>
<td>ETable</td>
<td>Array containing the ET table</td>
</tr>
</tbody>
</table>

Notes
This method copies the internal ET Table into an array (n x m). The first row (0) contains the column headers. The array must be declares as a Variant undefined array.
Dim Etable()
For details see example 8.

Properties
Expression Returns the current stored expression

Sintax
object. Expression() As String

Where:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Obligatory. It is always the clsMathParser object.</td>
</tr>
</tbody>
</table>

This property is useful to check if a formula is already stored. In the example below, the main routine skips the parsing step if the function is already stored, saving a good deal of time.
If Funct.Expression <> Formula Then
 OK = Funct.StoreExpression(Formula) 'parse function
End If

VarTop

get the top of the variable array

Sintax

`object. VarTop() As Long`

Where:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>object</code></td>
<td>Obligatory. It is always the clsMathParser object.</td>
</tr>
</tbody>
</table>

Notes

It returns the total number of different symbolic variables contained in an expression. This is useful in order to dynamically allocate the variables array.

Example

For the following expression:

```
"(x^2+1)/(y^2-y-2)"
```

We get

```
2 = object.VarTop
```

VarName

returns the name of the i-th variable.

Sintax

`object. VarName(ByVal Index As Long) As String`

Where:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>object</code></td>
<td>Obligatory. It is always the clsMathParser object.</td>
</tr>
<tr>
<td><code>Index</code></td>
<td>Pointer of variable array. It must be within 1 and VarTop</td>
</tr>
</tbody>
</table>

Example

This code prints all variable names contained in an expression, with their current values

```vbnet
Dim Funct As New clsMathParser
Funct.StoreExpression "(x^2+1)/(y^2-y-2)"
For i = 1 To Funct.VarTop
    Debug.Print Funct.VarName(i); " = "; Funct.Variable(i)
Next
```
Variable

sets or gets the value of a variable by its symbol or its index.

Syntax

\texttt{object.Variable(ByVal Name) As Double}

Where:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Obligatory. It is always the clsMathParser object.</td>
</tr>
<tr>
<td>Name</td>
<td>symbolic name or index of the variable.</td>
</tr>
</tbody>
</table>

Example

Assign the value 2.3333 to the variable of the given index. The parser builds this index reading the formula from left to right; the first variable encountered has index = 1; the second one has index = 2 and so on.

```vba
Dim f As Double
Dim Funct As New clsMathParser
Funct.StoreExpression "(x^2+1)/(y^2-y+2)" 'parse function
Funct.Variable(1) = 2.3333
Funct.Variable(2) = -0.5
f = Funct.Eval
Debug.Print "f(x,y)=" + Str(f)
```

But we could write as well

```vba
Funct.Variable("x") = 2.3333
Funct.Variable("y") = -0.5
```

Using index is the fastest way to assign a variable value. Normally, it is about 2 times faster. But, on the other hand, the symbolic name assignment is easier and more flexible.

AngleUnit

Sets/gets the angle unit of measure

Syntax

\texttt{object.AngleUnit As String}

Where:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Obligatory. It is always the clsMathParser object.</td>
</tr>
<tr>
<td>AngleUnit</td>
<td>Sets/gets the current angle unit (read/write)</td>
</tr>
</tbody>
</table>

The default unit of measure of angles is “RAD” (Radian), but we can also set “DEG” (sexagesimal degree) and “GRAD” (centesimal degree)

Example

```vba
Dim f As Double
Dim Funct As New clsMathParser
Funct.StoreExpression "\sin(x)"    'parse function
Funct.AngleUnit = "DEG"
Funct.Eval1(45)    ' we get f= 0.707106781186547
Funct.Eval1(90)    ' we get f= 1
```

The angles returned by the functions are also converted.
Funct.StoreExpression "asin(x)" 'parse function
Funct.AngleUnit= "DEG"

f = Funct.Eval1(1) ' we get f= 90
f = Funct.Eval1(0.5) ' we get f= 30

Note: angle setting only affects the following trigonometric functions:
sin(x), cos(x), tan(x), atn(x), acos(x), asin(x), csc(x), sec(x), cot(x), acsc(x), asec(x), acot(x),
rad(x), deg(x), grad(x)

ErrDescription Returns any error detected.

Sintax

`object. ErrorDescription() As String`

Where:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>object</code></td>
<td>Obligatory. It is always the clsMathParser object.</td>
</tr>
<tr>
<td><code>ErrorDescription</code></td>
<td>Contains the error message string</td>
</tr>
</tbody>
</table>

Note

This property contains the error description detected by internal routines. Errors are divided into two
groups: syntax errors and evaluation errors (or domain errors).
If a domain error is intercepted, an error is generated, so you can also check the global Err object.
For a complete list of the error descriptions see “Error Messages”.

ErrorID Returns the error message number.

Sintax

`object. ErrorID() As Long`

Where:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>object</code></td>
<td>Obligatory. It is always the clsMathParser object.</td>
</tr>
<tr>
<td><code>ErrorID</code></td>
<td>Returns the error message number</td>
</tr>
</tbody>
</table>

This property contains the error number detected by internal routines. It is the index of the internal
error table ErrorTbl()
For a complete list of the error numbers see “Error Messages”.

ErrorPos Returns the error position.

Sintax

`object. ErrorPos() As Long`

Where:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>object</code></td>
<td>Obligatory. It is always the clsMathParser object.</td>
</tr>
<tr>
<td><code>ErrorPos</code></td>
<td>Returns the error position</td>
</tr>
</tbody>
</table>

This property contains the error position detected by internal routines.
Note that the parser cannot always detect the exact position of the error
For example

 `root(-5,2) returns "Evaluation error < root(-5, 2) > at pos: 5"`
comb(50, 2.2) returns "Evaluation error < comb(50, 2.2) > at pos: 5"
acos(0.5) + acos(2) returns "Evaluation error < acos(2) > at pos: 15"

As we can see, the ErrorPos always points to the wrong function no matter which the wrong argument is.

OpAssignExplicit

Enable/disable the explicit variable assignment.

Syntax

`object. OpAssignExplicit()` As Boolean

Where:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>object</code></td>
<td>Obligatory. It is always the clsMathParser object.</td>
</tr>
<tr>
<td><code>OpAssignExplicit</code></td>
<td>True/False. If True, forces the explicit variables assignement.</td>
</tr>
</tbody>
</table>

All variables contained in a math expression are initialized to zero by default. The evaluation methods usually use these values in the substitution step without checking if the variable values have been initialized by the user or not. If you want to force explicit initialization, set this property to "true". In that case, the evaluation methods will perform the check: If one variable has never been assigned, the MathParser will raise an error. The default is "false".

Example. Compute f(x,y) = x^2+y , assigning only the variable x = −3

```vba
Sub test_assignement1()
    Dim x As Double, F, Formula
    Dim Funct As New clsMathParser
    Formula = "x^2+y"
    If Not Funct.StoreExpression(Formula) Then GoTo Error_Handler
    Funct.OpAssignExplicit = False
    Funct.Variable("x") = -3
    F = Funct.Eval
    If Err <> 0 Then GoTo Error_Handler
    Debug.Print "F(x,y)= "; Funct.Expression
    Debug.Print "x= "; Funct.Variable("x")
    Debug.Print "y= "; Funct.Variable("y")
    Debug.Print "F(x,y)= "; F
    Exit Sub
Error_Handler:
    Debug.Print Funct.ErrorDescription
End Sub
```

If `OpAssignExplicit = False` then the response will be

```
F(x,y) = x^2+y
x= -3
y= 0
F(x,y)= 9
```

As we can see, variable y, never assigned by the main program, has the default value = 0, and the eval method returns 9.

On the contrary, if `OpAssignExplicit = True`, then the response will be the error:

"Variable <y> not assigned"
OpUnitConv Enable/disable unit conversion.

Syntax

object. OpUnitConv () As Boolean

Where:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Obligatory. It is always the clsMathParser object.</td>
</tr>
<tr>
<td>OpUnitConv</td>
<td>True/False. If True, enables the unit conversion.</td>
</tr>
</tbody>
</table>

This option switches off the unit conversion if not needed. The default is “True”.

OpDMSConv Enable/disable angle DMS conversion.

Syntax

object. OpUnitConv () As Boolean

Where:

<table>
<thead>
<tr>
<th>Parts</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>object</td>
<td>Obligatory. It is always the clsMathParser object.</td>
</tr>
<tr>
<td>OpDMSConv</td>
<td>True/False. If True, enables the angle DMS conversion.</td>
</tr>
</tbody>
</table>

This option switches off the angle DMS conversion if not needed. The default is “True”.
Parser

It is the heart of the algorithm. The Parser algorithm reads the input math expression string and translates the conventional symbols into a conceptual structured database. This database, designed in the ET table, contains all the operational information to perform the calculation.

The Conceptual Model Method

In the language of structured data modeling we can say that this algorithm translates any arithmetic or algebraic input expression to the follow conceptual data model:

![Conceptual Model Diagram]

This model expresses the following sentences:
1. Each arithmetic or algebraic expression is composed by functions. Common binary operators like +, -, *, / are considered as functions with two variables. For example: ADD(a,b) instead of a+b, DIV(a,b) instead of a/b and so on.
2. Each function must have one value and one or more arguments.
3. Each argument has one value.
4. A function may be the argument of another function.

The algorithm assigns a priority level to each function, based on an internal level-table, respecting the usual order of the mathematical operators:

<table>
<thead>
<tr>
<th>Level</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>10</th>
<th>+10</th>
<th>-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions</td>
<td>+</td>
<td>-</td>
<td>*</td>
<td>/</td>
<td>^</td>
<td>Any functions</td>
</tr>
</tbody>
</table>

This level is increased by 10 every time the parser finds a left bracket (no matter which type) and, on the contrary, is decreased by 10 with a right bracket.

Example

The following example explains how this algorithm works.

Suppose you evaluate the expression: \((a+b)*(a-b)\), with: \(a = 3\), and: \(b = 5\)

We call the `parse()` routine with the following arguments:

ExprString = ":(a+b)*(a-b)"
Variable(1) = 3 'value of variable a
Variable(2) = 5 'value of variable b

The Variable Table and Expression Table

The parser builds the two following tables: Variable Table (VT) and Expression Table (ET)

The parser has recognized and indexed 2 variables. It assigns 1 to the first variable recognized from left to right; 2 to the second one, and so on. Note that the variable name is stored only for better debugging. It is not really necessary for the algorithm process.

<table>
<thead>
<tr>
<th>Variables table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Id</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>
The Parser has recognized 3 functions (operators: +, *, -) and assigned the priority level of 11, 2, 11 respectively. The operators + and - have normally a level of L = 1 (the lowest). Because of brackets, their level becomes L = 10 + 1 = 11.

The function "+", ID = 1, has two arguments: "a" and "b", respectively as shown in columns "Arg name". The result of function "+" is the first argument of function "*" (ID = 2), as indicated in the columns ArgOf = 2 and IndArg = 1.

The function "-", ID = 3, has two arguments: "a" and "b". The result of function "-" is the second argument of function "*" (ID = 2), as indicated in the columns ArgOf = 2 and IndArg = 2.

Finally, the function "*" is not the argument of any other function, as shown by the corresponding ArgOf = 0; so its result is the result of the given expression.

The sequence (Seq) column is the key for speed-up computing. Practically, it is the secondary index of the table; reading it from top to bottom, we have the exact sequence of functions that we must execute. In the example we must execute first the function with ID = 1, "+", (in row 1), then we must execute the function with ID = 3, ",", (in row 3); and finally we execute the function with ID = 2, "*", (in row 2).

The column Seq is generated from the level of each function stored in the Level column. The score=1 is for the highest level; if there are more than one value, (in the example we have two level 11 in rows 1 and 3) the higher row is the winner.

The same rule is applied to the remaining rows, and so on. The last Seq is for the lowest level function.

Note that, in this step, no value cells are filled. This task is performed by the Eval() subroutine.

The Parser reads the string from left to right and substitutes the first variable found with the first value of VarVector(), the second variable with the second value and so on. All the functions recognized by this Parser have two variables at most.

A graphical representation of ET table is shown below:

![Graphical representation](image)

Or, more synthetically, by the following binary tree:

![Binary tree](image)
Eval

This routine performs two simple actions:
1. substitutes all symbolic variables (if present) with their numeric values;
2. performs the computation of all functions according to their sequence (Seq column).

In the above example, this routine inserts values 3 and 5 into the "Arg value" columns for the corresponding variables "a" and "b".

<table>
<thead>
<tr>
<th>Id</th>
<th>Fun</th>
<th>Max</th>
<th>Arg(1). Id</th>
<th>Arg(1). Name</th>
<th>Arg(1). Value</th>
<th>Arg(2). Id</th>
<th>Arg(2). Name</th>
<th>Arg(2). Value</th>
<th>ArgOf</th>
<th>IndArg</th>
<th>Value</th>
<th>Level</th>
<th>Offset</th>
<th>Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>2</td>
<td>1</td>
<td>a</td>
<td>3</td>
<td>2</td>
<td>b</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>11</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>2</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>a</td>
<td>3</td>
<td>2</td>
<td>b</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>9</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

After this substitution, the algorithm begins the computation, one function at a time, from top to bottom. In this case the order of computation is 1, 3, 2, as indicated in the last column "Seq". The operations performed are (in sequence): row 1, 3, 2
row=1, 3+5= 8,
is assigned to the function indexed by the corresponding field ArgOf=2 and by the argument IndArg=1.
row=3; 3-5= -2,
is assigned to the function indexed by the corresponding field ArgOf=2 and by the argument IndArg=2
row=2; 8*(-2)= -16,
because ArgOf=0 the routine returns this value as the result of the evaluation of the expression.

<table>
<thead>
<tr>
<th>Id</th>
<th>Funz</th>
<th>Max</th>
<th>Arg(1). Id</th>
<th>Arg(1). Name</th>
<th>Arg(1). Value</th>
<th>Arg(2). Id</th>
<th>Arg(2). Name</th>
<th>Arg(2). Value</th>
<th>ArgOf</th>
<th>IndArg</th>
<th>Value</th>
<th>Level</th>
<th>Offset</th>
<th>Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>2</td>
<td>1</td>
<td>a</td>
<td>3</td>
<td>2</td>
<td>b</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>8</td>
<td>11</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>2</td>
<td>0</td>
<td></td>
<td>8</td>
<td>0</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>-16</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>a</td>
<td>3</td>
<td>2</td>
<td>b</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>-2</td>
<td>11</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

See Appendix for other examples:
Parser Algorithm step-by-step

Example 1: Suppose we compute the following mathematical expression: $245 \times (a+b) \times (a-b)+1$

The parser begins to examine each character, from left to right, applying the following rules.

Rules:
- Arithmetic functions are the following one-char symbols: $+ \quad - \quad * \quad / \quad ^$
- Elementary functions are any substring ending with a left parenthesis (matching in the given function list)
- Elementary functions are also the following symbols: $!$ (factorial) and $|$ (absolute)
- Functions can have 1, 2, or more arguments
- Functions have a specific priority level
- Parentheses are $\{ \ [\ (\) \] \}$ without any difference. Each open parenthesis increments by 10 the priority level; each closed decrements it by 10.
- Any substring that does not contain the above character must be a symbolic variable, a numeric constant or a literal constant
- Any symbolic variable, numeric constant or literal constant must be the argument of a function (by default, the left argument of the following function - except the last argument, which must be the right one)

Parser Steps

By this rules, the parser recognizes 5 functions and begins to build the structured ET tables

1° Parser Step

1. **Variables and Functions**
 - Numeric constants (and also the last argument of the expression)

2. **Level Calculation**
 - Variables or constants are assigned to the left arguments of the next function, except for the last variable or constant, which must be assigned to the second argument of the last function.
 - If a function has only one argument, then only the left argument is filled.

2° Parser Step

Fill the second argument

<table>
<thead>
<tr>
<th>ID</th>
<th>Fun</th>
<th>MaxArg</th>
<th>Arg(1)</th>
<th>Arg(2)</th>
<th>funct level</th>
<th>parenthesis level</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>2</td>
<td>245</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>2</td>
<td>a</td>
<td></td>
<td>1</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>2</td>
<td>b</td>
<td></td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>−</td>
<td>2</td>
<td>a</td>
<td></td>
<td>1</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>2</td>
<td>b</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

At the 2° step, the parser fills the second argument (for functions that need 2 arguments). The rules are simple. Each left argument of a given function is also a right argument of the next function, except the first and the last. Starting from bottom to top, the parser simply copies each Arg(1) into the Arg(2) of the previous function.
3° Parser step.
Here, the relationships between functions are built.
Rule: Each function must be an argument of its adjacent function with the lowest priority level. It must be the left argument for the right adjacent function and vice versa.

![Diagram showing relationships between functions](image)

Relationships:

- **Function 2** `ADD(a,b)` \(\Rightarrow\) Argument 2° of **Function 1** `PROD(245, ...)`
- **Function 1** `PROD(245, ...)` \(\Rightarrow\) Argument 1° of **Function 3** `PROD(...., ...)`
- **Function 4** `SUB(a,b)` \(\Rightarrow\) Argument 2° of **Function 3** `PROD(...., ...)`
- **Function 3** `PROD(....)` \(\Rightarrow\) Argument 1° of **Function 5** `ADD(...., 1)`

<table>
<thead>
<tr>
<th>ID</th>
<th>Fun</th>
<th>MaxArg</th>
<th>Arg(1)</th>
<th>Arg(2)</th>
<th>ArgOf</th>
<th>Arg ID</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>2</td>
<td>245</td>
<td>a</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>2</td>
<td>a</td>
<td>b</td>
<td>1</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>2</td>
<td>a</td>
<td>b</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>−</td>
<td>2</td>
<td>a</td>
<td>b</td>
<td>3</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>2</td>
<td>b</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Function 5 is argument of no other function. So its result is the final result of the expression and the process ends.

Rules for building relations

Starting from the higher level function "k" (if many rows have the same level, choose one of them, for example the upper), search for the adjacent row "j", upper, lower or both, having ArgOf = 0. If two rows exist, choose the one with the higher level. If they have the same level, choose one of them (for example, the upper one).

- Then the ArgOf(k) = j
- If j > k then ArgId(k) = 1 (left argument); else if j < k then ArgId(k) = MaxArg (right argument for function having 2 arguments; left function for function having one argument)

The following example explains these rules better.

Example

Start from this row, k=2
we select the upper and lower adjacent rows, having ArgOf = 0.
Both rows have Level=2; then we choose the upper j=1.
So we get ArgOf =1 and ArgId = MaxArg =2.
(Note that the row k=2, from now on, will not be selected, because of its ArgOf >0)

Continue selecting the row with the highest Level with ArgOf = 0. Now we choose k = 4
we select the upper and lower adjacent rows, having ArgOf = 0,
we choose the upper j=3, because it has a higher level.
This gives ArgOf = 3 and ArgId = 2.
4° Parser step
This builds the sequence index; resulting in a column giving the exact sequence of operations that must be performed. This can be easily obtained from the level information. But, in order to save time during the evaluation, we add this redundant information.

Rule: the first function (operation) that must be executed is the highest-level function. If there exist more than one row, we choose the upper one. Then we repeat this process till the lowest-level row.

<table>
<thead>
<tr>
<th>ID</th>
<th>Funz</th>
<th>MaxArg</th>
<th>ArgOf</th>
<th>Arg ID</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>−</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Continue selecting the row with the highest Level, with ArgOf = 0. Both row 1 and 3 have the same Level = 2. We choose k = 1. We select the lower adjacent rows, having ArgOf = 0; we choose j = 3. (note that row=2 cannot be selected because it has ArgOf >0) This gives ArgOf = 3 and ArgID = 1.

<table>
<thead>
<tr>
<th>ID</th>
<th>Funz</th>
<th>MaxArg</th>
<th>ArgOf</th>
<th>Arg ID</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>−</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Continue selecting the row with the highest Level, with ArgOf = 0. We choose k = 3. We select the lower adjacent rows, having ArgOf = 0; we choose j = 5. (note that row = 1, 2, 4 cannot be selected because it has ArgOf >0) This gives ArgOf = 5 and ArgID = 1.

<table>
<thead>
<tr>
<th>ID</th>
<th>Funz</th>
<th>MaxArg</th>
<th>ArgOf</th>
<th>Arg ID</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>−</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Now we select the only row k = 5 with ArgOf = 0. Because there are no other rows with the ArgOf = 0, the process ends. This means that the row ID = 5 is not an argument of any other function. So its results is the final result of the expression.

In order to save space the Sequence Table is attached to the ET. It can be easily built adding the index column to the first table.

<table>
<thead>
<tr>
<th>ID</th>
<th>Fun</th>
<th>Level</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>−</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>
5° Parser Step

This finds primary arguments. This step is useful for saving computation time. During the evaluation performed by the Eval() subroutine, all symbolic variables "a" and "b" will be substituted by their numeric values. In the ET table of the example below we should perform 8 substitutions.

<table>
<thead>
<tr>
<th>ID</th>
<th>Funz</th>
<th>MaxArg</th>
<th>Arg(1)</th>
<th>Arg(2)</th>
<th>ArgOf</th>
<th>Arg ID</th>
<th>Level</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>2</td>
<td>245</td>
<td>a</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>2</td>
<td>a</td>
<td>b</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>2</td>
<td>b</td>
<td>a</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>−</td>
<td>2</td>
<td>a</td>
<td>b</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>2</td>
<td>b</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

We note that each argument which comes from another function will be replaced during computation. We say that it is a "non-primary argument".

Rule: Clear all arguments indicated by ArgID of functions indicated by ArgOf

In the table above, the step will delete the argument 1 of the row 3; the argument 2 of the row 1, the argument 1 of the row 5, and the argument 2 of the row 3. Arguments that remain are "primary".

<table>
<thead>
<tr>
<th>ID</th>
<th>Funz</th>
<th>MaxArg</th>
<th>Arg(1)</th>
<th>Arg(2)</th>
<th>ArgOf</th>
<th>Arg ID</th>
<th>Level</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>2</td>
<td>245</td>
<td>a</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>2</td>
<td>a</td>
<td>b</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>2</td>
<td>b</td>
<td>a</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>−</td>
<td>2</td>
<td>a</td>
<td>b</td>
<td>3</td>
<td>2</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>2</td>
<td>b</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

We see that only 4 substitutions are really necessary. The time saved is 50%

This ET table contains all the information to perform the computing of the original expression at the highest speed

\[245 \times (a+b) \times (a-b)+1\]

See Appendix for several other examples

How to parse functions

We have to distinguish among monovariable, bivariable and multivariable functions.

Monovariable functions.

This group comprises many functions like: \(\sin(x), \cos(x), \sqrt{x}\), etc.

Rule. The parser recognizes a function when it finds the character "(". Then, it extracts the sub-string before the parenthesis and checks if the name is in the monovariable function list. If so, it immediately adds a new record in the ET table for the recognized function. Example:

\[2 \times \sqrt{(24/3+1)}\]

The parser recognizes the "(" character at the 6th position. Then it extracts all the alphanumeric characters before this position. The "\(\sqrt{\)" sub-string, is searched on the monovariable function list. The name is recognized as a monovariable function and added to the ET table. We note that functions are recognized before finding its argument (enclosed between brackets), which will be caught in the next step.
The Structured Table is:

<table>
<thead>
<tr>
<th>ID</th>
<th>Fun</th>
<th>MaxArg</th>
<th>Arg(1)</th>
<th>Arg(2)</th>
<th>ArgOf</th>
<th>Arg ID</th>
<th>Level</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>sqr</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>/</td>
<td>2</td>
<td>24</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

Exceptions: functions x! and |x|

The Parser can also recognize the symbols “!” (exclamation mark) and “|” (pipe) respectively for factorial and absolute value. Of course you can use the Abs() and Fact() function as well but, because these symbols are largely adopted, we have taught the parser to detect them, even though they are exceptions to the general rule above. Let’s see how they work.

Symbol “!”
In this case, the argument comes before the function symbols, contrary to the usual rule where the argument follows the function name

\[\text{FACT}(x) \Leftrightarrow x! \]

To manage this case, the parser saves the argument x until the symbol “!” is intercepted, and then, registers the Fact() function as usual. In the next step, the argument x is loaded into the ET table.

Symbol “|”
In this case, the argument-position rule is still valid

\[\text{ABS}(x) \Leftrightarrow |x| \]

Argument follows both the function name and the function symbol. But, unlike brackets, the pipe symbols are not oriented at all. So we cannot say if a symbol “|” is opening or closing the function.

For example:

\[\text{Abs}(x-3*\text{Abs}(x-1)+1) \]

\[|x-3*|x-1|+1| \]

we count two Abs() functions and four pipe symbols “|”. But which are open and which are closed?

To solve this ambiguity, the parser applies the following rule:

Rule: if the pipe “|” is preceded by any arithmetic operator (or nothing), then it is equivalent to the open bracket“(”. On the contrary, if the pipe “|” is preceded by a numeric or alphanumeric string, then it is equivalent to the closed bracket “)”

Bivariable functions.
This group comprises a few functions like : comb(a,b), max(a,b), min(a,b) , mod(a,b), etc.

When the search on the monovariable function list is negative, the Parser looks into the bivariable function list.

If the function is found, the name is recognized as a bivariable function and saved in a buffer. Examples

\[2*\text{Comb}(24/3+1 \ , \ 6-4) \]

Bivariable functions can be treated as the arithmetic operators + * / etc. The only difference is that its arguments come after the function identification string. In the case of arithmetic operators, the first argument comes before and the second one comes after. That is:

Add(a,b)) \Leftrightarrow a + b

Comb(a,b) \Leftrightarrow a Comb b
The above example can be translated into the following expression

\[
\text{Comb}(\frac{24}{3} + 1, 6 - 4) \iff \left(\frac{24}{3} + 1\right) \text{Comb} (6 - 4)
\]

Where the symbols "," are substituted by the "Comb" name

The symbols "," triggers the registration of the Comb function.

The rules are:
1) Reading from left to right, the parser detects and recognizes the Comb function.
2) It gets from the internal function list how many arguments the function needs (1 or 2).
3) Because the Comb function needs 2 arguments, it saves the function name but does not add any new record.
4) When the Parser detects the "," symbol, it adds a new record in the ET table, assigning the function name which had been previously saved.

So the parsing of a bi-variable function takes place in two steps: 1°) recognize and save the function name. 2°) add the function record when the argument separator symbol "," is detected.

Following the above rules, the Structured Table is:

<table>
<thead>
<tr>
<th>ID</th>
<th>Fun</th>
<th>MaxArg</th>
<th>Arg(1)</th>
<th>Arg(2)</th>
<th>Arg Of</th>
<th>Arg ID</th>
<th>Level</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>*</td>
<td>2</td>
<td>2</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>/</td>
<td>2</td>
<td>24</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Comb</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>−</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>11</td>
<td>1</td>
</tr>
</tbody>
</table>

As we can see, the 2nd argument of Comb(a, b) function comes from the "+" and "-" operations.

Multivariable functions

As we known, multi-variables functions can be "naturally" described by a binary tree and implemented directly by a descendant parse algorithm. Trees are natural structures for representing certain kinds of hierarchical data. On the contrary, they do not easy adapt themselves to the plain table algorithm of the MathParser.

Arnaud de Grammont, for the first time intuited that functions with more than 2 variables could also be parsed in a plain table in the same way as other bivariable functions. He demonstrated this making the complex version of MathParser, one sophisticated class able to manage up to 6-variable functions.

The clever trick for parsing this kind of function is to guess a multivariable function as a bivariable operator (like + * / etc.), repeating the insertion of the same operator for each argument of the function itself, except the last one. Hard to understand? Never mind. Let’s see this example:

\[
\text{foo}(a, b, c)
\]

\[
\Rightarrow a \text{ foo}_1 b \text{ foo}_2 c
\]

\[
\text{foo}(x^2+1, x/2, c+2)
\]

\[
\Rightarrow (x^2+1) \text{ foo}_1 (x/2) \text{ foo}_2 (c+2)
\]

As we can see, the function name is repeated for each "," argument delimiter encountered along the string.

Example, for a function of 6 arguments we have

\[
\text{foo}(a_1, a_2, a_3, a_4, a_5, a_6)
\]

\[
\Rightarrow a_1 \text{ foo}_1 a_2 \text{ foo}_2 a_3 \text{ foo}_3 a_4 \text{ foo}_4 a_5 \text{ foo}_5 a_6
\]

After that, the parser applies the following rules to these functions:

1. Only the first function \text{foo}_1 is truly evaluated.
2. The 2nd, 3rd and other successive functions are never evaluated. They simply assign their right arguments to the corresponding argument of the first function.
3. The first function has the lowest priority.

The rule in point 2 means that for \(i > 1\).
Example. Parse and evaluate the hypergeometric function with the following parameters
\[\text{hypgeom}(0.25, -2.5, 3, 7) \]
First of all, the parser translates the above formula into the plain form
\[0.25 \text{ hypgeom} -2.5 \text{ hypgeom} 3 \text{ hypgeom} 7 \]
building the following structured table.

<table>
<thead>
<tr>
<th>N</th>
<th>Fun</th>
<th>ArgTop</th>
<th>Arg1 Value</th>
<th>Arg2 Value</th>
<th>ArgOf</th>
<th>ArgIdx</th>
<th>Value</th>
<th>PriIdx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>hypgeom</td>
<td>4</td>
<td>0.25</td>
<td>-2.5</td>
<td>0</td>
<td>0</td>
<td>0.75666172</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>hypgeom</td>
<td>2</td>
<td>-2.5</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>hypgeom</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

Each row represents a function.
The PriIdx (priority index) shows that the evaluation starts with the 3\(^{rd}\) row, then the 2\(^{nd}\) one and, at the last, the 1\(^{st}\) one.
The 3\(^{rd}\) function assigns the value 7 to the argument 4 of the 1\(^{st}\) function
The 2\(^{nd}\) function assigns the value 3 to the argument 3 of the 1\(^{st}\) function
The 1\(^{st}\) function will be evaluated with the following arguments: \[\text{hypgeom}(0.25, -2.5, 3, 7) = 0.756… \]

\textbf{Note.} The assignment operation is performed in the Parser routine by the internal function \(\text{@Right} \).
So, all \"hypgeom\" functions below the first one will be substituted with this \(\text{@Right} \) function.

Of course the function arguments can have more complicated subexpressions containing other functions as well.

Example. Parse and evaluate the normal density function having: \(x = 2 \), \(\mu = 2/3 \), \(\sigma = (2/3)^2 \)
\[Dnorm(2, 2/3, (2/3)^2) \]
The structured table will be

<table>
<thead>
<tr>
<th>N</th>
<th>Fun</th>
<th>ArgTop</th>
<th>Arg1 Value</th>
<th>Arg2 Value</th>
<th>ArgOf</th>
<th>ArgIdx</th>
<th>Value</th>
<th>PriIdx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dnorm</td>
<td>3</td>
<td>2</td>
<td>0.666666667</td>
<td>0</td>
<td>1</td>
<td>0.009971659</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>/</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0.666666667</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>@Right</td>
<td>2</td>
<td>3</td>
<td>0.444444444</td>
<td>1</td>
<td>3</td>
<td>0.444444444</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>/</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>0.666666667</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>^</td>
<td>2</td>
<td>0.666666667</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0.444444444</td>
<td>1</td>
</tr>
</tbody>
</table>

As we can see, the result of the expression \((2/3)^2 \) (row 5) is assigned to the 2\(^{nd}\) argument of the \(\text{@Right} \) function (row 3), which passes this value to the 3\(^{rd}\) argument of the function \(Dnorm \) (row 1). This row will be the last function to evaluate, as shown in the PriIdx column.

For more examples see the Appendix
Physical numbers.
From version 2.1, the parser recognizes and computes physical units of measure like

| 3.2 kg + 123 g | 10/144 MHz | 20.3 km + 8 km | (0.1 uF) * (6.8 k Ohm) |

Note: parentheses in the last example are not necessary. They only improve the reading.

First of all, we must fix some rules.

Rules and definitions:
Physical expressions are formed by two parts: a numerical and a literal part. Both parts must be inserted. The literal part can be divided into two parts: a multiplying factor and a unit of measure symbol. The multiplying factor can be omitted whereas the unit of measure must always be inserted. There may be a blank between the numeric and literal part.
Numbers without a unit of measure (UM) are called "pure", which is the case of math numbers.
For example:

"20 km" can be transformed into a numerical value in this simple way.

\[20 \text{km} = 20 \times k \times m = 20 \times 1000 \times 1 = 20000 \text{ (definition of m=1 in the MKS system)} \]

These are not correct physical expressions:

- \(30^\text{Km}\) ==> "Km" is a variable, not the unit of measure
- \(3^\text{V}\) ==> "V" is a variable, not the unit of measure
- \(\text{MHz}\) ==> "MHz", without a number before, is a variable, not the unit of measure

Minus Sign.
The parser recognizes the minus sign of constants, variables and functions.

\[x^{-n} \quad 10^{-2} \quad x^{-\sin(a)} \quad -5^{-2} \]

The parser applies the following rule.
Rule: if the minus symbol is preceded by an operator, then it is treated as a sign; else it is treated as the subtraction operator.

This feature simplifies expressions writing. Without this rule, the above expression should be written with parentheses, that is:

\[x^{-(n)} \quad 10^{-(2)} \quad x^{-(-\sin(a))} \quad -5^{(-2)} \]
Conditioned Branch.
From version 3.4 the parser can decide when calculating a part of a formula expression subjected on a logical condition. Let’s see how it works.
Assume the following formula expression: \(x^2 + (x<1) \times (1-x+x^2+x^3)\)
It’s clear that if the logical condition \((x<1)\) is 0 (false), then it is useless to compute the dependent subexpression \((1-x+x^2+x^3)\), because the result of the second terms will be always 0. In many cases, it is also necessary to switch off the evaluation of the dependent subexpression to avoid domain evaluation errors, like for example in the following expression: \((x<=0) \times x + (x>0) \times \ln(x)\)
In that case, adopting the following name convention, we have:
\[
\begin{align*}
(x<1) & \quad \text{Condition expression} \quad \text{It must always be evaluated with the highest priority} \\
(1-x+x^2+x^3) & \quad \text{Conditioned branch} \quad \text{It must be evaluated if, and only if, the cond. expression is true} \\
\times & \quad \text{Switch Node} \\
< & \quad \text{Condition node}
\end{align*}
\]
We see that the switch node is the product operation “\(*\)”. Any child node of the switch node, except the condition node one, constitutes the set called conditioned branch. Any node of the conditioned branch set will be calculated only if the condition node gives 1 (true) as result. We have to point out that the switch node must always be a product “\(*\)”, father of the condition node, which is usually a logical operator <, >, = ; but can also be another operator. This happens for multiple logical conditions. Let’s see.
Example \(...+(1<x<9) \times (1-x+x^2+x^3) +...\)
that is formally equivalent to \(...+(1<x) \times (x<9) \times (1-x+x^2+x^3) +...\)
And can be represented by the following graph-tree
As we can see, in the case of multiple logic conditions, the condition node is another product “*” operator, the result of two logic operators. But the Father-Child rule is still true: each switch node is the father of its condition node; each condition node is the child of its corresponding switch node.

The nodes of the conditioned branch can be visited by the binary-tree descendent algorithm: starting from the switch node the parser searches for all the child paths, except the condition node one. Each node of the conditioned branch will be linked to its corresponding conditioned node. This relation is built by adding an index column, called “Cond” in the ET table.

For example the ET table of the above formula \(x^2 + (x<1) \times (1-x+x^2+3x^3) \) will be

<table>
<thead>
<tr>
<th>ID</th>
<th>Fun</th>
<th>PriLvl</th>
<th>PriIdx</th>
<th>Cond</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>^</td>
<td>4</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>2</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td><</td>
<td>111</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>*</td>
<td>3</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>12</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>12</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>^</td>
<td>14</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>12</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>^</td>
<td>14</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

As we can see, nodes from 5 to 9 are conditioned by node 3. It means that the evaluation of the functions 5, 6, …9 will be performed only if the result of the function 3 is 1 (true). On the contrary, the evaluation will be skipped.

Of course the evaluation of the node 3 must be performed before any other functions. Within this scope, the parser assigns the highest priority (PriLvl) to the functions related to the condition node.

If there exist two or more logical conditions in a formula, the algorithm is repeated for any logical condition. This is particularly important for the definition of piecewise functions, such as:

\[
f(x) = \begin{cases}
 x^2 & x \leq 0 \\
 \ln(x + 1) & 0 < x \leq 1 \\
 \sqrt{x - \ln(2)} & x > 1
\end{cases}
\]

The above function can be translated into the following string

\["(x<=0)*x^2+(0<x<=1)*\ln(x+1)+(x>1)*\sqrt{x-\ln(2)}"\]

The corresponding table ET, evaluated for \(x = -2 \), is shown in the appendix.
How to improve speed in loop computation

When we have to calculate the same expression \((a+b) \times (a-b)\) with different numerical values we could only repeat the second step of the evaluation because the structure of the expression is unchanged. Because the first parsing step takes a relevant part of the total time, we could save a lot of time avoiding to repeat the parse.

main program
Dim Fun as new clsMathParser
......
OK = Funct.StoreExpression("(x+y)/(x-y)")
......
......
Funct.Variable(i)= 1.57
Funct.Variable("x")= 0.54
......
f = Funct.Eval
......

Note that:
The Eval subroutine is about 50 times faster than Parse.
Indexed assignment is about 2 times faster than symbolic one.
Error messages

ErrDescription Property
The StoreExpression method returns the status of parsing. It returns TRUE or FALSE, and the property ErrDescription contains the error message. An empty string means no error. If an error happens, the formula is rejected and the property contains one of the messages below.

In addition, the methods Eval and Eval1 set the ErrMessage property.

<table>
<thead>
<tr>
<th>Error Intercepted</th>
<th>Description</th>
<th>ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function <name > unknown at pos: i<sup>th</sup></td>
<td>String detected at position i<sup>th</sup> is not recognized. example “x + foo(x)”</td>
<td>6</td>
</tr>
<tr>
<td>Syntax error at pos: i<sup>n</sup></td>
<td>Syntax error at position i<sup>n</sup> . “a(b+c)” ,</td>
<td>5</td>
</tr>
<tr>
<td>Too many closing brackets at pos: i<sup>m</sup></td>
<td>Parentheses mismatch: “sqr(a+b+c)”</td>
<td>7</td>
</tr>
<tr>
<td>missing argument</td>
<td>Missing argument for operator or function.”3+” , “sin()”</td>
<td>8</td>
</tr>
<tr>
<td>variable <name> not assigned</td>
<td>Variable “name” has never been assigned. This error rises only if the property AssignExplicit = True</td>
<td>18</td>
</tr>
<tr>
<td>too many variables</td>
<td>Symbolic variables exceed the set limit. Internal constant HiVT =100 sets the limit</td>
<td>1</td>
</tr>
<tr>
<td>Too many arguments at pos: i<sup>n</sup></td>
<td>Too many arguments passed to the function</td>
<td>9</td>
</tr>
<tr>
<td>Not enough closing brackets</td>
<td>Parentheses mismatch: “1-exp(-(x^2+y^2)”</td>
<td>11</td>
</tr>
<tr>
<td>abs symbols</td>
<td>mismatch</td>
<td>Pipe mismatch: “[x+2]-[x-1]”</td>
</tr>
<tr>
<td>Evaluation error <5 / 0> at pos: 6</td>
<td>The only error returned by the Eval method. It is caused by any mathematical error: 1/0, log(0), etc.</td>
<td>14,15,16,17</td>
</tr>
<tr>
<td>Evaluation error <asin(-2)> at pos: 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evaluation error <log(-3)> at pos: 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>constant unknown: <name ></td>
<td>a constant not recognized by the parser</td>
<td>19</td>
</tr>
<tr>
<td>Wrong DMS format</td>
<td>an angle expressed in a wrong DMS format (eg: 2° 34’ 67’’)</td>
<td>21</td>
</tr>
<tr>
<td>Too many operations</td>
<td>The expression string contains more than 200 operations/functions</td>
<td>20</td>
</tr>
<tr>
<td>Function <id_function> missing?</td>
<td>Help for developers. Returned by the Eval_ internal routine. If we see this message we probably have forgotten the relative case statement in eval subroutine!</td>
<td>13</td>
</tr>
<tr>
<td>Variable not found</td>
<td>a variable passed to the parser not found</td>
<td>2</td>
</tr>
</tbody>
</table>

In order to facilitate the modification and/or translation, all messages are collected into an internal table See appendix "Error Message Table" for details

Error Raise
Methods Eval, Eval1, EvalMulti and also raise an exception when any evaluation error occurs.
This is useful to activate an error-handling routine. The global property Err.Description contains the same error message as the ErrDescription property.
Computation Time Test

The clsMathParser class has been tested with several formulas in different environments. The response time depends on the number and type of operations performed and, of course, by the computer speed. The following table shows synthetically the performance obtained. (Excel 2000, Pentium 3, 1.2 Ghz.)

Results

<table>
<thead>
<tr>
<th>Expression</th>
<th>operations</th>
<th>time (ms)</th>
<th>time/op. (ms)</th>
<th>Eval. / sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>average</td>
<td>4.1</td>
<td>0.009</td>
<td>2.6</td>
<td>187,820</td>
</tr>
<tr>
<td>1+(2-5)*3+8/(5+3)^2</td>
<td>7</td>
<td>0.01</td>
<td>1.43</td>
<td>100,000</td>
</tr>
<tr>
<td>sqr(2)</td>
<td>1</td>
<td>0.003</td>
<td>3.0</td>
<td>333,333</td>
</tr>
<tr>
<td>sqr(x)</td>
<td>1</td>
<td>0.004</td>
<td>4.0</td>
<td>250,000</td>
</tr>
<tr>
<td>sqr(4^2+3^2)</td>
<td>4</td>
<td>0.007</td>
<td>1.75</td>
<td>142,857</td>
</tr>
<tr>
<td>x^2+3*x+1</td>
<td>4</td>
<td>0.009</td>
<td>2.25</td>
<td>111,111</td>
</tr>
<tr>
<td>x^3-x^2+3*x+1</td>
<td>6</td>
<td>0.014</td>
<td>2.33</td>
<td>71,429</td>
</tr>
<tr>
<td>x^4-3x^3+2x^2-9*x+10</td>
<td>10</td>
<td>0.022</td>
<td>2.2</td>
<td>45,455</td>
</tr>
<tr>
<td>(x+1)/((x^2+1)+4/(x^2-1)</td>
<td>8</td>
<td>0.018</td>
<td>2.25</td>
<td>55,249</td>
</tr>
<tr>
<td>(1+(2-5)*3+8/(5+3)^2)/sqr(4^2+3^2)</td>
<td>12</td>
<td>0.017</td>
<td>1.42</td>
<td>58,824</td>
</tr>
<tr>
<td>sin(1)</td>
<td>1</td>
<td>0.003</td>
<td>3.0</td>
<td>333,333</td>
</tr>
<tr>
<td>asin(0.5)</td>
<td>1</td>
<td>0.004</td>
<td>4.0</td>
<td>250,000</td>
</tr>
<tr>
<td>fact(10)</td>
<td>1</td>
<td>0.005</td>
<td>5.0</td>
<td>200,000</td>
</tr>
<tr>
<td>sin(pi/2)</td>
<td>2</td>
<td>0.004</td>
<td>2.0</td>
<td>250,000</td>
</tr>
<tr>
<td>x^n/n!</td>
<td>3</td>
<td>0.012</td>
<td>4.0</td>
<td>83,333</td>
</tr>
<tr>
<td>1-exp(-(x^2+y^2))</td>
<td>5</td>
<td>0.016</td>
<td>3.2</td>
<td>62,500</td>
</tr>
<tr>
<td>20.3Km+8Km</td>
<td>2</td>
<td>0.002</td>
<td>1.0</td>
<td>500,000</td>
</tr>
<tr>
<td>0.1uF*6.8KOhm</td>
<td>2</td>
<td>0.003</td>
<td>1.5</td>
<td>333,333</td>
</tr>
<tr>
<td>(1.434E3+1000)*2/3.235E-5</td>
<td>3</td>
<td>0.005</td>
<td>1.67</td>
<td>200,000</td>
</tr>
</tbody>
</table>

As we can see, the computation time depends strongly on the number of symbolic variables contained in an expression. Numeric expressions are the fastest.

Time Test Code

The table above was obtained using the following simple straight code.

```vba
Sub TestCalc()
    Dim OK As Boolean
    Dim retval As Double
    Dim t0 As Double
    Dim i As Long
    Dim Loops As Long
    Dim txtFormula As String
    Dim Fun As New clsMathParser

    '----- Set test values -----------------
    txtFormula = "x^3-x^2+3*x+1"
    Loops = 100000
    x = 3
    '--------------------------------------
    OK = Fun.StoreExpression(txtFormula)
    If Not OK Then GoTo Error_Handler

    Debug.Print "------- Evaluation Test begin ---"; String(40, ":")
    For i = 1 To Fun.VarTop
        Fun.Variable(i) = 2.5 * i ' (any values)
        Next
    t0 = Timer
    If Fun.VarTop = 1 Then
```

As we can see, the computation time depends strongly on the number of symbolic variables contained in an expression. Numeric expressions are the fastest.
For i = 1 To Loops
 retval = Fun.Eval1(x)
 If Err Then GoTo Error_Handler
 Next
Else
 For i = 1 To Loops
 retval = Fun.Eval
 If Err Then GoTo Error_Handler
 Next
End If

t0 = Timer - t0
Debug.Print "Formula= "; txtFormula
Debug.Print "Elapsed time=": t0
Debug.Print "Loops="; Loops
Debug.Print "Eval/sec=": Int(Loops / t0)
Set Fun = Nothing
Exit Sub
Error_Handler:
Debug.Print Err.Description
End Sub

For each formula, the output will be:

-------- Evaluation Test begin ..
Formula= x^3-x^2+10*x-3
Elapsed time= 1.3719999999986
Loops= 100000
Eval/sec= 72886
Result= 31.375
Conclusions
clsMathParser can be used to calculate any formulas (expressions) given at runtime, for example to plot and tabulate functions, to make numerical computations and much more. The clean and very simple interface is suited for engineers, mathematicians and physicians and for those people that are not professional programmers. Technical aspects, such as parsing, internal formula translation, memory sizing, etc. are resolved by an internal routine and hidden to the end programmer. This also helps to keep the final code cleaner.

This parser has several advantages:

- good speed for loop calculation
- good syntax check
- pretty straightforward and easy interface
- robust and good portability.
- good adaptability,
- simple, complete documentation
- easy debugging
- original evaluation method.

And - last but not least - freeware and open-source

This parser has obviously some disadvantages:

- speed is slower than compiled math parsers
- parsing method is not as flexible as other classical methods

This MathParser was originally developed as an internal sub-module for add-in packages in order to fast compute formulas created at runtime. Typical applications are: math integration, differential equation solving, math series evaluation, etc.

Credits
clsMathParser was ideated by
Leonardo Volpi
and developed thanks to the collaboration of
Lieven Dossche, Michael Ruder, Thomas Zeutschler, Arnaud De Grammont.

Many thanks also for their help in debugging, improving and setting up to:
Rodrigo Farinha, Shaun Walker, Iván Vega Rivera, Javie Martin Montalban, Simon de Pressinger, Jakub Zalewski, Sebastián Naccas, RC Brewer, PJ Weng, Mariano Felice, Ricardo Martínez Camacho, Berend Engelbrecht, André Hendriks, Michael Richter, Mirko Sartori

Special thanks for the documentation revision to
Mariano Felice

High precision Special functions have been translated into VB from
LIBRARY FOR COMPUTATION of SPECIAL FUNCTIONS in FORTRAN-77 (*)
by Shanjie Zhang and Jianming Jin.

(*) All the subroutines of the library are subject to copyright. However, authors give kindly permission to incorporate any of these routines into other programs providing that the copyright is acknowledged.
Licence

clsMathParser is freeware open software. We are happy if you use and promote it. You are granted a free license to use the enclosed software and any associated documentation for personal or commercial purposes, except to sell the original. If you wish to incorporate or modify parts of clsMathParser please give them a different name to avoid confusion. Despite the effort that went into building, there's no warranty, that it is free of bugs. You are allowed to use it at your own risk. Even though it is free, this software and its documentation remain proprietary products. It will be correct (and fine) if you put a reference about the authors in your documentation.
History Review

MATH PARSER For Visual Basic, VBA

ClsMathParser.cls - Ver. 4.2.0 Update of Oct. 2006
The parser can manage functions with multi-variable number of arguments.
(Thanks to Mirko Sartori)
changed: max(x1,x2,...) max of n numbers
changed: min(x1,x2,...) min of n numbers

Added also the following functions with multi-variable arguments :
Added: lcm(x1,x2,...) least common multiple
Added: gcd(x1,x2,...) greatest common divisor
Added: mean(x1,x2,...) arithmetic mean
Added: meanq(x1,x2,...) quadratic mean
Added: meang(x1,x2,...) geometric mean
Added: var(x1,x2,...) variance
Added: varp(x1,x2,...) variance pop.
Added: stdev(x1,x2,...) standard deviation
Added: stdevp(x1,x2,...) standard deviation pop.
Added: sum(x1,x2,...) sum.

Added: step(x,a) Haveside's step function
Added: International setting for decimal separators: ".", ".

ClsMathParser.cls - Ver. 4.1.2 Update of March. 2006
Fix 04.05.2005. Bug in function for checking international system setting format
(Thanks to André Hendriks and Ricardo Martínez C.)
Fix 23.03.2006. Modify incomplete gamma function

ClsMathParser.cls - Ver. 4.1.0 Update of March. 2005
The following new time functions has been added
(thank to Berend Engelbrecht)

Intrinsic constants: Date# Time# Now#
Date to number: Year, Month, Day, Hour, Minute, Second,
Encoding functions: DateSerial, TimeSerial

The following new properties has been added
OpUnitConv Option: Enable/disable unit conversion
OpDMSConv Option: Enable/disable DMS angle conversion
ErrorID Error message number
ErrorPos Error position

A new Error Message Table has been implemented for making easier the error message translation

Bug 2004.12.16. For same variable name conv. DMS routine returns Wrong DMS format
(Thanks to André Hendriks)
Bug 2004.12.21. Error when using both uppercase/lowercase variable name (e.g. Alpha vs. alpha or Z versus z).
(Thanks to André Hendriks and Michael Richter)
Bug 2004.10.16. When the expression overcomes 100 operations no error was detected
(Thanks to Michael Ruder)

ClsMathParser.cls - Ver. 4.0.0 Update of Sept. 2004
This release can manage multi-variables functions
Added: Psi(x) Alias for digamma function
Added: DNorm(x,m,d) Normal density function
Added: CNorm(x,m,d) Normal cumulative function
Added: DPoission(x,k) Poisson density function k = 1, 2, 3 ...
Added: CPoisson(x,k) Poisson cumulative function k = 1, 2, 3 ...
Added: DBinom(k,n,x) Binomial density for k successes for n trials k < n
Added: CBinom(k,n,x) Binomial cumulative for k successes for n trials k < n
added: Ein(x, n) Nth Exponential integral
added: Si(x) Sine integral
added: Ci(x) Cosine integral
added: FresnelS(x) Fresnel's sine integral
added: FresnelC(x) Fresnel's cosine integral
added: J0(x) Bessel's function of 1st kind
added: Y0(x) Bessel's function of 2nd kind
added: I0(x) Bessel's function of 1st kind, modified
added: K0(x) Bessel's function of 2nd kind, modified
added: BesseliJ(x,n) Bessel's function of 1st kind, nth order
added: BesselY(x,n) Bessel's function of 2nd kind, nth order
added: BesselI(x,n) Bessel's function of 1st kind, nth order, modified
added: BesselK(x,n) Bessel's function of 2nd kind, nth order, modified
added: HypGeom(x,a,b,c) Hypergeometric function
added: GammaI(a,x) Gamma incomplete
added: BetaI(a,b) Beta incomplete
added: PolyCh(x,n) Chebychev's polynomials
added: PolyLe(x,n) Legendre's polynomials
added: PolyLa(x,n) Laguerre's polynomials
added: PolyHe(x,n) Hermite's polynomials
added: AiryA(x) Airy function Ai(x)
added: AiryB(x) Airy function Bi(x)
added: Ell1(x) Elliptic integral of 1st kind
added: Ell2(x) Elliptic integral of 2nd kind
added: Clip(x,a,b) Clipping function
added: WTRI(t,p) Triangular wave
added: WSQR(t,p) Square wave
added: WRECT(t,p,d) Rectangular wave
added: WTRAPEZ(t,p,d) Trapez. wave
added: WSAW(t,p) Saw wave
added: WRAISE(t,p) Rampa wave
added: WLIN(t,p,d) Linear wave
added: WPULSE(t,p,d) Rectangular pulse wave
added: WSTEPS(t,p,n) Steps wave
added: WEXP(t,p,a) Exponential pulse wave
added: WEXPB(t,p,a) Exponential bipolar pulse wave
added: WPULSEF(t,p,a) Filtered pulse wave
added: WRING(t,p,a,fn) Ringing wave
added: WPARAB(t,p) Parabolic pulse wave
added: Wripp(t,p,a) Ripple wave
added: WAM(t,fo,fn,m) Amplitude modulation
added: WFM(t,fo,fn,m) Frequency modulation

New Property AssignExplicit forces explicit variable assignment
New Function argument separator is comma","
Bug 2004.06.24 : incorrect result for absolute |3|2 input (thank to PJ Weng)
Bug 2004.08.13 : incorrect result for "x = = y" and "2<<3" input (thanks to Ricardo Martínez C.)

ClsMathParser.cls - Ver. 3.4.5 Update of July 2004
The following structural changes have been implemented (thanks to Ricardo Martínez C.)
GoSub statement has been removed.
Lower bound of ALL arrays was changed to 0.
ByVal and ByRef are always specified.
Variable types are always specified.
Variant type has been removed.
Bug 2004.06.05 : Error raising for 0^0 indeterminate form. (thanks to Mariano Felice)
Bug 2004.06.24 : incorrect result for wrong parenthesis input (thanks to PJ Weng)
Bug 2004.07.10 : raising error for wrong decimal point 3..456
Bug 2004.07.30 : incorrect sign for bi-functions ex: -max(4;6)
Bug 2004.06.26 : Avogadro constant and neutron rest mass missing (thanks to Ricardo Martínez C.)
Bug 2004.07.23 : incorrect response of ErrorDescription property
Bug 2004.07.19 : Variable case-sensitivity
Bug 2004.07.23 : ErrorDescription property

ClsMathParser.cls - Ver. 3.4.4 Update of June 2004
Bug 2004.31.5 : incorrect angle sign in DMS format (thank to PJ Weng)
Improved DMS angle format detection
Error raising for non-integer arguments of mcm and mcd

ClsMathParser.cls - Ver. 3.4.3 Update of May 2004
- dec(x) function improved
- LogN(x;n) n-base logarithm

ClsMathParser.cls - Ver. 3.4.2 Update of April. 2004
The following bug fixed (thank to PJ Weng)
Bug 2004.03.30 : compilation error in internal function convEGU() for VBA Chinese edition
Bug 2004.04.02 : incorrect detection for "++" "--"
Bug 2004.04.16 : Mod(a;b) function: wrong result for negative numbers
- documentation PDF revised (thank to PJ Weng)
- new function added: atan(x) beside of atn(x)
- new function added: perm(n, k) permutations of n objects in k classes

ClsMathParser.cls - Ver. 3.4.1 Update of March. 2004
Bug 2004.2.29 : incorrect error detection happens when it is used a minus sign outside of absolute "[]" symbols. Ex: -[x-1] raised an error. (Thank to Rodrigo Farinha)

ClsMathParser.cls - Ver. 3.4 Update of Feb. 2004
New property VarSymb for direct variable value assignment
This means that you can now assign a variable value by passing its symbolic name:
 Object.VarSymb("x")= 2.5465
 Object.VarSymb("time")= 0.5465
etc.
Of course the old index assignment is still supported.
(This property was added thank to R.C. Brewer and Sebastián Naccas)

Improved algorithm for variable sign detection. (thank to Joe Kycek)
Now it is possible to evaluate a string like the following without parentheses:
 x^n the same as x^n(-n)
 x^n(sin(a)) the same as x^n(-sin(a))
 -5*-2 the same as -5*(-2)
 -5^2 the same as (-5)^2
etc.
Interval definition (a<x)*(x<b) is now also allowed in compact form (a<x<b).

Conditioned branch evaluation by logical expressions = < > <= => <>.
If a logic expression is 0 (false), then the dependent sub-expression is not evaluated.
This feature is useful for piecewise function definitions (thanks to Rodrigo Farinha)
Example: f(x):= (x<=0)*x+(0<x<=1)*log(x)+(x>1)*sqrt(x^3-x)

ClsMathParser.cls - Ver. 3.3.1 Update of Oct. 2003
Bug 2003.10.9.1 : function acosh(x) returned wrong values
Bug 2003.10.9.2 : fact(x) error raise for x<0 ; it returned wrong result 1
Bug 2003.10.9.3 : "Missing argument" error is raised for string "3+", "sin(), etc."
Bug 2003.10.16.2 : wrong result for nested bi-var functions
Algebraic extension of $cbr(x)$ and $root(x, n)$ for $x<0$
(Thanks to Rodrigo Farinha)

Math constant supported are now:
$\pi = \pi$-greek, $e^\# = \text{Euler-Napier's constant, } eu^\# = \text{Euler-Mascheroni constant}$

Physical constants are now supported:
Planck constant, Boltzmann constant, Elementary charge, Avogadro number
Speed of light, Permeability of vacuum, Permittivity of vacuum, Electron rest mass
Proton rest mass, Gas constant, Gravitational constant, Acceleration due to gravity

ClsMathParser.cls - Ver. 3.2.3 Update of May. 2003
Bug 2003.30.5.1 : wrong result for minus sign in front of function. Es: -$sqr(2)$, -$log(2)$
Bug 2003.31.5.1 : Private function zeta_ declaration

ClsMathParser.cls - Ver. 3.2.2 Update of March. 2003
Bug 2003.02.14.1 : wrong result for expressions like: $10^{-x} , 3^{-2}$, etc.
Bug 2003.02.14.2 : incorrect detection of 'unit of measure "Hz"
example:50 Hz produces an error: 'variable name must start with a letter'
(Thanks to Javier M. Montalban)

Bug 2003.02.26.1 : the parser will not recognize decimal numbers starting with "." instead of "0." when the
system setting is comma for decimal point (european setting). Example ".54" instead of "0.54".
Bug 2003.02.26.2 : incorrect detection of variable name "abc2xyz"
(Thanks to Michael Ruder)

ClsMathParser.cls - Ver. 3.2.1 Update of Feb. 2003
The following functions are added:
csc cosecant
sec secant
cot cotangent
acsc inverse cosecant
asec inverse secant
acot inverse cotangent
csch hyperbolic cosecant
sech hyperbolic secant
coth hyperbolic cotangent
acsch inverse hyperbolic cosecant
asech inverse hyperbolic secant
acoth inverse hyperbolic cotangent
cbr cube root
root n-th root
dec decimal part
rad convert radiant into current angle unit
deg convert degree (sess.) into current angle unit
grad convert degree (cent.) into current angle unit
round decimal round
LCM least common multiple
GCD greatest common divisor
% percentage (was the module operator in older version)
EU Euler's gamma constant $eu=0.577...$
nand logic nand
nor logic nor
nxor logic nxor

Enhancement of domain error reports
Property AngleUnit added to set the angle unit of measure: RAD, DEG, GRAD
Symbol ";" into variable name is now accepted (programming style variables like var_1, var_2, etc.)
degree in ddmmss format now supported (44°33'53"

Bugs found and fixed by Michael Ruder
- error in parsing the exponential factor. The problem occurs if you add or subtract two variables where the first variable ends with the letter "E"... This lets the parser believe, that ...E+ means there will be an exponential factor.

- error in parsing physical units. With the factorial character missing, it resulted in a rejection of a number like "5s" (which then leads to the error "variable name must start with a letter")

- wrong calculation of XOR-Function

(Thanks Michael ;-)

ClsMathParser.cls - Ver. 3.1 Update of 2-Jan. 2003
substituted all implicit declarations for compatibility with other languages as AppForge.

ClsMathParser.cls - Ver. 3.0 Update of 9-Dec. 2002
bug: error in cos(pi) thanks to Arnaud de Grammont

ClsMathParser.cls - Ver. 3.2 Update of Jan. 2003
The following functions are added:
- csc cosecant
- sec secant
- cot cotangent
- acsc inverse cosecant
- asec inverse secant
- acot inverse cotangent
- csch hyperbolic cosecant
- sech hyperbolic secant
- coth hyperbolic cotangent
- acsch inverse hyperbolic cosecant
- asech inverse hyperbolic secant
- acoth inverse hyperbolic cotangent
- cbr cube root
- root n-th root
- dec decimal part
- rad convert into radiant
- deg convert into degree
- round decimal round
- lcm least common multiple
- gcd greatest common divisor

ClsMathParser.cls - Ver. 3.0 Update of Dic. 2002
MathParser was encapsulated in a nice class by Lieven Dossche.
In addition, the following new features are added:
Logical operators < > =
Logic functions AND, NOR, NOT
Error detection was improved

(many thanks to Lieven)

MathParser23.bas - Ver. 2.3 Update of Nov. 2002
Computation efficiency is improved thank to Thomas Zeutschler
This version is about 200% faster than the previous one.
- Parse() subroutine added in substitution of ParseExprOnly()
- Trap computation errors added (1/0, log(0), etc..)
- Exponential number detection added
- absolute symbol || detection added
- "ohm", "Rad", "RAD" units detection added

(many thanks to Thomas)
MathParser21MR.bas - Ver. 2.1 Update of June 2002
Born from the collaboration of Michael Ruder (ruder@gmx.de), this version includes several new features:
- Detection and computation of physical numbers with units of measure like Km Kg, V, MHz...
- Bug in parenthesis check. Test on LP negative to avoid wrongly set brackets
- New `ParseExprOnly` routine to get the variable list and to check syntax
- New operator symbols: \ (integer division), % (modulus division)
- General speed improved by about 20%

(many thanks to Michael)

MathParser21.bas - Ver. 2.1 Update of May 2002
This version includes the following upgrade from the collaboration of Iván Vega Rivera:
- Detection and computation of bivariable functions
- New functions `Comb(n,k) Max(a,b) Min(a,b) Mcm(a,b) Mcd(a,b) Mod(a,b)` added:

(greetings to Iván Vega Rivera)

MathParser11.bas - Ver. 1.1 Update of April 2002
This version includes the following upgrade:
- Dynamical manage of parsing - The `EvalExpr()` function stores up to 9 string formulas in a special stack in order to avoid the parsing process for the last 9 formulas passed.
 Useful for computing vector of functions, like gradient, hessian, etc.
- `Abs()` function operator is added
- General speed is increased by about 25%

MathParser10.bas - Ver. 1.0 - Update of May 2000
First release
This version 1.0 handles conventional math operators and a few main built-in functions, as shown on the following list:

```
+ - */^ ! atn cos sin exp fix int ln log rnd sgn sqr tan acos asin cosh sinh tanh acosh asinh atanh fact pi
```

Foxes Team
APPENDIX

Source code examples in VB
To explain the use of this routine, a few simple examples in VB are shown. Time performance has been obtained with Pentium 3, 1.2GHz, and Excel 2000

Example 1:
This example shows how to evaluate a mathematical polynomial \(p(x) = x^3 - x^2 + 3x + 6 \) for 1000 values of the variable "x" between \(x_{\text{min}} = -2 \), \(x_{\text{max}} = +2 \), with step of \(\Delta x = 0.005 \)

```vbnet
Sub Poly_Sample()
    Dim x(1 To 1000) As Double, y(1 To 1000) As Double, OK As Boolean
    Dim txtFormula As String
    Dim Fun As New clsMathParser

    '-----------------------------------------------------------------------
    txtFormula = "x^3-x^2+3*x+6"   'f(x) to sample.
    '-----------------------------------------------------------------------

    'Define expression, perform syntax check and get its handle
    OK = Fun.StoreExpression(txtFormula)
    If Not OK Then GoTo Error_Handler

    'load input values vector.
    For i = 1 To 1000
        x(i) = -2 + 0.005 * (i - 1)
    Next

    t0 = Timer
    For i = 1 To 1000
        y(i) = Fun.Eval1(x(i))
        If Err Then GoTo Error_Handler
    Next

    Debug.Print Timer - t0  'about 0.015  ms for a CPU with 1200 Mhz
    Exit Sub

    Error_Handler:
        Debug.Print Fun.ErrorDescription
    End Sub
```

We note that the function evaluation – the focal point of this task - is performed in 5 principal statements:
1) Function declaration, storage, and parsing
2) Syntax error check
3) Load variable value
4) Evaluate (eval)
5) Activate error trap for checking domain errors

Just clean and straightforward. No other statement is necessary. This takes an overall advantage in complicated math routines, when the main focus must be concentrated on the mathematical algorithm, without any other technical distraction and extra subroutines calls. Note also that declaration is needed only once at a time.

Of course that computation speed is also important and must be put in evidence.
For the example above, with a Pentium III at 1.2 GHz, we have got 1000 points of the cubic polynomial in less than 15 ms (1.4E-2), which is very good performance for this kind of parser (70.000 points / sec)

Note also that the variable name it is not important; the example also works fine with other strings, such as: "t^3-t^2+3*t+6", "a^3-a^2+3*a+6", etc.
The parser, simply substitutes the first variables found with the passed value.
Example2
This example shows how to build an Excel user function for evaluating math expression.

```vba
Function Compute(Formula As String, ParamArray Var())
Dim retval As Double, ParMax As Long
Dim Fun As New clsMathParser, OK As Boolean
On Error GoTo Error_Handler
'----------------------------------
OK = Fun.StoreExpression(Formula)
'----------------------------------
If Not OK Then Err.Raise 1001, , Fun.ErrorDescription
ParMax = UBound(Var) + 1 'number of parameters
If ParMax < Fun.VarTop Then Err.Raise 1002, , "missing parameter"
ReDim Values(1 To ParMax)
'load parameters values
For i = 1 To ParMax
    Fun.Variable(i) = Var(i - 1)
Next
Compute = Fun.Eval()
If Err <> 0 Then GoTo Error_Handler
Exit Function
Error_Handler:
Compute = Err.Description
End Function
```

This function can be used in Excel to calculate formulas passing only the string expression and parameter values (if present). Note how compact and clean the code is.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x</td>
<td>y</td>
<td>z</td>
<td>f(x,y,z)</td>
<td>result</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>-2</td>
<td>-1</td>
<td>3x+3y-z</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>=Compute(D3,A3,B3,C3)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>35</td>
<td></td>
<td></td>
<td>x^4-x^2+10x^2-26x-34</td>
<td>135.3125</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>=Compute(D4,A4)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td></td>
<td>sin(2pix)+cos(2pix)</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>=Compute(D5,A5)</td>
<td></td>
</tr>
</tbody>
</table>

You can also insert the formula string directly into the Compute() function.
In this case, do not forget the quote "".

```
\^ x \checkmark \checkmark = Compute("sin(2*pi*x)+cos(2*pi*x)",0.5)
```

```
Example 3
This example computes McLauren's series up to 16° order for exp(x) with x=0.5
\( \exp(0.5) \approx 1.64872127070013 \)

```
Sub McLaurin_Serie()
Dim txtFormula As String
Dim n As Long, N_MAX As Integer, y As Double
Dim Fun As New clsMathParser
'---
txtFormula = "x^n / n!" 'Expression to evaluate. Has two variable
x0 = 0.5 'set value of Taylor's series expansion
N_MAX = 16 'set max series expansion
'--
DEFINE expression, perform syntax check and get its handle
OK = Fun.StoreExpression(txtFormula)
If Not OK Then GoTo Error_Handler

'begin formula evaluation -------------------------
Fun.Variable(1) = x0 'load value x
For n = 0 To N_MAX
 Fun.Variable(2) = n 'increments the n variables
 If Err Then GoTo Error_Handler
 y = y + Fun.Eval 'accumulates partial i-term
Next
Debug.Print y
Exit Sub
Error_Handler:
Debug.Print Fun.ErrorDescription
End Sub
```

1.64872127070013

Also note the clean code in this case.

Example 4
This example shows how to capture all the variables in a formula in the right sequence (sequence is from left to right).

```
Dim Expr As String
Dim OK As Boolean
Dim Fun As New clsMathParser

Expr = "(a-b)*(a-b)+30*time/y"
'--
'Define expression, perform syntax check and detect all variables
OK = Fun.StoreExpression(Expr)
'--
If Not OK Then
 Debug.Print Fun.ErrorDescription 'syntax error detected
Else
 For i = 1 To Fun.VarTop
 Debug.Print Fun.VarName(i), Str(i) + "° variable"
 Next i
End If
```

Output will be:
```
a 1° variable
b 2° variable
time 3° variable
y 4° variable
```
Example 5
This is an example to show how to build an Excel function to calculate a definite integral.
The following is complete code for integration with Romberg method

```vba
'Integral - Romberg Integration of f(x).
'--------------------------------------
'Funct = function f(x) to integrate
'a = lower integration limit
'b = upper integration limit
'Rank = (optional default=16) Sets the max samples = 2^Rank
'ErrMax = (optional default=10^-15) Sets the max error allowed
'Algorithm exits when one of the two above limits is reached

Function Integral(Funct$, a, b, Optional Rank, Optional ErrMax)
Dim R() As Double, y() As Double, ErrLoop#, u(2)
Dim i&, Nodes&, n%
Dim Fun As New clsMathParser
'---
If VarType(Funct) <> vbString Then Err.Raise 1001, , "string missing"
If IsMissing(Rank) Then Rank = 16
If IsMissing(ErrMax) Then ErrMax = 10 ^ -15

'Define expression, perform syntax check and get its handle
OK = Fun.StoreExpression(Funct)
If Not OK Then Err.Raise 1001, , Fun.ErrorDescription

n = 0
Nodes = 1
ReDim R(Rank, Rank), y(Nodes)
y(0) = Fun.Eval1(a): If Err Then GoTo Error_Handler
y(1) = Fun.Eval1(b): If Err Then GoTo Error_Handler
h = b - a
R(n, n) = h * (y(0) + y(1)) / 2
'start loop ---------------------------------
Do
 n = n + 1
 Nodes = 2 * Nodes
 h = h / 2
 'compute e reorganize the vector of function values
 ReDim Preserve y(Nodes)
 For i = Nodes To 1 Step -1
 If i Mod 2 = 0 Then
 y(i) = y(i / 2)
 Else
 x = a + i * h
 y(i) = Fun.Eval1(x)
 If Err Then GoTo Error_Handler
 End If
 Next i
 'now begin with Romberg method
 s = 0
 For i = 1 To Nodes
 s = s + y(i) + y(i - 1) 'trapezoidal formula
 Next
 R(n, 0) = h * s / 2
 For j = 1 To n
 y1 = R(n - 1, j - 1)
 y2 = R(n, j - 1)
 R(n, j) = y2 + (y2 - y1) / (4 ^ j - 1) 'Richardson's extrapolation
 Next
 'check error
 ErrLoop = Abs(R(n, n) - R(n, n - 1))
 If Abs(R(n, n)) > 10 Then
 ErrLoop = ErrLoop / Abs(R(n, n))
 End If
 Loop Until ErrLoop < ErrMax Or n >= Rank
 u(0) = R(n, n)
 u(1) = 2 ^ n
 u(2) = ErrLoop
End Function
```

Using this function is very simple. For example, try

`=Integral("sin(2*pi*x)+cos(2*pi*x)", 0, 0.5)`

It returns the value:

0.318309886183791  better approximate of 1E-16

You can also use this function in an Excel sheet
Note that the function can also return the max samples used and the last iteration error. To see this value select three adjacent cells, insert the function and give the CTRL+SHIFT+ENTER sequence key
Example 6
This example shows how to evaluate a function defined by pieces of sub-functions
Each sub-function must be evaluated only when \(x\) belongs to its definition domain

\[
\begin{align*}
  f(x) = \begin{cases} 
  x^2 & , \quad x \leq 0 \\
  \log(x+1) & , \quad 0 < x \leq 1 \\
  \sqrt{x-\log 2} & , \quad x \geq 2 
\end{cases}
\end{align*}
\]

Note that you get an error if you try to calculate the 2th and 3th sub-functions in points which are out of their domain ranges.

For example, we get an error for \(x = -1\) in 2th and 3th sub-functions, because we have

\[
\log(0) = "?" \quad \text{and} \quad \text{SQR}(-1-\log 2) = "?"
\]

So, it is indispensable to calculate each function only when it is needed.
Here is an example showing how to evaluate a segmented function with the domain constraints explained before.
There are a few comments, but the code is very clean and straight.
The constant \(\text{MAXFUN}\) sets the max pieces of function definition.

```vbnet
Sub Eval_Pieces_Function()
Const MAXFUN = 5
Dim Domain$(1 To MAXFUN)
Dim Funct$(1 To MAXFUN)
Dim n$, i$, j$, Value_x#, Value_D#, Value_F#
Dim xmin#, xmax#, step#, Samples$, OK As Boolean
Dim Fun(1 To MAXFUN) As New clsMathParser
Dim Dom(1 To MAXFUN) As New clsMathParser
'--- Piecewise function definition ---------------------
' x^2 for x<=0
' log(x+1) for 0<x<=1
' sqr(x-log2) for x>1
'--
xmin = -2: xmax = 2: Samples = 10
n = 3 'max pieces
Funct(1) = "x^2": Domain(1) = "x<=0"
Funct(2) = "log(x+1)": Domain(2) = "(0<x)*(x<=1)"
Funct(3) = "sqr(x-log(2))": Domain(3) = "x>1"
On Error GoTo Error_Handler
For i = 1 To n
 OK = Fun(i).StoreExpression(Funct(i))
 If Not OK Then Err.Raise 513, "Function" + Str(i), Fun(i).ErrorDescription
 OK = Dom(i).StoreExpression(Domain(i))
 If Not OK Then Err.Raise 514, "Domain" + Str(i), Fun(i).ErrorDescription
Next
step = (xmax - xmin) / (Samples - 1)
For j = 1 To Samples
 Value_x = xmin + (j - 1) * step 'value x
 For i = 1 To n
 Value_D = Dom(i).Eval1(Value_x)
 If Err Then GoTo Error_Handler
 If Value_D = 1 Then
 Value_F = Fun(i).Eval1(Value_x)
 If Err Then GoTo Error_Handler
 Exit For
 Next i
 Debug.Print "x=" + Str(Value_x); Tab(25); "f(x)=" + Str(Value_F)
Next j
Exit Sub
Error_Handler:
Debug.Print Err.Source, Err.Description
End Sub
```
The output, unless of errors, will be:

<table>
<thead>
<tr>
<th>x</th>
<th>f(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>4</td>
</tr>
<tr>
<td>-1.55555555555556</td>
<td>2.41975308641975</td>
</tr>
<tr>
<td>-1.11111111111111</td>
<td>1.23456790123457</td>
</tr>
<tr>
<td>-0.666666666666667</td>
<td>0.444444444444445</td>
</tr>
<tr>
<td>-0.222222222222222</td>
<td>0.444444444444445</td>
</tr>
<tr>
<td>0.222222222222222</td>
<td>0.444444444444445</td>
</tr>
<tr>
<td>0.666666666666667</td>
<td>0.444444444444445</td>
</tr>
<tr>
<td>1.11111111111111</td>
<td>0.444444444444445</td>
</tr>
<tr>
<td>1.55555555555556</td>
<td>0.444444444444445</td>
</tr>
<tr>
<td>2</td>
<td>0.444444444444445</td>
</tr>
</tbody>
</table>

As from release 3.4 – thanks to the Conditioned Branch algorithm – it is also possible to evaluate a piecewise expression directly and in a very short way. Look how compact the code is in this case.

```vba
Sub Eval_Pieces_Function()
 Dim j&, Value_x#, Value_F#
 Dim xmin#, xmax#, step#, Samples&
 Dim Fun As New clsMathParser
 '--- Piecewise function definition ---------------
 ' x^2 for x<=0
 ' log(x+1) for 0<x<=1
 ' sqrt(x-log2) for x>1
 '--
 f = "\((x<=0) \times x^2 + (0<x<=1) \times \log(x+1) + (x>1) \times \sqrt{x-\log(2)} \)"
 '--
 xmin = -2: xmax = 2: Samples = 10
 If Not Fun.StoreExpression(f) Then GoTo Error_Handler
 Samples = 10
 step = (xmax - xmin) / (Samples - 1)
 On Error GoTo Error_Handler
 For j = 1 To Samples
 Value_x = xmin + (j - 1) * step 'value x
 Fun.Variable("x") = Value_x
 Value_F = Fun.Eval
 Debug.Print "x=" + str(Value_x); Tab(25); "f(x)=" + str(Value_F)
 Next j
 Exit Sub
Error_Handler:
 Debug.Print Err.Source, Err.Description
End Sub
```
Example 7

This example shows how to evaluate a multivariable expression passing the variables values directly by their symbolic names using the `Variable` property (3.3.2 version or higher)

It evaluates the formula:

\[ f(x,y,T,a) = (a^2 \cdot \exp(y/T) - x) \quad \text{for} \quad x = 1.5, \quad y = 0.123, \quad T = 0.4, \quad a = 100 \]

```
Sub test()
 Dim ok As Boolean, f As Double, Formula As String
 Dim Funct As New clsMathParser

 Formula = "(a^2*exp(y/T)-x)"
 ok = Funct.StoreExpression(Formula) 'parse function
 If Not ok Then GoTo Error_Handler

 'assign value passing the symbolic variable name
 Funct.Variable("x") = 1.5
 Funct.Variable("y") = 0.123
 Funct.Variable("T") = 0.4
 Funct.Variable("a") = 100

 f = Funct.Eval 'evaluate function
 Debug.Print "evaluation = "; f
 Exit Sub

Error_Handler:
 Debug.Print Funct.ErrorDescription
End sub
```

Output will be:

```
evaluation = 13598.7080850196
```

Note how plain and compact the code is when using the string-assignment. It is only twice slower that the index-assignment but it looks much simpler.
Example 8
This example shows how to get the table ET (only for parser analysis or debugging). From the rel. 3.4 the ET table is returned as an array

```vba
Sub test_dump_1()
Dim strFun As String
Dim ETab() As Double, OK As Boolean
Dim Funct As New clsMathParser
strFun = "2+x-x^2+x^3"
Debug.Print "Formula := "; strFun
OK = Funct.StoreExpression(strFun) 'parse function
If Not OK Then
 Debug.Print Funct.ErrorDescription
 Exit Sub
Else
 On Error Resume Next
 Funct.Variable("x") = 2
 f = Funct.Eval
 If Err = 0 Then
 Debug.Print "result = "; f
 Else
 Debug.Print Funct.ErrorDescription
 Exit Sub
 End If
End If
Funct.ET_Dump Etab '<<< array table returned
For i = LBound(ETab, 1) To UBound(ETab, 1)
 If i > 0 Then Debug.Print i, Else Debug.Print "Id",
 For j = 1 To UBound(ETab, 2)
 Debug.Print ETab(i, j),
 Next j
 Debug.Print ""
Next i
End Sub
```
**Examples of formula parsing**

This paragraph shows a collection of structured tables for several functions. They are reported in the state following the final evaluation step.

\[ f(x,n) = x^n/n! \] for \( x=3, \ n=6 \)

<table>
<thead>
<tr>
<th>Id</th>
<th>Fun</th>
<th>Max</th>
<th>Arg(1) . Id</th>
<th>Arg(1) . Name</th>
<th>Arg(2) . Id</th>
<th>Arg(2) . Name</th>
<th>Arg(2) . Value</th>
<th>Value</th>
<th>Level</th>
<th>Offset</th>
<th>Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>^</td>
<td>2</td>
<td>1</td>
<td>x</td>
<td>2</td>
<td>n</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>729</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>/</td>
<td>2</td>
<td>0</td>
<td>729</td>
<td>0</td>
<td>0</td>
<td>1.0125</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>!</td>
<td>1</td>
<td>2</td>
<td>n</td>
<td>6</td>
<td>0</td>
<td>720</td>
<td>9</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

\[ f(x) = 1+(x-5)*3+8/(x+3)^2 \] for \( x=1 \)

<table>
<thead>
<tr>
<th>Id</th>
<th>Fun</th>
<th>Max</th>
<th>Arg(1) . Id</th>
<th>Arg(1) . Name</th>
<th>Arg(2) . Id</th>
<th>Arg(2) . Name</th>
<th>Arg(2) . Value</th>
<th>Value</th>
<th>Level</th>
<th>Offset</th>
<th>Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>-12</td>
<td>4</td>
<td>1</td>
<td>-11</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>x</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>-4</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>2</td>
<td>0</td>
<td>-4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>-12</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>2</td>
<td>0</td>
<td>-11</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>-10.5</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>/</td>
<td>2</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>16</td>
<td>4</td>
<td>2</td>
<td>0.5</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>2</td>
<td>1</td>
<td>x</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>^</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>16</td>
<td>3</td>
<td>18</td>
</tr>
</tbody>
</table>

\[ f(x1,x2) = x1/(x1^2+x2^2) \] for \( x1=1, \ x2=3 \)

<table>
<thead>
<tr>
<th>Id</th>
<th>Fun</th>
<th>Max</th>
<th>Arg(1) . Id</th>
<th>Arg(1) . Name</th>
<th>Arg(2) . Id</th>
<th>Arg(2) . Name</th>
<th>Arg(2) . Value</th>
<th>Value</th>
<th>Level</th>
<th>Offset</th>
<th>Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/</td>
<td>2</td>
<td>1</td>
<td>x1</td>
<td>1</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>^</td>
<td>2</td>
<td>1</td>
<td>x1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>9</td>
<td>1</td>
<td>2</td>
<td>10</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>^</td>
<td>2</td>
<td>2</td>
<td>x2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>13</td>
</tr>
</tbody>
</table>

\[ f(x,y) = 1-exp(-(x^2+y^2)) \] for \( x=0.5, \ y=0.1 \)

<table>
<thead>
<tr>
<th>Id</th>
<th>Fun</th>
<th>Max</th>
<th>Arg(1) . Id</th>
<th>Arg(1) . Name</th>
<th>Arg(2) . Id</th>
<th>Arg(2) . Name</th>
<th>Arg(2) . Value</th>
<th>Value</th>
<th>Level</th>
<th>Offset</th>
<th>Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.77105</td>
<td>0</td>
<td>0</td>
<td>0.2289484</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Exp</td>
<td>1</td>
<td>0</td>
<td>0.26</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0.7710516</td>
<td>10</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>2</td>
<td>0</td>
<td>0.26</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>-0.26</td>
<td>11</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>^</td>
<td>2</td>
<td>1</td>
<td>0.5</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>0.25</td>
<td>23</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>2</td>
<td>0</td>
<td>0.25</td>
<td>0.01</td>
<td>3</td>
<td>2</td>
<td>0.26</td>
<td>21</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>^</td>
<td>2</td>
<td>2</td>
<td>y</td>
<td>0.1</td>
<td>2</td>
<td>5</td>
<td>0.01</td>
<td>23</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

\[ f() = (4+sqr(3))*(4-sqr(3)) \] (no variables)

<table>
<thead>
<tr>
<th>Id</th>
<th>Fun</th>
<th>Max</th>
<th>Arg(1) . Id</th>
<th>Arg(1) . Name</th>
<th>Arg(2) . Id</th>
<th>Arg(2) . Name</th>
<th>Arg(2) . Value</th>
<th>Value</th>
<th>Level</th>
<th>Offset</th>
<th>Seq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1.73205</td>
<td>3</td>
<td>1</td>
<td>5.7320508</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>sqr</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1.73205</td>
<td>3</td>
<td>2</td>
<td>1.7320508</td>
<td>20</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>2</td>
<td>0</td>
<td>5.73205</td>
<td>0</td>
<td>2.26795</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1.73205</td>
<td>3</td>
<td>2</td>
<td>2.2679492</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>sqr</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1.7320508</td>
<td>20</td>
<td>18</td>
</tr>
</tbody>
</table>
\[ f(x) = x^4 - 3x^3 + 2x^2 - 9x + 10 \quad \text{for} \quad x = 3 \]

<table>
<thead>
<tr>
<th>Id</th>
<th>Fun</th>
<th>ArgTop</th>
<th>A1 Idx</th>
<th>Arg1 Name</th>
<th>Arg1 Value</th>
<th>A2 Idx</th>
<th>Arg2 Name</th>
<th>Arg2 Value</th>
<th>ArgOf</th>
<th>ArgIdx</th>
<th>Value</th>
<th>PriLvl</th>
<th>PosInExpr</th>
<th>PriIdx</th>
<th>Cond</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>^</td>
<td>2</td>
<td>1</td>
<td>x</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>81</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>2</td>
<td>0</td>
<td></td>
<td>81</td>
<td>0</td>
<td>81</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>2</td>
<td>0</td>
<td></td>
<td>3</td>
<td>0</td>
<td>27</td>
<td>2</td>
<td>2</td>
<td>81</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>^</td>
<td>2</td>
<td>1</td>
<td>x</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>27</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>2</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>18</td>
<td>8</td>
<td>1</td>
<td>18</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>*</td>
<td>2</td>
<td>0</td>
<td></td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>5</td>
<td>2</td>
<td>18</td>
<td>2</td>
<td>12</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>^</td>
<td>2</td>
<td>1</td>
<td>x</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>14</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>2</td>
<td>0</td>
<td></td>
<td>18</td>
<td>0</td>
<td>27</td>
<td>10</td>
<td>1</td>
<td>-9</td>
<td>1</td>
<td>16</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>*</td>
<td>2</td>
<td>0</td>
<td></td>
<td>9</td>
<td>1</td>
<td>x</td>
<td>3</td>
<td>8</td>
<td>27</td>
<td>2</td>
<td>18</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>2</td>
<td>0</td>
<td></td>
<td>-9</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>20</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[(x \leq 0) * x^2 + (0 < x \leq 1) * \log(x+1) + (x > 1) * \sqrt{x - \log(2)} \quad \text{for} \quad x = -2\]

<table>
<thead>
<tr>
<th>Id</th>
<th>Fun</th>
<th>ArgTop</th>
<th>A1 Idx</th>
<th>Arg1 Name</th>
<th>Arg1 Value</th>
<th>A2 Idx</th>
<th>Arg2 Name</th>
<th>Arg2 Value</th>
<th>ArgOf</th>
<th>ArgIdx</th>
<th>Value</th>
<th>PriLvl</th>
<th>PosInExpr</th>
<th>PriIdx</th>
<th>Cond</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>&lt;=</td>
<td>2</td>
<td>1</td>
<td>x</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>311</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>2</td>
<td>0</td>
<td></td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>^</td>
<td>2</td>
<td>1</td>
<td>x</td>
<td>-2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>2</td>
<td>0</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>13</td>
<td>12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>&lt;</td>
<td>2</td>
<td>0</td>
<td></td>
<td>0</td>
<td>1</td>
<td>x</td>
<td>-2</td>
<td>6</td>
<td>1</td>
<td>311</td>
<td>17</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>*</td>
<td>2</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>303</td>
<td>19</td>
<td>16</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>&lt;=</td>
<td>2</td>
<td>1</td>
<td>x</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>311</td>
<td>20</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>*</td>
<td>2</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>23</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Log</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>28</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>2</td>
<td>1</td>
<td>x</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>30</td>
<td>14</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>+</td>
<td>2</td>
<td>0</td>
<td></td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>34</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>&gt;</td>
<td>2</td>
<td>1</td>
<td>x</td>
<td>-2</td>
<td>0</td>
<td>1</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>311</td>
<td>38</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>*</td>
<td>2</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>41</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Sqr</td>
<td>1</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>46</td>
<td>13</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>-</td>
<td>2</td>
<td>1</td>
<td>x</td>
<td>-2</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>1</td>
<td>0</td>
<td>12</td>
<td>48</td>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Log</td>
<td>1</td>
<td>0</td>
<td></td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>20</td>
<td>52</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

\[2 * (\text{Dnorm}(x, \min(4,8), \max(1,0.1)) - 1)\]
**List of Multiplying Factors**

'extract multiply factor um_fact
Case "p": um_fact = -12
Case "n": um_fact = -9
Case "u": um_fact = -6
Case "μ": um_fact = -6 (not for oriental VBA version)
Case "m": um_fact = -3
Case "c": um_fact = -2
Case "k": um_fact = 3
Case "M": um_fact = 6
Case "G": um_fact = 9
Case "T": um_fact = 12

**List of Unit of Measure Symbols**

Select Case um_symb
Case "s": v = 1 'second
Case "Hz": v = 1 'frequency
Case "m": v = 1 'meter
Case "g": v = 0.001 'gramme
Case "rad", "Rad", "RAD": v = 1 'radian
Case "S": v = 1 'siemens
Case "V": v = 1 'volt
Case "A": v = 1 'ampere
Case "W": v = 1 'watt
Case "F": v = 1 'farad
Case "Ohm", "ohm": v = 1 'ohm
This is the list of all special functions calculated by clsMathParser, along with their parameters and definitions:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
<th>Parameters</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNorm($x, \mu, \sigma$)</td>
<td>Normal density function</td>
<td>$\forall x, \mu &gt; 0, \sigma &gt; 0$</td>
<td>$\frac{1}{\sigma \sqrt{2\pi}} e^{-(x-\mu)^2/(2\sigma^2)}$</td>
</tr>
<tr>
<td>CNorm($x, \mu, \sigma$)</td>
<td>Normal cumulative function</td>
<td>$\forall x, \mu &gt; 0, \sigma &gt; 1$</td>
<td>$\frac{1}{2} \left[ 1 + \text{erf} \left( \frac{x-\mu}{\sigma \sqrt{2}} \right) \right]$</td>
</tr>
<tr>
<td>DPOisson($x, n$)</td>
<td>Poisson density function</td>
<td>$\nu &gt; 0$, $n = 1, 2, 3 ...$</td>
<td>$\frac{x^n e^{-x}}{n!}$</td>
</tr>
<tr>
<td>CPoisson($x, k$)</td>
<td>Poisson cumulative function</td>
<td>$x &gt; 0$, $k = 1, 2, 3 ...$</td>
<td>$\sum_{k=0}^{n} \frac{x^k e^{-x}}{k!}$</td>
</tr>
<tr>
<td>DBinom($k, n, x$)</td>
<td>Binomial density for $k$ successes for $n$ trials</td>
<td>$k, n = 1, 2, 3..., k &lt; n$, $x \leq 1$</td>
<td>$\left( \frac{n}{k} \right) x^k (1-x)^{n-k}$</td>
</tr>
<tr>
<td>CBinom($k, n, x$)</td>
<td>Binomial cumulative for $k$ successes for $n$ trials</td>
<td>$k, n = 1, 2, 3..., k &lt; n$, $x \leq 1$</td>
<td>$\sum_{i=0}^{k} \left( \frac{n}{i} \right) x^i (1-x)^{n-i}$</td>
</tr>
<tr>
<td>Si($x$)</td>
<td>Sine integral</td>
<td>$\forall x$</td>
<td>$\int_{0}^{x} \frac{\sin t}{t} dt$</td>
</tr>
<tr>
<td>Ci($x$)</td>
<td>Cosine integral</td>
<td>$x &gt; 0$</td>
<td>$-\int_{x}^{\infty} \frac{\cos t}{t} dt$</td>
</tr>
<tr>
<td>FresnelS($x$)</td>
<td>Fresnel's sine integral</td>
<td>$\forall x$</td>
<td>$\sqrt{\frac{\pi}{2}} \int_{0}^{x} \sin t^2 dt$</td>
</tr>
<tr>
<td>FresnelC($x$)</td>
<td>Fresnel's cosine integral</td>
<td>$\forall x$</td>
<td>$\sqrt{\frac{\pi}{2}} \int_{0}^{x} \cos t^2 dt$</td>
</tr>
<tr>
<td>J0($x$)</td>
<td>Bessel's function of 1st kind</td>
<td>$x \geq 0$</td>
<td>$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{4^k (k!)^2}$</td>
</tr>
<tr>
<td>Function</td>
<td>Description</td>
<td>Equation</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>$Y_0(x)$</td>
<td>Bessel's function of 2nd kind</td>
<td>$x &gt; 0$</td>
<td></td>
</tr>
<tr>
<td>$I_0(x)$</td>
<td>Bessel's function of 1st kind, modified</td>
<td>$x \geq 0$</td>
<td></td>
</tr>
<tr>
<td>$K_0(x)$</td>
<td>Bessel's function of 2nd kind, modified</td>
<td>$x &gt; 0$</td>
<td></td>
</tr>
<tr>
<td>$J_n(x)$</td>
<td>Bessel's function of 1st kind, nth order</td>
<td>$x \geq 0, \ n = 0, 1, 2\ldots$</td>
<td></td>
</tr>
<tr>
<td>$Y_n(x)$</td>
<td>Bessel's function of 2nd kind, nth order</td>
<td>$x &gt; 0, \ n = 1, 2\ldots$</td>
<td></td>
</tr>
<tr>
<td>$I_n(x)$</td>
<td>Bessel's function of 1st kind, nth order, modified</td>
<td>$x \geq 0, \ n = 0, 1, 2\ldots$</td>
<td></td>
</tr>
<tr>
<td>$K_n(x)$</td>
<td>Bessel's function of 2nd kind, nth order, modified</td>
<td>$x &gt; 0, \ n = 0, 1, 2\ldots$</td>
<td></td>
</tr>
<tr>
<td>$HypGeom(z,a,b,c)$</td>
<td>Hypergeometric function</td>
<td>$-1 &lt; x &lt; 1$ , $a,b &gt; 0$ , $c \neq 0, -1, -2\ldots$</td>
<td></td>
</tr>
<tr>
<td>$PolyCh(x,n)$</td>
<td>Chebyshev’s polynomials</td>
<td>$\forall x$ , orthog. for $-1 \leq x \leq 1$</td>
<td></td>
</tr>
<tr>
<td>$PolyLe(x,n)$</td>
<td>Legendre’s polynomials</td>
<td>$\forall x$ , orthog. for $-1 \leq x \leq 1$</td>
<td></td>
</tr>
<tr>
<td>$PolyLa(x,n)$</td>
<td>Laguerre’s polynomials</td>
<td>$\forall x$ , orthog. for $0 \leq x \leq 1$</td>
<td></td>
</tr>
<tr>
<td>$PolyHe(x,n)$</td>
<td>Hermite’s polynomials</td>
<td>$\forall x$ , orthog. for $-\infty \leq x \leq +\infty$</td>
<td></td>
</tr>
</tbody>
</table>

**Equation Examples**

- $I_0(x) = \sum_{k=0}^{\infty} \frac{x^{2k}}{4^k (k!)^2}$
- $Y_0(x) = -\frac{2}{\sqrt{\pi} \Gamma\left(\frac{1}{2}\right)} \int_1^{\infty} \frac{\cos(xt)}{\sqrt{t^2 - 1}} \, dt$
- $J_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+n}}{2^{2k+n} (n+k)! k!}$
- $Y_n(x) = \frac{J_n(x) \cos(n\pi) - J_{-n}(x)}{\sin(n\pi)}$
- $I_n(x) = i^{-n} J_n(ix) = e^{-x^{1/2}} J_n(xe^{1/2})$
- $K_n(x) = \frac{\pi}{2} \frac{I_{-n}(x) - I_n(x)}{\sin(n\pi)}$
- $HypGeom(z,a,b,c) = 1 + \frac{ab}{c!} + \frac{a(a+1)b(b+1)}{2c(c+1)} x^2 + \ldots$
- $T_n(x) = \frac{n^{[n/2]}}{2} \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k (n-k)!}{n-k \left( \begin{array}{c} n \kern-2.5pt \vdots \kern-2.5pt \scriptstyle k \end{array} \right)} (2x)^{n-2k}$
- $P_n(x) = \frac{1}{2^n} \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(-1)^k (2n-2k)!}{k!(n-k)!(n-2k)!} x^{n-2k}$
- $L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} \left( x^n e^{-x} \right)$
- $H_n(x) = (-1)^n e^{1/2} \frac{d^n}{dx^n} e^{-x^2}$
<table>
<thead>
<tr>
<th><strong>AiryA(x)</strong></th>
<th>Airy function $Ai(x)$</th>
<th>$\forall x$</th>
<th>$\frac{1}{3^{2/3}} \pi \sum_{n=0}^{\infty} \frac{\Gamma\left(\frac{1}{3} (n+1)\right)}{n!} \left(\frac{3^{1/3} x}{n!}\right)^n \sin\left(\frac{2(n+1)\pi}{3}\right)$</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>AiryB(x)</strong></td>
<td>Airy function $Bi(x)$</td>
<td>$\forall x$</td>
<td>$\frac{1}{3^{1/6}} \pi \sum_{n=0}^{\infty} \frac{\Gamma\left(\frac{1}{3} (n+1)\right)}{n!} \left(\frac{3^{1/3} x}{n!}\right)^n \sin\left(\frac{2(n+1)\pi}{3}\right)$</td>
</tr>
<tr>
<td><strong>Ellili((\phi, k))</strong></td>
<td>Elliptic integral of 1(^{st}) kind</td>
<td>$\forall \phi \quad 0 &lt; k &lt; 1$</td>
<td>$F(\phi, k) = \int_{0}^{\phi} \frac{d\theta}{\sqrt{1-k^2 \sin^2 \theta}}$</td>
</tr>
<tr>
<td><strong>Ellii2((\phi, k))</strong></td>
<td>Elliptic integral of 2(^{nd}) kind</td>
<td>$\forall \phi \quad 0 &lt; k &lt; 1$</td>
<td>$E(\phi, k) = \int_{0}^{\phi} \sqrt{1-k^2 \sin^2 \theta} , d\theta$</td>
</tr>
<tr>
<td><strong>Erf(x)</strong></td>
<td>Error Gauss’s function</td>
<td>$\forall x$</td>
<td>$\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} , dt$</td>
</tr>
<tr>
<td><strong>gamma(x)</strong></td>
<td>Gamma function</td>
<td>$\forall x \quad x \neq 0, -1, -2, -3…$</td>
<td>$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} , dt$</td>
</tr>
<tr>
<td><strong>gamma ln(x)</strong></td>
<td>Logarithm Gamma function</td>
<td>$x &gt; 0$</td>
<td>$\log(\Gamma(x))$</td>
</tr>
<tr>
<td><strong>gamma i(a, x)</strong></td>
<td>Gamma Incomplete function</td>
<td>$\forall x \quad a &gt; 0$</td>
<td>$\Gamma(a, x) = \int_{x}^{\infty} t^{a-1} e^{-t} , dt$</td>
</tr>
<tr>
<td><strong>digamma(x)</strong></td>
<td>Digamma function</td>
<td>$x \neq 0, -1, -2, -3…$</td>
<td>$\Psi(x) = \frac{d}{dx} \log(\Gamma(x)) = \frac{\Gamma'(x)}{\Gamma(x)}$</td>
</tr>
<tr>
<td><strong>beta(a, b)</strong></td>
<td>Beta function</td>
<td>$a &gt; 0 \ , \ b &gt; 0$</td>
<td>$\int_{0}^{1} t^{a-1} (1-t)^{b-1} , dt$</td>
</tr>
<tr>
<td><strong>beta i(x, a, b)</strong></td>
<td>Beta Incomplete function</td>
<td>$\forall x \ , \ a &gt; 0 \ , \ b &gt; 0$</td>
<td>$\int_{0}^{x} y^{a-1} (1-y)^{b-1} , dy$</td>
</tr>
<tr>
<td><strong>Ei(x)</strong></td>
<td>Exponential integral</td>
<td>$x \neq 0$</td>
<td>$Ei(x) = \int_{1}^{\infty} \frac{e^{-tx}}{t} , dt = \int_{x}^{\infty} \frac{e^{-t}}{t} , dt$</td>
</tr>
</tbody>
</table>
| Ein(x, n) | Exponential integral of n order  
| x > 0 \ , \ n = 1, 2, 3… | $E_n(x, n) = \int_{1}^{\infty} \frac{e^{-xt}}{t^n} \, dt$ |
| zeta(x) | zeta Riemann’s function  
| x < 1 or x > 1 | $\zeta(x) = \frac{1}{\Gamma(x)} \int_{0}^{\infty} \frac{t^{x-1}}{e^t - 1} \, dt$ |
**Special Periodic Functions**

This is the list of all special periodic functions calculated by clsMathParser, along with their parameters and plots.

<table>
<thead>
<tr>
<th>Function name</th>
<th>Description</th>
<th>parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>WTRI(t, p)</td>
<td>Triangular wave</td>
<td>$t = \text{time}, p = \text{period}$</td>
</tr>
<tr>
<td>WSQR(t, p)</td>
<td>Square wave</td>
<td>$t = \text{time}, p = \text{period}$</td>
</tr>
<tr>
<td>WRECT(t, p, d)</td>
<td>Rectangular wave</td>
<td>$t = \text{time}, p = \text{period}, d = \text{duty-cycle}$</td>
</tr>
<tr>
<td>WTRAPEZ(t, p, d)</td>
<td>Trapez. wave</td>
<td>$t = \text{time}, p = \text{period}, d = \text{duty-cycle}$</td>
</tr>
<tr>
<td>WSAW(t, p)</td>
<td>Saw wave</td>
<td>$t = \text{time}, p = \text{period}$</td>
</tr>
<tr>
<td>WRAISE(t, p)</td>
<td>Rampa wave</td>
<td>$t = \text{time}, p = \text{period}$</td>
</tr>
<tr>
<td>WLIN(t, p, d)</td>
<td>Linear wave</td>
<td>$t = \text{time}, p = \text{period}, d = \text{duty-cycle}$</td>
</tr>
<tr>
<td>WPULSE(t, p, d)</td>
<td>Rectangular pulse wave</td>
<td>$t = \text{time}, p = \text{period}, d = \text{duty-cycle}$</td>
</tr>
<tr>
<td>WSTEPS(t, p, n)</td>
<td>Steps wave</td>
<td>$t = \text{time}, p = \text{period}, n = \text{steps number}$</td>
</tr>
<tr>
<td>WEXP(t, p, a)</td>
<td>Exponential wave</td>
<td>$t = \text{time}, p = \text{period}, a = \text{damping factor}$</td>
</tr>
<tr>
<td>WEXPB(t, p, a)</td>
<td>Exponential bipolar wave</td>
<td>$t = \text{time}, p = \text{period}, a = \text{damping factor}$</td>
</tr>
<tr>
<td>WPULSEF(t, p, a)</td>
<td>Filtered pulse wave</td>
<td>$t = \text{time}, p = \text{period}, a = \text{damping factor}$</td>
</tr>
<tr>
<td>WRING(t, p, a, fm)</td>
<td>Ramping wave</td>
<td>$t = \text{time}, p = \text{period}, a = \text{damping factor}, fm = \text{frequency}$</td>
</tr>
<tr>
<td>WPARAB(t, p)</td>
<td>Parabolic wave</td>
<td>$t = \text{time}, p = \text{period}$</td>
</tr>
<tr>
<td>WRIPPLE(t, p, a)</td>
<td>Ripple wave</td>
<td>$t = \text{time}, p = \text{period}, a = \text{damping factor}$</td>
</tr>
<tr>
<td>WAM(t, fo, fm, m)</td>
<td>Amplitude modulation</td>
<td>$t = \text{time}, p = \text{period}, fo = \text{carrier freq.}, fm = \text{modulation freq.}, m = \text{modulation factor}$</td>
</tr>
<tr>
<td>WFM(t, fo, fm, m)</td>
<td>Frequency modulation</td>
<td>$t = \text{time}, p = \text{period}, fo = \text{carrier freq.}, fm = \text{modulation freq.}, m = \text{modulation factor}$</td>
</tr>
</tbody>
</table>

**Triangular wave** $WTRI(t, p)$

**Square wave** $WSQR(t, p)$

**Rectangular wave** $WRECT(t, p, \text{duty})$

**Trapez. Wave** $WTRAPEZ(t, p, \text{duty})$
Saw wave $WSAW(t, p)$

Rampa wave $WRAISE(t, p)$

Filtered pulse wave $WPULSEF(t, p, a)$

Rectangular pulse wave $WPULSE(t, p, duty)$

Steps wave $WSTEPS(t, p, n)$

Linear wave $WLIN(t, p, duty)$

Exponential pulse wave $WEXP(t, p, a)$

Exponential bipolar pulse wave $WEXPB(t, p, a)$

Ringing wave $WRING(t, p, a, omega)$

Parabolic pulse wave $WPARAB(t, p)$
Ripple wave $\text{WRIPPLE}(t, p, a)$

Rectified wave $\text{WSINREC}(t, p)$

Amplitude modulation $\text{WAM}(t, f_0, f_m, m)$

Frequency modulation $\text{WFM}(t, f_0, f_m, m)$
Error Message Table

From the version 4.1, all error messages are collected into an internal table, called ErrorTbl. The index of the table is the number returned by the property ErrorId. The massages can be parametric. The symbol "$" is the placeholder for parameter substitution:

ErrorTbl(1)	"too many variables"		
ErrorTbl(2)	"Variable not found"		
ErrorTbl(3)	"abs symbols	.	mismatch"
ErrorTbl(4)	"Syntax error at pos: $"		
ErrorTbl(5)	"Function < $ > unknown at pos: $"		
ErrorTbl(6)	"Too many closing brackets at pos: $"		
ErrorTbl(7)	"missing argument"		
ErrorTbl(8)	"Too many arguments at pos: $"		
ErrorTbl(9)	"Not enough closing brackets"		
ErrorTbl(10)	"Syntax error: $"		
ErrorTbl(11)	"Function < $ > missing?"		
ErrorTbl(12)	"Evaluation error < $( $2 ) at pos: $"		
ErrorTbl(13)	"Evaluation error < $( $2 & ArgSep & $ ) at pos: $"		
ErrorTbl(14)	"Evaluation error < $ $ > at pos: $"		
ErrorTbl(15)	"Evaluation error < $( $2 $ ) at pos: $"		
ErrorTbl(16)	"Constant unknown: $"		
ErrorTbl(17)	"Too many operations"		
ErrorTbl(18)	"Wrong DMS format"		
ErrorTbl(19)	"No DMS format"		

The internal function getMsg(Id, Optional p1, Optional p2, Optional p3, Optional p4) performs the parameter substitution:

Example. The string "67><" contains a syntax error at position 4. To build this error message the parser pass the Id = 5 and the parameter p1 = 4

```
getMsg(5, 4) ⇒ "Syntax error at pos: 4"
```

Example. The string "3x+4*(log(x)+1)" raises an error for x = 0 and at position 9. To build this error message the parser pass the Id = 14, the parameter p1 = "log", p2 = 0 and p3 = 9

```
getMsg(14, "log", 0, 9) ⇒ "Evaluation error < log(0) > at pos: 10"
```

As we can see, the placeholder "$" are exactly substitutes with the correspondent parameters.