DETERMINING HILBERT MODULAR FORMS BY CENTRAL VALUES OF
RANKIN-SELBERG CONVOLUTIONS: THE WEIGHT ASPECT
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ABSTRACT. The purpose of this paper is to prove that a primitive Hilbert cusp form g is
uniquely determined by the central values of the Rankin-Selberg L-functions L(f ® g, %), where
f runs through all primitive Hilbert cusp forms of weight k& for infinitely many weight vectors
k. This result is a generalization of the work of Ganguly, Hoffstein, and Sengupta [3] to the
setting of totally real number fields, and it is a weight aspect analogue of the authors own work
[6].

0. INTRODUCTION

Over the past five decades, a significant part of the research in analytic and algebraic number
theory has been centered around the special values of L-functions. This will undoubtedly
continue in view of the bountiful number of conjectures that this topic encompasses. Indeed,
the special values of L-functions encode profound information about the underlying algebraic
or geometric objects. For example, the vanishing or non-vanishing of L-functions and their
twists at the center of the critical strip have rich arithmetic implications, as it is most famously
portrayed by the Birch and Swinnerton-Dyer Conjecture and its far-reaching generalizations.
Another intriguing problem is to study the extent to which the special values of L-functions
associated to abelian varieties or automorphic forms, for example, determine these structures.
In 1996, Stark used transcendence theory to prove that the central value of L(F,s), when
non-vanishing, determines the isogeny class of the (modular) elliptic curve E/Q. However,
the elegant transcendental argument of Stark [17] does not seem to generalize in any obvious
way to modular forms of higher weights. In an interesting paper [11], Luo and Ramakrishnan
achieved a breakthrough in this direction by showing that a primitive modular form f is uniquely
determined by the central values L(f ® ¥, %) as y varies over a carefully chosen set of infinitely
many quadratic Dirichlet characters. The method used in [11] sets a solid analytic framework
which was subsequently used in several papers on the topic of determining modular forms by
twists of central L-values such as Ganguly-Hoffstein-Sengupta [3], Luo [9], Pi [13], and Zhang
[19].
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The work of Luo and Ramakrishnan [11] was generalized by Li [8] to self-contragredient au-
tomorphic cuspidal representations of GLs over any number field. To the best of our knowledge,
Li is the first one to consider this type of problems over arbitrary number fields. In a recent
paper [6], the authors generalized the result of Luo [9] to the setting of totally real number fields
by proving that a primitive Hilbert cusp form g is uniquely determined by the central values
of the Rankin-Selberg L-functions L(f ® g, %), where f varies over all primitive Hilbert cusp
forms of level q for infinitely many prime ideals ¢. In the present paper, the authors employ
the method of [3] and some of the tricks used in [6] to establish a weight aspect analogue of
their result [6, Theorem 0.1]. This extends the main theorem in [3] to the setting of totally
real number fields. Indeed, it is the purpose of this paper to prove the following theorem. The
reader is referred to Section 1 for notation and terminology.

Theorem 0.1. Let g € SP*¥(n) and g’ € SpV(n') be normalized Hecke eigenforms, where the

weights | and " are in 2N"™. If
1 1
L(f - |=L(feg, -

for all normalized Hecke eigenforms f € Si(Op) for infinitely many k € 2N", then g = g’.

It should be noted that an infinite family of weight k& = (kq,...,k,) may be chosen as
k; — oo for a fixed j while all the other k; are sufficiently large. In this regard, we shall write
k — oo to mean that max{k;} — oo and min{k;} > C for a fixed constant C'.

The proof of the above theorem is given in Section 2.2. It follows as an application of an
asymptotic formula for a weighted sum of the central values L(f ® g, %), where g is fixed and
f varies as prescribed above. This formula, which is stated in Section 2.1, allows for expressing
the Fourier coefficient of g at a prime ideal p in terms of the central values L(f ® g, %) up to
a negligible error term. Then, we see that two forms g and g’ satisfying the hypotheses of the
theorem above will ultimately have the same Fourier coefficients for all but finitely many prime
ideals p, in which case the strong multiplicity one theorem guarantees that the forms g and g’
are necessarily equal.

The strategy of the proof is essentially analogous to that used in the previously mentioned
papers where theorems similar to Theorem 0.1 were established. However, in the current paper,
we confront a number of delicate issues which are primarily imposed by the technical nature of
adelic Hilbert modular forms and the infinitude of the group of units in a totally real number
field. In fact, these difficulties are most vividly portrayed in the treatment of the error term
in equation (4.1). Dealing with the error term in the weight aspect case requires a more
careful examination than the level aspect case considered in [6] and [9]. One cannot achieve
the desired estimate for the error term by the standard application of the Stirling formula and
bounds for the Kloosterman sums and the J-Bessel functions. As explained in [3], this is due
to the appearance of the parameter k£ in the index of the J-Bessel function in addition to the
gamma factors originating from the functional equation of the Rankin-Selberg L-function. In
order to overcome this problem, one resorts to a trick (attributed in [3] to Goldfeld [5]) which
amounts to opening up the Kloosterman sums and the J-Bessel functions, and then extracting
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from the expression an additive twist of a certain L-function to which a functional equation is
applied. This allows for a convenient realignment of the sums in a way that makes it possible
to adequately estimate the error term. In the setting of totally real number fields, this process
is rendered even more complicated by the existence of a sum over totally positive units arising
from the application of a Petersson-type trace formula for Hilbert modular forms. The reader
is referred to Section 4 for the detailed exposition.

The organization of this paper is as follows. In Section 1, we fix some notation pertaining to
the totally real number field F' over which our work is based. We also recall some background
material about (adelic) Hilbert cusp forms and briefly explain how they correspond to the
classical ones. We end this section with the definition and some basic properties of the Rankin-
Selberg L-function of a pair of Hilbert cusp forms under certain hypotheses. In Section 2, we
give a proof of the main theorem. The key ingredient is to study the twisted first moment
given in (2.1). The application of an approximate functional equation and a Petersson trace
formula allows us to split this sum into diagonal terms Mg ,(k) and off-diagonal terms Eg (k).
Lemma 2.3 gives asymptotic estimates for Mg (k) and Eg,(k) as k tends to infinity. Finally,
Section 3 and Section 4 provide the detailed proof of Lemma 2.3.

1. NOTATIONS AND PRELIMINARIES

1.1. The Base Field. Throughout the paper, we take the base field to be a totally real number
field F' of degree n over Q, and we denote its ring of integers by Op. The absolute norm of an
ideal a in Op is defined as N(a) = [OF : a]. In fact, the absolute norm defined as such can be
extended by multiplicativity to the group, I(F), of fractional ideals of F'. The trace and the
norm of an element x in the field extension F//Q are denoted by Tr(z) and N(x), respectively.
Notice that for a principal ideal (z) = 2Op, we have N ((z)) = |N(z)|. The different ideal of F
and its discriminant over Q are denoted by ®r and dp, respectively. We also have the identity

N(®p) = |dr|.
The real embeddings of F' are denoted by o, : © + z; := oj(x) for j =1,...,n. Once and
for all, we fix an order of the embeddings, say ¢ := (01,...,0,), so that any element z in F

can be identified with the n-tuple (z1,...,z,) in R™. This tuple may be, again, denoted by x
when no confusion arises. We say x is totally positive and write x > 0 if ; > 0 for all j, and
for any subset X C F, we put X+ = {x € X : 2 > 0}. Similarly, any element v € GLy(F') can
be viewed as an element v = (71, ...,7,) in GLy(R)" via these embeddings.

We denote the narrow class group of F' by CIT(F). This is defined as the quotient group
I(F)/P*(F), where P*(F) is the group of principal ideals generated by totally positive elements
in F. Tt is well-known that CI™(F) is a finite group, and its cardinality is denoted by h}.. We
let {aj,as,..., ah;} be a fixed choice of representatives of the narrow ideal classes in C1T(F).
We write a ~ b when fractional ideals a and b belong to the same narrow ideal class, in which
case we have a = £b for some & in F't. The symbol [ab™!] is used to refer to this element &
which is only unique up to multiplication by totally positive units in Op.

Let Ar be the ring of adeles of F', and let F, be the completion of F' at a place v of F'. For
a non-archimedean place v, we denote by O, the local ring of integers. Furthermore, we let
Fo = Hv‘oo F,, where the product is taken over all archimedean places of F'. In what follows,
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we make the identifications
Fo=R" GL;(FOO) = GL;(R)”, and SOy (F) = SO(R)™.

In particular, each r € SOy(F,) can be expressed as

r(0) = (r(6h),...,r(0n) = ([ b, ot Djl

—sin6; cosb;

Given an ideal n C Op and a non-archimedean place v in F', we define the subgroup K,(n)
of GLy(F,) as

Kﬁ0={{i Z}GGMK%ycenQ},

and put

Ko(n) = ][ Ko(n).
<00
Before concluding the section, we recall the multi-index notation which is frequently used
in this paper for convenience: For given n-tuples x and z and a scalar a, we set

n n
¥ = ijj, = Hx?, and a® = aXi=1%,
j=1 J=1
Such multi-index notation will also be employed to denote certain products of the gamma
functions and the J-Bessel functions. See Sections 1.3 and 2.1, respectively.

1.2. Hilbert Modular Forms. In this section, we recall the definition and some properties
of the space of adelic Hilbert modular forms, and we explain briefly the relation it bears to the
space of classical Hilbert modular forms. Our exposition in the adelic setting borrows heavily
from that of Trotabas [18, Section 3].

A complex-valued function f on GLy(Ap) is said to be an (adelic) Hilbert cusp form of
weight £ € 2N", level n, and with the trivial character if it satisfies the following conditions
(Trotabas [18, Definition 3.1]):

(1) The identity f(yxgr(f)u) = f(g)exp(ikf) holds for all v € GLo(F), x € A%, g €
GLQ(AF), 7’((9) & SOQ(FOO), and u € K()(n).

(2) Viewed as a smooth function on GLJ (Fy,), f is an eigenfunction of the Casimir element
k;

o Tk
A= (Aq,...,A,) with eigenvalue ]1;[1 5 (1 — 5)

(3) We have/ 0 1

f ({ Loz } g) dx =0 for all g € GLy(Ap) (cuspidality condition).
F\Ap

We denote by Si(n) the space of Hilbert cusp forms of weight &, level n, and with the trivial
character.
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Remark 1.1. As this paper only concerns forms with the trivial character, the specification of
character will be omitted from now on. Moreover, we always take the weight vector k to be in
2N"™ for otherwise the space Sk(n) would be trivial.

Next, we introduce some notation which is needed to define the Fourier coefficients of
a Hilbert cusp form f. By the Iwasawa decomposition, any element g in GLj (F,,) can be

uniquely expressed as
12 0 1 y O
o-[a Lo 3] 16 e

with z,y € Ff, z € F., and () € SOy(F,,). Using this decomposition, we define WY (g) by
W3.(9) = y§ exp (2mi(z + iy)) exp (ik0) .

In fact, the function W2 is the new vector in the Whittaker model of the discrete series
representation @; D(k; — 1) of GLy(Fy) (restricted to GLj (Fi))-
For f € Si(n), g € GL] (Fi), and a € I(F), we have the Fourier expansion

f(g{id(a()@f?l) H): 3 %ﬁ’f)wgoqg (1)]9)

ve(a—1)+

where id(a®D7") is the idele of F associated with the ideal a®'. The Fourier coefficient of f
at any integral ideal m in O is then defined as C¢(m) = C(v,a® ', f), where a is a unique
choice of representative in {ai, ..., a,+} such that m ~ a, and v = [ma~!]. Notice that v is

necessarily an element in (a=!)™, unique up to multiplication by O;". We say f is normalized
if C¢(Op) = 1.

We now retrieve the classical setting as it plays an important role in Section 4. Indeed, it is
well-known to experts that a form f in Sj,(n) can be viewed as an hf-tuple of classical Hilbert
cusp forms f,, indexed by the narrow class representatives {ay, ..., ah;}. Each function f,, on
H" is defined via the map

(1.1) z:$+iy»—>fai(z):y_§f({g ”15] {id(“io@Fl) H)

which yields a classical Hilbert cusp form of weight k with respect to the congruence subgroup

To(n, 0D = {[Z 2} € GLy(F) : a,d € Op,b € a, D", c € na;'Dp,ad — be € Ofﬁ}.

kY = fuw for all Y n FO(na aigg‘l)‘

This means that each f,, satisfies the automorphy condition, f,,
Here we recall that | is the weight k slash operator given by

Flev(z) = (det 7)™ j(y, 2) ™ f(72).
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It follows from equation (1.1) that the Fourier coefficients of
faz)= Y a(fa) exp(2miTr(v2))
116(11%._1)Jr
are given by

C y z'@il,f E C k
(1.2) ay(fo,) = (Kl(iai)};ﬂ >V2 - N(it;%w'

The reader is referred to, for instance, Garrett [4, Chapter 1, 2|, Raghuram-Tanabe [15, Section
4], and Shimura [16, Section 2| for more details on this realization.

The space of cusp forms can be decomposed as Si(n) = S (n)H SV (n) where S4(n) is the
subspace of cusp forms that come from lower levels. The new space S;°¥(n) is the orthogonal
complement of S24(n) with respect to the inner product

(£, h) g, ) = / £(g)i(g) do.
GLa(F)AR\GLa(A )/ Ko(n)

The space Sk(n) has an action of Hecke operators {7y, }mco, much like the classical setting
over Q. A Hilbert cusp form f in Si(n) is said to be primitive if it is a normalized common
Hecke eigenfunction in the new space. We denote by Il (n) the (finite) set of all primitive forms
of weight k and level n. If f is a function in Il (n), it follows from the work of Shimura [16]
that the coefficients C¢(m) are equal to the Hecke eigenvalues for Ty, for all m. Moreover, since
f is with the trivial character, the coefficients C¢(m) are known to be real for all m.

1.3. Rankin-Selberg L-functions. We now recall the construction of Rankin-Selberg convo-
lutions of two Hilbert modular forms following Shimura [16, Section 4]. We note, however, that
our normalization is slightly different from what Shimura uses. Consider two primitive forms
f € Ilx(q) and g € II;(n), where we assume that q and n are coprime. The Rankin-Selberg
L-function associated with f and g is defined as

Cr(m)Cg(m)

Do, 5) = Gi(2s) Yo et

mCOp

where (7 (s) is the Dedekind zeta function of F' away from ng, that is,
(25) = Cr(2s) ] @-NO™).
fIng

[: prime

This series is absolutely convergent for R(s) > 1 since the Fourier coefficients of f and g satisfy
the Ramanujan-Petersson bound (proven by Blasius in [1]):

Ce(m) < N(m)¢ and Cg(m) < N(m)*.
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It is useful in applications to write the series L(f ® g, s) as a sum over all positive integers. In
fact, it is easy to see that

bM(f
drog -3 HICE)
where
b(f®g) = Z aq(nq) Z Ct(m)Cg(m)
d2|lm N(m)=m/d?

with agq(nq) being the number of integral ideals of norm d that are coprime to nq.
Let the archimedean part of this L-function be

Lw(f®g,s):F(s+@)F(s—l+¥>,
with

k—1\ T |k — 1] E+1\ T ki +1;
F(s+ 2 —j[[lf s+ 5 and I'[s—1+ 5 —HF s—1+ 5 )

Define the completed L-function
Af®g s) = (2m) " "NngD7) Lo (f @ g, 5) L(f ® g, 5),

with & := (k1,...,ky) and k; = max{k;,l;}. Then A(f ® g, s) has analytic continuation to C
as an entire function and satisfies the functional equation

(1.3) Afogs)=Afogl—s)

See, for instance, Prasad-Ramakrishnan [14] for the details.

We note that we fix the level of f to be ¢ = O from now on. Also, since our aim is to study
the asymptotic behavior, as k tends to infinity, of an average expression over f, one may assume
that k; > [; for all j =1,...,n (see Theorem 0.1 and the note thereafter). This condition will
be 1mposed for the rest of thls paper.

2. PROOF OF THEOREM 0.1

2.1. Twisted First Moment. Let g be a fixed form in II;(n), and let p be an ideal in F' which
is either Op or prime. We consider the twisted first moment

(2.1) > L(f@g, )Cf(p)wf,

felly(Or)

where

T(k—1)
(4m)E=tdp| 2 {E )5, 0

Wwr = .
F)
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The primary goal of this paper is to establish an asymptotic formula of this moment as k
approaches infinity. Indeed, our main theorem is a direct application of such a formula as will
become evident in the next section (Section 2.2). In order to analyze the sum in equation (2.1),
we utilize two standard results from analytic number theory tailored to the setting of Hilbert
modular forms; namely, an approximate functional equation and a Petersson trace formula
which we now proceed to describe.

Proposition 2.1 (Approximate functional equation). Let G(u) be a holomorphic function on
an open set containing the strip |[R(u)| < 3/2 and bounded therein, satisfying G(u) = G(—u),
and G(0) = 1. Then we have

1 . —bh(fog) 4" 2vm,
Lrony) =23 2 (e

where

1 du
2.2 Vily) = — Y v(s,u)G(u)—
(2. ) =5 [, v 0G0
with

Lo(f® g, s+u)

7(371/“) = Loo(f ® g,s)

Moreover, the derivatives of Vi2(y) satisfy

vV () < 1+ 2 - and y*V.%(y) =6, + O ERN

12\Y 12 Y V¥ a L2

for some 0 < a < 1. The value of d, is taken to be 1 if a =0 and 0 otherwise, and the implied
constants depend on a, A, and «.

Proof. See the authors’ level aspect paper [6, Section 4]. The estimates on Vl(/a“Q) (y) follow from
Iwaniec-Kowalski [7, Proposition 5.4]. O

The function G(u) appearing in Proposition 2.1 is set to be e’ throughout this paper.
Another crucial tool to our work is a Petersson trace formula for Hilbert modular forms. This
formula was first established by Luo [10] for Hilbert modular forms of parallel weight over
totally real number fields with narrow class number one. It was later generalized by Trotabas
[18, Proposition 6.3], as stated below, where no such restrictions on the weight or the narrow
class number are required.
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Proposition 2.2 (Petersson trace formula). Let q be an integral ideal in F. Let a and b be
fractional ideals in F'. For o € a™! and B € b~ we have

I'(k—1)
C} C b
fEHZk(q) (477)k—1|dF|1/2 (f, f>5k(q) t(aa)Ce(0b)

= ]loca:,Bb +C Z
Z~ab

cec1q\{0}

€Ot /O)3

Kl(ea,a; 8, b; ¢, c)J dr/eaf [abe~?]
N(ce) i c] ’

(1) (2

where C' = 2!dp|l/2

, and Hg(q) is an orthogonal basis for the space Sk(q).

In the proposition above, multi-index notation is used for the J-Bessel function. Indeed, we
have

4m/eaf [abe?] " 47\/6J'O‘j6j [abe2];
i1 1=
7j=1

] &l

For each j, the corresponding factor in the above product is an evaluation of the classical
J-Bessel function Ji, 1 which could be written via the Mellin-Barnes integral representation as

T (kj_;_s) i
(2.3) i1 (z) = / (—) ds  with 0 <o <k — 1.
o T (B 1) 12 ’

As for the Kloosterman sum, it is defined as follows. Given two fractional ideals a and b,
let ¢ be an ideal such that ¢ ~ ab. For « € a7, 8 € b7}, and ¢ € ¢!, the Kloosterman sum
Kl(a, a; 8,b;¢,¢) is given by

Kli(a,a;6,b5¢,¢) = Z exp (27T2'Tr (am + 8 [abc—2]f>) |

C
xe(ai);lc—l/c@;lc)

Here T is the unique element in (a"'®pc/a"'®pce?)”™ such that 27 = 1 mod cc. The reader is
referred to Section 2.2 and Section 6 in [18] for more details on this construction.

We are now ready to start our investigation of the sum in (2.1). We begin by applying the
approximate functional equation provided in Proposition 2.1. Then, a simple re-arrangement
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of the sums yields

YL <f®g, ) Cr (p)we

felly(Or)

b (feg) 4ng N
Z 22 \/ﬁ V1/2( (@2))Cf(p) f

fellx(OF) m=1

4" r?nm,
—ZZ\/—Vm( ) > i) ) 5 Gyl

fEHk(OF) d2|m m/d2
<1 A" ?m,
=2 —Vis2 (—2) Z ad(ﬂ) Z Cg(m) Z wgCe(p)Cr(m)
— \/_ N(ngF) dz‘m m/d? fer(OF)
Ca(m) o= ag(n) 4"7r2”N(m)al2
—9 Z g Z Vi Z wiCt (p)Cr(m).
mCOp V N(m) d=1 d N(n@%‘) fEHk(OF)

Recall that we denote by {a;} a fixed system of representatives for CI1(F'). For an ideal m
of O, we write m = va for some a € {a;} and v € (a™')" mod O;" as seen earlier. Similarly,
we write p as p = b with b € {a;} and £ € (b71)" mod OF". Hence, applying the Petersson
trace formula to the above expression, we obtain

> L (f@g, ) Ct(p)ws

fellx(OF)

Cg(va;) aq(n 4"7*"N(va;)d?
Y Sy (e
{az 1/6 u_1)+/0><+ Vul N(nQF)

( 3

Kl(ev,a;;&,b;¢,¢) A/ ev€ [a;bc2?]
et 2 N(ee) J’“( rc|

C ~a;b
cec=1\{0}
X+ X2
\ GGOF /OF

For convenience, we write

(2.4) 3 L(f®g, )cfoo) — My (k) + Bg(h).

fell;, (OF)
where
4" N(p)d?
2.5 M, = g<
25 o) =2 LS 2y, (LTHE).
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and
(2 6) QCZ Z C I/Cll Z Cld V <4n7T2nN(l/Cli)d2)
) 1/2
{ai} ve(ay Ht/oxt v N(va;) N(nD7)
Kl(ev,a;;&,b;¢,¢) 47t/ ev€ [a;bc2]
X Jk;—l .
& N S
cec~1\{0}
ecOrT /052

In the following section, we introduce asymptotic estimates on (2.5) and (2.6), which we use
to complete the proof of Theorem 0.1.

2.2. Proof of Main Theorem. As mentioned at the beginning of Section 2.1, the proof of
our main theorem hinges upon an asymptotic formula for the twisted first moment (2.1). In
fact, the desired formula follows immediately from the lemma below.

Lemma 2.3. Let Mg (k) and Eg,(k) be as in (2.5) and (2.6). As k approaches infinity, we
have the following estimates:

(1) Myy(k) = 2%73@ log(k) + Oy (1),

where Y| (F') is twice the residue of (3(2u+ 1) at u = 0, and log(k) = >_7_, log(k;).

(2) Egp(k) = Op(1).
Proof. Sections 3 and 4 are devoted to proving the first and second statements, respectively. [J

It should be recalled that, by saying k approaches infinity, we mean that max{k;} — oo
while all k; are sufficiently large. Applying the lemma above to equation (2.4) yields the
following proposition.

Proposition 2.4. Let g € II;(n), and let p be either O or a prime ideal. Then, we have

W = Cg(p) n o 00
3 1{fo0 ) Gl =2 KR (P xl) +O,1) (ko0

Finally, we complete the proof of Theorem 0.1: Let g and g’ be primitive forms satisfying
all the hypotheses given in Theorem 0.1. Applying Proposition 2.4 with p = OF gives ¥*,(F) =
¥ (F). A second application of the proposition, with any prime p not dividing nn’, will then
imply that Cg(p) = Cg (p). It follows that the Hecke eigenvalues of g and g’ for T, are equal.
Therefore, we have g = g’ by the strong multiplicity one theorem (cf. Bump [2, Chapter 3] and
Miyake [12]).
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3. CONTRIBUTION OF Mg ,(k)

In this section, we establish an asymptotic formula in the weight aspect for the diagonal

terms ) )
Celb) N~ aa(m),, (4"7"N(p)d
Mg, (k) =2—2 Vi
&P VN ; d 7\ N@ndi)
The summation over d € Z-o in the above expression can be evaluated as follows. Since we
have

o ea(n)y, (ATN()P) 1§ ag(n) 4w N(p)d\ (1 du
; S <Mn—©%))_%; d /(3/2) (N(ﬂ—@%)> 7(5’“) Glu) =
. 1 4”7T2nN<p) —u 1 ) du
" 2 Jp (Seop) 7 (5r0) cwciensn

where 7(1/2,u) is defined as in Proposition 2.1, shifting the contour of integration to R(u) =
—1/2 gives

(3.1)

[e.o]

B () - () (b))

d=1
1 4nrN(p)\ " /1 n du
sl (Saoz) 7 (g) cosenn T

We write the above integral as

1 [ (4aNp)\:" /11 1 dt
I=—— —_— -, —= t —— t | (n(2it .
21 OO( N(nD2) ) 7<2’ Q—H)G( 2+Z>CF( ”—%H‘t

In order to obtain an estimate for the v-factor in the integral I, we recall the following bound
on gamma quotients.

Lemma 3.1. ([3, Lemma 1]) Suppose A > 0 and c is a real constant such that |c| < A/2. Then

T(A+ ¢+ it)

AT < |A 4 it|°.

Observe that Lemma 3.1, along with the trivial bound |T'(z 4 it)| < |T'(z)], yields

SOEIRIICER I IO RS SN
> 7 P EE)  F(EE) T BE) T (R
k—l+1 P k41—
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Here, we remind the reader that k7! is, in fact, []"
that the integral I satisfies

I<<k‘1/

To compute the residue at u = 0 in (3.1), we recall that

i1 K ~1. By setting G(u) = %, we conclude

2,1
e—t +1

N (20t |dt < kT
e M

e = 14+ur+--
I'(a+ w) _ (a) .
I'(a) I(a)" ’
N NG
(o) - ( )
C(2u+1) = 7; +AR(F) -

Using the above Taylor expansions, we obtain

es <(4n (g(?))—u’y (%u> e gF (2u + 1) )
( U
T

=g+ 240 (Z 0 <—k )

ki +1;,—1 4ngp?nN
W B log 2T W) 2(13) .
2 ps 2 N(n®%)
Moreover, we know by Stirling’s formula that

v 1 1

- =1 —— 4+ 0 —

o) =g = 3.+0 (g )
and therefore we conclude that

5 Celp)
" =2 N

This proves the first statement of Lemma 2.3.

M,

gp

1 (F) log (k) + Oy(1) k — oo.

4. CONTRIBUTION OF Eg (k)

In order to give an asymptotic estimate for the off-diagonal terms Eg,(k), it suffices to fix
a representative a in {a;} and consider a partial sum Eg, (k) given by

C ad 4”7T2nN(l/Cl>d2
(41) Egpalk)= > \/—uaz (N(n—iﬁp))

ve(a—1)+ /05t

Kl(ev,a;€,b;en,¢) 4r\/evé [abe?]
x ) ) 6 N(ce) Jes ( ) '

X+ X+ X2 77|C‘
cec-\{0}/Ot ecOST /O
neOs "
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Notice here that we are also fixing a narrow class representative ¢ such that ¢ ~ ab. Inter-
changing the summations and applying some algebraic manipulations, we see that

= ag(n) Cg(v ) 47N (va)d?
Bt = 20 T e (Cxnen )

d=1 a—1 +/O><+

Kl(en™v,a;€,b;¢,¢) 4/ en—2v€ [abe?]
D DY N(co) J( rcr )

c€c~N\{0}/OFT ecOXT /O F2
neOlff

Replacing the sums over € and 1 by the sum over all totally positive units, we obtain

= ag(n) Cg(v ) (4”#2"N(1/a)d2)
Egpa(k) = —— AT
. ; d _;/OH 1/— N(nD2)
KI( 77V a; f b; ¢, ) 47r\/mr€ [abe?]
X Z Z Ji-1 < ]
cec=1\{0}/O% 17€O><+

= ag(n) Cg(va) 4”7r2"N(1/a)d2)
N ; d I/E;)-‘r V N(va) Virz < N(n@%)
5 Ki(r,a:&bieq) | <4m/y§ [abc2]> |

X N(ce) c|

cec=\{0}/OFT

where the last equality follows from unfolding the sum over (a=!)™/O7* to a sum over (a™1)*.
In what follows, we shall open up the Kloosterman sum Kl(v, a;¢, b; ¢, ¢) while also replacing
the terms Vi /5(x) and Jy_1(x) by their integral representations given in (2.2) and (2.3). More
precisely, we write Eg, .(k) as

o0

i) = 00 2 e L (o) ()%

-1 ve(a—1)+

Y Nt Y e (2w (2)) e (2 (D))

cec=\{0}/Ox" ve(a0pl el /anpte)”

) / T (k=l=s) <2m/7y§[abc—2]>s e
@ I

O\

It should be noted that multi-index notation is applied again in the integral representation of

the J-Bessel function. Indeed, / ds denotes the multiple integration / e ds,, - -ds.
(o) (01) (on)
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Upon interchanging summations and integration, we get

e = ag(n)

1
o —2nu —u 2 \u
Egpa(k) = /(3/2)(27T) N(a)*NnDz)"y (§,u) “u Jlt2u

x Y N(ee)! > exp (27riTr (%f))

cecfl\{U}/Oxﬁ_ xe(ai);lcfl/a’i);lc)x
vr
————exp (27riTr <—) )
I/E; v (Va ¢

X / ﬁy%’“\c]’sf’%[abc’2]§(27r)s dsdu.
o (5= +1)

For each ¢ € ¢'\{0}/Oj and = € (a@}lc_l/a”D}lc)X in the above expression, we now focus
on the inner sum over v € (a~!)", which we denote by S(c,z,u). Using the relation between
the (adelic) Fourier coefficients Cg(ra) and the (classical) Fourier coefficients a,(g,) given in
(1.2), we can write

r k—1-—s . . .
S(e,x,u) = Z a,(ga) €xp <27r7jTr (%)) / | ﬁy_é*‘z—ﬂd_SgQ[abC_Q]Q(Zﬂ')S ds.
2

ve(a—1)+ (@

Before we proceed further, we define the classical Hilbert modular form ¢¥¢ = (gq|icts.c)
where o, . = { i ; ] € SLy(F') with b being an element in ¢ such that 7 = 1 4 bc. This

function has a Fourier expansion

9¢(2) = Z a,(g7°) exp (2miTr(vz))

for some lattice L7 in F. Moreover, it satisfies the following relation.

Lemma 4.1. For ally € (R*)", we have g3° (i — f) = (i)' ga (ﬁ + f) :
c ¢

yc ¢

Proof. This follows immediately upon taking z = - — Z in the identity

yc c

cz+x

5°(2) = (c2 +7) g ( +f) | 0
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Now that we have this notation set up, we go back to the computations on S(c,x,u).
Inserting the gamma function at [/2 — s/2 4+ u gives

S(e,zu)= > ay(ga)exp (Qm-Tr <%>>/ |c|~ Sg—[abc 2])§(F7T)sr gk;s) <£>5+5“

ve(a—1)+ (o)

X / y%_%”_1 exp (—27rTr (Q» dy ds
Xt c
/FX+ Z a,(gq) exp < 2mTr ( >) exp <27m'Tr (%))

a—1)+
y / e[ €5 [abe ™22 (27)°T (%) <£>_é+;_uyég+u1 4s dy
(o) F(k 1+S—|—1)F(————|—u) 2T ’

Notice that the sum over v is nothing but the Fourier expansion of g, at z = % + %, and
therefore we have

k—1—s S

) vy [l abe T () ey b,
S(C’m’“)_/&éﬂ“ (EHE) /(U) (== 1)1 (-—- (3) Y ds dy

u)
:Zl/ g:p,c (i_?)/ | | S§ [Clbc ( (k ; s)
rer o \ye ) J F(k_§+s+1)F(%—§+“)

,£+§,u
X <£> ° y_é_%“‘_l ds dy,
2m

where the last equality follows from Lemma 4.1. Hence, we get

=it T wisron () (n(3)

O.

s 215 (9 k—1—s sy,
S / " N G Y
(o)

P )P (L -2 +u) \2n S
St (amm(-25)) [ ety

ve(L2)*

—1+§—u s
% (i) 2z / y 2 3t Loy (—27rTr (1)> dy ds.
2m FXT ye

Applying the integral definition of the gamma function once again results in
VT
S =i o(ge° 2mi'T!
(c,x,u) =1 Z +a(ga )exp(m r( c))
VG(LZ’C)
—s¢3 2 s k—1—s s s—9u
X/ |c|~*€2 [abe™ ](27r)r( )T (5 +3 u)(c> s g
(o)

2
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By folding the v-sum into a sum over (L¥)* /O}", which simply amounts to re-introducing
the n-sum, we can write S(c, x,u) as

—s —2 k—1-s L -
S(C T u)—z 271' 2u Z / C| 5 abc ] I‘( 2 l)rs(2+ u)cszu
27 2

€(9X+

X Z an(g5°) (vm) 23 exp <27Tz'Tr (—@)) ds

uE(Lx’C)JF/OX"'

& labe 23T (A=) (L + 5 — ) .
2 2u 2 2 S—2u,—3
e svg)

’“%*SH)F(%

neOFt

+
X Z ay(gff’c)l/_%_%“‘ exp (QM'Tr (—@>) ds.

VE(L:’C)Jr/O;Jr

We move the line of integration in s to R(s;) = 6 + \; with certain choices of A\; > 0. Indeed,
if n; <1, we choose A\; = 0, and if ; > 1, we choose \; = Ay for some fixed positive constant
Ao. Such choices of \; are made to ensure that the sum over n in the error term is absolutely
convergent. This is mainly guaranteed by virtue of the crucial fact (see Luo [10, page 136])

(4.2) ST Il < .

neORt InjI>1

Upon substituting S(c, z,u) back in Eg, .(k), we get
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Interchanging summation and integration once more allows us to write

1 u2 o0
u) e aq(n)

U d1+2u
d=1

xS [ S
peort @ P2+ (5 -5+
> Z Z |C|—s—1cs—2u

cec=1\{0}/OF* xe(a@}lc—l/aﬁglc) *
zey, —L_Sag . (f—Vﬁ)f
X Z a,(gr ) 2 2 exp (27TZT1" (f)) ds du.
VG(LZ:’C)Jr/O;ﬁ'
Let us now examine the multiple sum (over ¢, z, and v),

S(u, s) = Z Z |57 s 2

cec=1\{0}/OF* xe(a@}lcfl/aDEIC)X
zey, —L_Sag . (5_1/77)5
X Z a, (gr ) 2 2 M exp (27TZT1“ <7>) :
1/€(LZ’C)JF/C)I);+
Lemma 4.2. Let u and s be as above. Then, S(u,s) is absolutely convergent.

Proof. Let us fix a pair (co, 7o) with ¢g € ¢ '\{0}/OF and z, € (a@}lc_l/aQEIC)x. This

gives rise to the fixed matrix a := a0, € SLa(F). In fact, it can be verified that o, .o~ is

in To(Op, a®,") for any ¢ € ¢ '\{0}/Oy and = € (a®'c"/aD;'c)”. Notice that since the
congruence subgroup Iy(n, a® ') has finite index in Ty(Op, a®z'), we have

Fo(OF, a@;l) = U;ero(ﬂ, a@;l)&;,

for some finite number r and matrices dy,--- ,6, € I'o(Op, a@;l). It follows that there exist
v € To(n,a®:") and § € {4y, -+ ,6,} such that a, . = yda. Hence, we have

93¢ = Gali®.c = Galiv0 = galidcr.

If we set g0 := ga|id, we get g=¢ = go|;. Therefore,

S(u,s) < Y > | 2R 3 S Ja (g

Cecfl\{o}/ofé_‘— xe(a@;lfl/aﬁglc)X VE(L:’C)+/(’);§+ =1
< X Tt XY v
e NO/OFT ue(L%) T joxt

< 1

la)| 5= R w)

In the above inequality, we applied the crude estimate a, = O(I/l/ 2). 0
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We write u = 3/2+1iv and s; = 6+ \; +it;. For ease of notation, we put dt = dt - - - dt,, and
A= (M,...,\). Recall that we set G(u) = e* in which case |G(u)| = e®**) « e ", Hence,
0o —v2

Banalb) < [ —

_Oo\/m
XZ ‘6A/

776(’)><+

T (34 ) T (3 + L 4 gy)
F (k:—é—i—l) F (/c—f—é—l)

—) L5 +5 —iv)

k+7+>\ 2) r (—3—2>\+l _ % + “))

dtdv.

Next, we observe that

S

neOst

P2 - )T +5 i)

F(EE + DT (S8 — £ 1 i)

" g F( 7; Ao_i;_j>r<3+,\o+l + >
= s/ iy

- it; 3N+l  it; | - J
7760;+4:1 —o0 F(kﬁ?)‘() —I—%)F(%—%%—w)
J
k-7 it 3+ | ity
s [ECE ey
XH k4T | it 341 : dt;.
YN ey Y E ey

Let us now consider the integral

- p(M_%>F<M_Z~(U_%)>
(v) :/ sy 3—\;+ ¢ dt;
—o0 F(J + >F<—]+Z( —§)>

/oo F(w—’?—)\'—i-ﬁ)r( DA L 34N (v t'))
dt

dt

. J
- F(k+7+>\+ >F<3>\+l]_|_z( _%)>
By Lemma 3.1, we have
Sk +T4+ N it T =3 =N+ A
Ij(v)<</oo%+7j +]+z<v—§]) dt;
3+)\]-

< /_w(kQ + t2)

Furthermore, the application of the change of variable, t; = k; tan(f;), yields

TErw-)?) T

x 342
Iv) < k67 / " Jeos(0)17 (0 + k2 tan®(9)) T do

3+>\j

N

<KV (0 4+ 1)
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Therefore,

—6-A - %) I (3+2A+l +9 2 w)
Z / k+7+A n 2) T (737,\+z T z'v) dt

neox+ 2

< Z HniAOk 6= AO(v —|—k:2 @Hlﬁi o (v —|—kj2)%

coxt j=1 Jj=
1=~r n;>1 1< 1

n

A
< 3 Tk @0+ k) T (02 4 1)
7; J J

E(’)X+J 1 j=1
K n;>1

3
< |U|n>\0k—6 (1}2 + ]{72)2
Notice that the last inequality is guaranteed by (4.2). Finally, since

T3+ 54 w)T (3 + 5 4+ i)
I (k*é%*l) I (k+é71)

3
2

< (k2+v)

we conclude that

o] |’U‘n)‘0€_v2

Egpa(k) < / (K +0*)° k™ dv

— 00 /2+U2

)\04»6)671)
<
0 /9 + ’U2
< 1.

This proves the second statement of Lemma 2.3.
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