P-ADIC L-FUNCTIONS

NAOMI TANABE

1. INTRODUCTION

The purpose of this paper is to construct the p-adic zeta function and p-adic Dirichlet L-
functions. I studied Koblitz [6, Chapter 2] and Iwasawa [5], and introduce their approaches
of the constructions.

The first section consists of the properties of the Riemann zeta function. One of the goal
in this section is to prove the functional equation of the completed zeta function, A(s) =
773/ (5/2)((s) where I' is the gamma function. Using the result and some of the properties
of the gamma function, the values of ((s) are also expressed in term of the Bernoulli numbers
for all the negative integers and all the even positive integers.

Section 2 and Section 3 are based on the study of Koblitz [6, Chapter 2]. Section 2 gives
us the preparation for interpolating the Riemann zeta function p-adically. All the tools that
we are going to use for constructing the p-adic zeta function, such as p-adic distribution and
the integration, are introduced here. The interesting and very useful example of p-adic dis-
tribution is the k-th Bernoulli distribution, given by ux(a+p~Z,) = pY*=Y By.(a/pY), where
By (z) is the k-th Bernoulli polynomial. The measure obtained by making a modification on
i, namely pig o (U) = px(U) — a g (alU) with some «, is going to have an important role
in Section 3. Using this measure With k=1, the p adic zeta function on the set of negative
integers is defined as (,(1 — k) = (a"— 1)~ fo ¥y ,. Some of the properties in Section

3 will show that this actually dlffers from (1 — k) only by a factor of (1 — p*~!). Also, I
would like to note that Kummer congruence shows that (,(1—k) is a p-adic integer and that
(p(1 — k) is continuous for k € Z, k > 0. (See Theorem 4.4) Our goal in this section is to
extend the definition to Z,.

The Dirichlet L-functions and its p-adic interpolation are discussed in later sections. In
particular, all the properties of the zeta function that are discussed in earlier section are
extended to the L-functions. The construction of p-adic L-functions are based on the study
of Iwasawa [5]. One of the key ingredients is a Dirichlet character defined as x, := x - w™"
where x is a primitive Dirichlet character and w(a) is the Teichmiiler representative of a
p-adic unit a. Iwasawa’s approach does not involve the distribution. Instead, he constructed

a power series that has all the desired properties, namely A, (z) = > 7 ¢, (Z’;) where ¢, =

Sio (M) (=1)"7(1 = x:(p)p" ") Bi . Using this series, the p-adic L-functions are defined as
Ly(s,x)=(s—1)'A (1 —s).

Date: April 18, 2008.
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2. THE ZETA FUNCTION

[e.9]

1
In this section, we consider the Riemann zeta function, {(s) = —, s € C, and review
/rLS
n=1
some of the properties.
Proposition 2.1. ((s) = Z(l/ns) converges absolutely for Re(s) > 1 and satisfies the
n=1

FEuler identity

OR | et

P
where p runs through all the primes.

Proof. For Re(s) > 14 68, we have Y >, |1/n°] < 3> (1/n'™) < oo. So it converges
absolutely.

Now we wish to show the Euler identity holds. First, we will show the absolute convergence
of [[,1/(1 —p~*) where Re(s) > 1+ 0. Note that, by the definition of the convergence of an

infinite product, we need to show that Z log (1 — p_‘(”)f1 converges absolutely, where log is

p
the principal branch of the logarithm.

S (Clogl - ) =3 (— y <—p—8>“> )P

P P n=1 p n=1

If Re(s) > 1+,

DD D W BN )

p n=l1 p n=1 p n=l1
1 1
- Zp1+6_1 S22101% < 0.
p p

Thus, > (—log(1 —p~*)) converges absolutely, and so does [, 1/(1 —p~).

1
Now, let € > 0, and choose N such that E 3
n
n>N

prime numbers less than or equal to N. Then

I = I -

p<N p<N n=o ¥

1 1 !
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< e. Let {p;}i_; be the set of all the

1
= Z — by the Fundamental Theorem of Arithmetic
nS

n=[], p;/i



P-ADIC L-FUNCTIONS 3

Therefore, we obtain

1 1 1
I B MR SFEE

p<N n>N n>N
n#Hz p;'lz
and this completes the proof of the Euler identity. O

Theorem 2.2. Let A(s) := 77%/2T(s/2)((s), where T is the gamma function. Then A is
called the completed zeta function and satisfies the functional equation

A(s) = A(1 —s).

ze?

Proof. Let F(z) = prat G(z) = F(—2)z7 ', and H(s) :/ F(z)zs_l%, where C~ =
(—o0, —€] + {7 (t) ;== e : t € [-m, 7|} + [—€¢, —00). Note tﬁat G(z) =e?/(1—e7) =

(-~ 1= 57 .

Now, if we let z — —z in H(s), since (—z)°~

1 s—1)(log |—z|+i(argz—m)) _— __ ,mis s—1

= el e™ 257", we have

H(s) = —e’”s/ F(—z)zs_l—z = —67”8/ G(2)z* tdz,
o+ o+
with CT = (00, €) + {77 (t) := ee™™ : t € [0,27]} + (€, 00). Let us consider

2
/ G(2)z*tdz = / G(2)z"tdz + / G(2)z*tdz + / G(z)z* dz.
o (00,€) v (€,00)2n
The first integral equals — G(t)t*"'dt, and the third integral is > / G(t)t* " 'dz be-

€
cause 25~ = els~Dloglzlo(s=1)2m " For the second integral, one has

2m
/ G(2)z" tdz = —@'/ G(ee ™)ee "5 dt.
vy 0

Therefore, for Re(s) > 1, the integral approaches zero as ¢ — 0 since G(ee™%)e® tends to
zero as € — (. Taking € — 0, one has

G2)=" "z = (2% — 1) / Gty dt,
0

Cc+
and so
H(s) = (—6”3—1—6_”8)/ G(t)t*tdt
0
= —2isin(7rs)2/ e " dt
n=1"0
. L[ g sdt .
(2.3) = —2i sm(ws)Z— e "(nt) - = —2isin(7s)((s)T(s),
n° Jo
n=1

for Re(s) > 1. Note that since the equality holds for all s with Re(s) > 1, it must hold
everywhere.
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d
On the other hand, we would like to consider the integral / F(z)zs_l—z where C,, =
Ch B
(—2n+ D7, —€) +7T+ (=6, —(2n+ 1)) + v, with v,(¢) :={(2n+1)e ™ : t € [-7, 7]} and
7T defined as above. Since F(z)z*"2 has simple poles at z = 2wim where m is an integer,
by the residue theorem, one has

/ F(z)zs_l% = 271 Z Res,—orim (F(z)zS_Q) )

m#0

For positive m, one can see that

s—1_,z
Res.—opim (F(2)2°7%) = lim (z — 2m’m)z = —i(2mm)*~tesm/2,
z—2mim e? —

and for —m (with m > 0),
Res.— orim (F(z)zs_Q) = i(2mm)* e,
Hence we have

371% _ s—1 ( mis/2 _ _—mis/2 - s—1
/Cn F(z)z ~ = 2m(2m)" ! (e e ) Z m

m=1

n

L. s _

= —25T11%¢in <7> E m*!
m=1

If we take n — oo, the right hand side gives —2517%i sin(7s/2)((1—s), and we claim that the
left hand side approaches H(s) if Re(s) < 0. This is because |F(2)z*71| = |25/(1—e7%)] — 0
as n — oo for Re(s) < 0. So,
(2.4) H(s) = =25 7% sin(7ws/2)((1 — s)
for all s with Re(s) < 0, and hence it is true for all s.
By (2.3) and (2.4), we have
sin(ms)((s)(s) = 2°m° sin(mws/2)((1 — s),

or equivalently,

C(1—s) =215 cos(ms/2)((s)['(s).
Now, We are going to use some properties of the gamma function. The proofs or those
properties are omitted here, but can be found, for example, in [1], [2], etc. Applying the
above equation as well as I'(s)['(1 — s) = «/(sin(7s)), which also provides, by substitut-
ing s — (1—19)/2, I'((1 + 5)/2)T((1 — s)/2) = 7/ cos(ws/2), and the duplication formula
['(s/2) = w'/22' T (s)T'((s + 1)/2) ", we will complete the proof:

oty (1 ; s) C(1—s) = m (/29175 oo (%) r (1 _ S) I'(s)C(s)

2
-1
— 092915 (5)¢(5)T (1 = 3)

2
= 7 (5) ¢(s),
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We introduce the k-th Bernoulli number, By, defined by the formula

F(t) = t _OOBtk
()7615—172 "kl
k=0

Notice that

e tk —t tet — ¢ t
—1)*By— = =
kz—o( ) k! et—1 et—1+et—1

tk
= t+) Bip,

and it follows that B; = —1/2 and By, = 0 for all the odd integer k greater than 1.

I also better mention that there is an alternative definition of the Bernoulli numbers, which
says F(t) = te'/(e! — 1). Note that, with this definition, only the sign of B; differs from
our original definition because te'/(e! — 1) = t/(e' — 1) +t. The second definition seems to
fit better for some parts of the theory, as one can see in the following theorem. However, I
would like to follow what Washington calls ”becoming standard usage” in [8].

1 B
Theorem 2.5. ((0) = —5 and for any positive integer k > 2, ((1 —k) = —f.

Proof. Let F(z) and H(s) be same as the ones defined in the proof of the prevous proposition.
% k

Notice that F(z) = Z Bk% + ¢, and so the residue of F(2)z7""!at z = 0is B, /k! if k > 1,
k=0 '

and By + 1 if k = 1. Therefore, we only need to show that the residue of F(z)z7* 1 at 2 =0
is —C(1 — k)/(k — 1)!. Recall that

(2.6) H(1—-k)= / F(2)27 " 'dz = 2miRes,—oF(2)z F 1.
|z|=€

On the other hand, (2.3) and I'(s)I'(1 — s) = 7/(sin(7s)) show that
H(s) = —2mi¢(s)T'(1 — s)7".

Let s =1 — k and apply I'(k) = (k — 1)! (this is true fork such that k € Z and k > 0), then
we obtain

(2.7) H(1—k)=—2mi¢(1 — k)T(k)™' = —2mi¢(1 — k)(k — 1)\.
The proof is completed by (2.6) and (2.7). Il
k—1 (2m)*

2. (2k)!B 2

Proof. The functional equation for ((s), ((s) = 7 V2T ((1 —5)/2)T(5/2)71¢(1 — s) (see
(2.2)), and the duplication formula for the gamma function, I'(s/2) = 7/22'='(s)['((s +
1)/2)7! (note T'((s+1)/2)~! is well-defined for s positive integer, which is what we consider)

give that
C(s) = 72T (s)'T (5 ‘; 1) r (1 - S) (1= s).

Theorem 2.8. For any positive integer k, ¢ (2k) = (—1)
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1 1— 1—s)\ "
ApplyF( ;—S>F< 28):w(sin¥) , and we get

((s) = 52571 (s5)~? (sin @) B C(1—s).

By letting s = 2k and using Theorem 2.3, the desired equality is obtained. U

3. p-ADIC DISTRIBUTIONS

The purpose of this section is to introduce some important definitions and theorems that
we will need to construct the p-adic zeta function.

Let p be any prime. For any nonzero integer x, we define the p-adic ordinal of x, denoted
as ord,x, to be the highest power of p that divides z. In case x = 0, let ord,xz = co. Further,
for any rational number z/y, we define ord, (x/y) = ord,x — ord,y. Now, we can define a
map, | |, on Q as,

‘:L" _{ Iﬁ 1f:177§0
p

0 ifx=0.
Proposition 3.1. | |, is a non-archimedean norm on Q.
Proof. | |, clearly maps all the values z to non-negative real numbers, and |z|, = 0 if and

only if z = 0 by the definition. Also, notice that ord,(zy) = ord,z + ord,y, and so it follows
that [zy|, = [z[p|yl,.

Finally, we need to show that |z + y|, < max {|z|,, |y|,}. If one of x, y, or x +y is 0, this
is obvious, so we may assume that none of them are 0. Write x = a/b and y = ¢/d. Then,
we have

ord,(z +vy) = ord,(ad+ be) — ord,(bd)
> min {ord,(ad), ord,(bc)} — ord,(bd)
= min {ord,(a/b), ord,(c/d)}.

Therefore

1 < 1 1 <
lz+yl, = W < max W, ZW < max {|z|,, |y[,},

and this completes the proof.
O

Let {a;} and {b;} be Cauchy sequences of rational numbers. They are said to be equivalent
if |a; —b;|, — 0 as i — oco. The set, Q,, of such equivalence classes is what we call the field
of p-adic numbers. We may also express Q, as Q, = {370 aip':a; € {0,1,--- ,p—1}}.
We now extend the p-adic norm to Q, by defining |a|, := lim; . |a;| where {a;} is a repre-
sentative of an equivalence class a.

The set of p-adic integers, Z,, and the set of p-adic units, Z;, are defined as follows:
Zp :=1{a € Qp:al, < 1}, and Z) := {a € Q, : |a], = 1}. Note that, in terms of p-adic
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expansion, it means that

Ly = {Zaipi:aie{O,l,--- ,p—l}} and 7, = {Zaipi:aie{o,l,--- ,p—l},ao%O}.
i=0 1=0

Finally, for fixed a € Q, and N € Z, we define an interval, a + pNZ,, which is the set of
elements in Q, whose distance from a is less than p= i.e., a+pVZ, = {r € Q, : |z —a|, <
1/pN}. The intervals form a basis of open sets on Q,. A simpler notation, a + (p), is
sometimes substituted for a + pVZ,. We claim that any compact-open subset of Q, can be
expressed as a finite disjoint union of such intervals. For the proof, let us take any compact-
open subset, X, of Q,. Since X is open, for each a € X, one can find an interval a + (pN )
with N large enough so that a + (pN) C X. Hence X = J,cy (a + (pN“)) is an open cover
of X, and the compactness of X gives a finite subcover, say |J;", (ai + (PNi)). For the
disjointness, choose the largest N; and write

PNifNj_l
i+ (PY) = U (a+06P% + (PY))
b=1
for each j. This completes the proof.

Definition 3.2. Let X be a compact-open subset of Q,. A p-adic distribution p on X is an
additive map from the set of compact-open sets in X to Q,, i.e., if U is compact-open in X
and is a finite disjoint union of compact-open subsets, {U;}.,, then

p(U) =3 1 (U,

A p-adic distribution g on X is called a measure if there exists a positive real number, M,
such that |u(U)[, < M for all compact-open sets U in X.

Proposition 3.3. Let u be a map from the set of compact-open in X to Q, such that

p—1

p(a+(pY)) = Zu (a+0p™ + (M) for any interval a + (pV) in X.
b=0

Then i extends uniquely to a p-adic distribution on X.

Proof. Let U be a compact-open subset of X. We already proved that U can be written as
a finite disjoint union of intervals, say U = J;, I; with I, = a; + (p") for some a; and N.
Define p(U) == > pu(1;).

First we will prove that it is well-defined: Suppose that U = |J I; = |J I{, where {I;} and
{1;} are different partitions. If I;(\ I} # ¢, let I;; := I;(I;. Then I; = |J; I;; and there
exists N’ > N such that [;; = a; + Zg:/]_vl ap® + (p') for each j. By the hypothesis, we
have u(1;) = >, u(li;), and so

u(U) = Z w(I;) = Z (L),

Similarly, u(U) = >, u(I}) = 3=, ; u(lij), thus p is independent of the choice of the parti-
tions.
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To show that x is an additive map, let U be compact-open in X such that U = (J;_, U;,
where {U;} are disjoint compact-open subsets. We know that each U; can be written as a
finite disjoint union of intervals, say /;;. But then, it immediately follows from our definition

of p that
= p (U fij) = Zﬂ(fz‘j) = Z Zu(fij) = ZM(U)
O

In order to introduce a p-adic distribution, we first would like to define the Bernoulli
polynomials. The k-th Bernoulli polynomial is defined as

F(x,t) ZBk k',

where F(t) = t/(e! — 1), as it is defined in the previous section. The first few Bernoulli
polynomials are given as:

1
B()(SL’) :1, B1<$>:JI——, Bg(d?) :l’z—l"i‘é

In general, one can show that By(z) = Zf:o ('Z)Bixk_i, where By is the k-th Bernoulli
number. In particular, By (0) = By, for all k. To prove this property, consider:

= tk t . =t = aktk
B ‘<Z%> (ZF

- S (She) -2 (208 6

Using the k-th Bernoulli polynomial defined above, let us define a map py to be

p (a+ (7)) ="V By (1%) for some a € {0,1,2,---,p" —1}.

Proposition 3.4. py, extends to a distribution on Z,.

Proof. Since Z, is a compact-open set in Q,, it is enough to show, by Proposition 3.3, that

(a+ (™)) = 35020 s (a + bpN + (pVH)), Le. Bk( ): i IZB’f( o g) Let

a = a/p", then

i B + AK S el et - (t/p)b ter WP —1
(8% —_ —_ = = e = .
F ! et—1 el —1 et —1 ellr—1

This completes the proof. O



P-ADIC L-FUNCTIONS 9

This distribution, puy, is called the k-th Bernoulli distribution. Note that py is not a
measure for any nonnegative integer k. However, there is a method to regularize the Bernoulli
distribution to obtain a measure.

Definition 3.5. Let o be any rational integer, not equal to one and that p does not divide
a. We define the k-th regularized Bernoulli distribution on 7, as

pra (U) = e (U) = oy (o),
where aU = {z € Q, : z/a € U}.

We must show that py, is well-defined: It is clear that the sum of two distributions
is a distribution and that for any o € Z, and a distribution p on 7Z,, ap is a distri-
bution as well. Thererfore, we only need to show that p(alU) is a distribution. It can
be shown as follows: Write U as a finite disjoit union of intervals, say {U;}!,. Then
r€al & zx/aelU<« x/ae U for aunique i < x € al; for a unique ¢. This proves that
aU is a disjoint union of {aU;}!' ,, and that u(aU) = > p(al;).

For any « in Z,, let {a}x be a unique rational integer such that 0 < {a}y < p™ — 1 and
{a}y =a (mod pM). If U = a + (p") for some a € {0,1,--- ,p" — 1}, then
alU = {xezp:x/an}:{xezp:]x/oz—a\pg p*N}

= {x €Zy:|1/al, |z — aal, §p‘N}

= {aa}y + (@)
Now, we are ready to take a closer look on py , for each k.
First, let k = 0. Then (4 (a + (pN)) = Lo (a + (pN)) — Lo ({aa}N + (pN)) =p N —p N =0,
for any interval, a + (pN ) This result does not lead us anywhere, therefore let us consider
the case k£ > 1.

Proposition 3.6. p, s a measure for any rational integer, o, not divisible by p and for
all k> 1.

Proof. First, we would like to consider the case k = 1;
o (a+ @) = mlat @) —atm ({eaty + (Y))

(i) ()
a I 1 [{aagy 1
- a5 )

_1oza+111
alpV| 2\« '

We claim that this is a measure. It is enough to show that } 1,0 (a + (pN )) ‘p is bounded for

any a € {0,1,---,p" —1} because any compact-open subset of Z, is a finite disjoint union of
intervals. Note that « is not divisible by p, i.e. a is in Z), therefore 1/a € Z as well. So if
p#2, then 1/2(1/a — 1) € Z,. If p =2, we may write 1/a =1+ ) ;= a;2" with q; € {0,1}
since 1/a € Z. Hence 1/2(1/a — 1) is, again, in Z,.
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1
Since o L%} is also in Z,, it follows that fi; (a + (pN)) € Z, for any interval a + (pN)_ It
follows that ji1 4 is a measure. More precisely, |p1,,(U)|, is bounded by 1.

To complete the proof, we need the following lemma.

Lemma 3.7. Let dj be the least common multiple of denominators of the coefficients of
By (z). Then

lea (a i (pN)) = ka" i1 4 (a + <pN)) (mod pN—orded),
Proof. The equivalence in Lemma can be rephrased as
dipire (a+ (pV)) = dikd* 10 (a+ (pV))  (mod p™),
and we wish to show this equivalence. By the definition of py, o, we have

dy, - praa + (pN)) = dy (Mk(a + (pN)) —a " ({aa}n + (pN)))
(3.8) = dpV*VB, (;%) — dpa RPN B, ({“:‘#) .

Now, recall that By(z) = S5 0( )Biah™t = af — (k/2)a* 4 - + By, since By = 1 and

By = —1/2. Hence, the first part of the rlght hand side of (2.8) is:

k k—1
N(k—1) a _ Nk-1) [ @ _E a N
e b (pN ) = (pN’“ 2 pN(k-1) (mod p™)

Also, the second part of (3.8) is

dpa*p Nk-1) g, ({aa}N)

pN

{aa}N k {aa}ﬁ,‘l N
Ve 9 pNG-D) (mod p™)

(z—%—[z—ﬁb’“—’%——{z—ﬂ)’”)
S 2] 4 (R)) e

Simplify them, and we obtain

dka—kpN(k 1)

Do |

11l
S
o
o
g

dk,uk,a (@ + (pN)>

Il
¥
>~
IS
E
VR
Sl
|}
k<)
e
| I
+
S
Q|+
|
—_
S~
~_
=
o
o,
3

and the proof is completed. O
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|p/k|>

This lemma shows that |u;w (a + { is bounded by max <|u1 o (a —I—

and so it completes the proof of the proposmon above.

Definition 3.9. Let 1 be a p-adic measure on a compact-open set X in Q,, and f: X — Q,
a continuous function. Then the N-th Riemann sum is defined as

SN,{a:ain} Zf La;,N @; (pN))

where X is expressed as a disjoint union of {a; + (pN ) ™., and x,, y are arbitrary points in
a; + (pN) for each i.

Theorem 3.10. imy_.co SN {a,, v} €isls in Qp, and it is independent of the choice of
{‘raz‘,N}'

Proof. There exists M > 0 such that |u(U)|, < M for any compact-open subset U of X. Let
e > 0 and choose N large enough so that it satisfies the following two conditions:
(1) X can be written as a finite disjoint union of intervals, {ai + (pN)}?:l, where a; is

nonnegative integer between 0 and p” — 1 for all i.
(2) For any z and y with |z —y|, <p™, |f(z) — f(y)], < ¢/M. (Such N exists since the
compactness of X guarantees the uniform continuity of f.)

If N > N, then X = (J, (ai + (pN)) has subpartitions, say X = U” (aij + (pN/)).
Hence, we have

Snloan} = Zf%“ (ai ("))
= Z [ (o, N) ZM (az‘j + (pN/>>
S o (7).

and

5 (Flranm) — £, ) 1 (a5 + (o))

i?j

SN {za;n} — ON' N

p

< H%%X ‘f(ﬂiai,N) - f('raiij/)’p ‘M (aij ™ (pN/))

<e.
p

Thus, the limit exists, and the limit must be in Q, by the completeness of Q.
To show the independence of the choice of points, choose any point y,, y from each interval
a; + (pN). Similar to the argument above, one can show that |SN7{%'7N} — SN {ya. N} l, <e. O

We define / fu to be this limit in the above theorem. Note that it is well-defined by the

theorem.
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Proposition 3.11. If f,g : X — Q, are continuous functions such that |f(z) —g(z)|, <€
for all z, and |u(U)|, < M for all compact-open U, then

foe fo

The proof of this proposition is trivial, for |f fru— fgp}p < [If = glplpl, < Me.

< Me.

p

4. THE p-ADIC ZETA FUNCTION

We wish to have the continuity of f(s) = n® where s is in Z,. However, it depends on
n. For example, take s and s’ very close p-adically with s < s’. But if n is in pZ, then
In® —n*|, = |[n®,|]1 —n* |, = |n°|,, and so n® is not continuous. So now, we need to
restrict n to be a p-adic unit. We first show that [n® — n*'|, converges to zero if s and
s’ are congruent modulo p — 1. Fix sy to be an element in {1,2,---,p — 2}, and define
As, ={s€Z,s>0:s5=s5p (mod p—1)}. Then for any s in A, we have [n*® —n®|, =
In*o|,|1 — n*=%0], = |n®|,|1 — n®~Y?, for some integer t. But the exact sequence, 1 —
L +pZ, — Z; — F — 1, shows that nP~! =1 (mod p). Hence, we may write n?~! = 1+mp
for some m, and if s and s are very close, say s — s = (p — 1)pVs’ for some rational integer
s', then we have

A A
p
pNS/ N
p 3)( k N+1 1
= |- mp)*| <Py =

Thus, one can have the continuity of f(s) = n® for this case.
Now, we would like to extend our definition to Z,. But this follows from the claim that
A, is dense in Z,. To prove this claim, it is enough to show that, for any s in Z,, there
exists a sequence {s;} in A, that converges to s. Let us write s = >~ a;p’ and let
8; = Z;:Q a;p’ + (so—ap—ay —---—a;)p'. We claim that such s; are in .AS.0 for all <. This is
because p’ =1 (mod p—1) for any j, which follows from p? —1 = (p—1)(p" *+---p+1) =0
(mod p—1),and so s; =ap+ay+---+a;+s9—ay—---—a; =5y (mod p—1).
Clearly {s;} converges to s, for [s; — s, = |(so —ao — -+~ —a;)p' = 372, | a;p/ . <1/pt—0
as ¢ — 00. Thus, the claim is proven and we can extend a continuous function f(s) =n® to
Zy.

The above argument and Proposition 3.11 say that if z is a p-adic unit and k = &k’
(mod (p — 1)p"), then |z"~1 — 21|, < 1/p"*!, and so we also obtain

J

This result will be used in some of the proofs for the rest of this section.

k—1 k-1
x Hi,a — / x Mo
Z

X X
P P
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Definition 4.1. Let « be a rational integer that is not equal to one and not divisible by p.
For any positive integer k, we define
1 _
G(l—k)= —/ 2" .
Zy

ak—1
One can show that this is well-defined by using the following lemma.

Lemma 4.2. Let k be a positive integer, and let X be compact-open in Z,. Then

/ILLk,a = k/ ':Ek_l:ulpw
X X

Proof. Write X as a finite disjoint union of intervals, say X = [Ji_,(a; + (pV)) for N large
enough. Then

n

A 1/1’]6,04 = Z

=1
But, since pyq (a + (pV)) = ka* o (a+ (pV)) (mod p~N k) by Lemma 3.7, we have

n

[ e =Y bl + 0),
a;+(pN)

i=1

/ 1,uk,o¢ = kzaf_lﬂl,a (ai + (pN)) (mod pN—ordpdk)
X i=1

= k Z flag)pia (ai + (pN)) =k- SN,{xai,N}(f)‘
=1

Therefore, by taking N — oo, we obtain the desired result. 0

This shows that:

1 / ko1 1 / ]
x a — a
a k1 fu a k1t

1 1

— g o (7
oz"‘“—lk'uk’ ( p>
1 _
= @ -1k (1(Zy) — a7 *i(Z;))
(2
k )

and the right hand side of the definition 4.1 does not depend on «. So it is well-defined, and
moreover, it has a following property.

B
Proposition 4.3. (,(1 —k) = (1 —p"") (—f), where By, is the k-th Bernoulli number.

Proof. By the definition of (, and the lemma above, we have

W04 = =y [ oo = ey

We claim that juq(Z2Y) = (1 —a7*) (1 — pF~) By,. This can be easily shown by using the
definitions: Since px(Z,) = p°Bi(0) = By and ux(pZ,) = p" 1B (0) = p* 1B, pe(Zy) =
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11k (Zp) — pe(pZp) = (1 — p*~') Bi. Also note that, for any p-adic unit o, aZX = ZX. Thus

pa(Zy) = m(Zy) — a Fu(aZy) = (1= o F)up(Zy) = (1= %) (1= p*) By,
and this completes the proof of the proposition. O

Note that this proposition says that (,(1 — k) can be obtained by removing the p-factor
from the Euler identity for ((1 — k) since By/k = —((1 — k) by Proposition 2.3.
The next theorem is known as Kummer congruence, and it tells us some properties of (,(1—k).

Theorem 4.4. (Kummer)
B
(1) If (p— 1)1k then ?k is a p-adic integer.

(2) If (p—1)1k and k=K (mod (p—1)p") then
By

(1 _pk—l) % - (1 _pk’—1> — (mod pN+1)'

Proof. If k = 1, then |By/k|, = 1 for any p > 2. For the case k > 1, choose a such that

2<a<p-—1andp—1is the smallest positive integer satisfying a?~! —1 = 0 (mod p).

Note that such «a exists since « is a p-adic unit and it can be identified with a (p — 1)-th

root of unity. By the choice of o and the hypothesis, o* —1 # 0 (mod p), and so a* — 1 is
a p-adic unit. Therefore,

Bk _11—1 _ -1 _

il :|1_pk 1‘p ‘a k_l‘p / T

P Zp

. < |z, < 1.

P

To prove the second statement, let o be such that we chose earlier. Since k is congruent
to k' mod(p — 1)p"~, we have o* = o (mod p"*'). (This follows from the argument in the
first part of this section.) Also, By Proposition 3.11, [2* 1y, = [2¥ 1y, (mod pN*Y).
Hence the proof is completed by Proposition 4.2. ([l

Finally, let us fix sg € {0,1,--- ,p—2}. For any p-adic integer, s, there exists a sequence of
positive integer, say {t;},-,, that converges to s, namely t; = >"_ a;p’ where s = > e a;p’.
Therefore, the following limit makes sense:

gp,so (S) = leglo (1 - p80+(p_1)ti_1) (_BSO+(p_1)ti/(SO + (p - 1>ti)) )

unless s and sg are both zeros. The p-adic zeta function can be defined in the following way.

Definition 4.5. For any o € Z with o # 1 and p { «, and for a fixed integer sy €
{0,1,2,--- ,p—2}, (.5 (s) is defined as

1
L so+(p—1)s—1
C:D,So(s) T - (sot(p-1)s) _ 1 /Z;f T M1,

for any p-adic integer s, except at s = 0 in case of sy = 0.

Note that ¢, (s) is continuous except where sy and s are both zeros . This can be shown
in the same manner as the continuity of (,(1 — k). (See the first paragraph of this section.)
One can also show that (,, (k) does not depend on the choice of « for any k in A,,. This
is because (,(1 — k) = (.5,(ko) where k = s + (p — 1)ko for some sy € {0,1,--- ,p—2} and
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ko € Z with ky > 0. It follows from the continuity of ¢, ,(s) and the density of A, that
(p.so () is independent of the choice of a.
We also note that (,(¢) has a pole at ¢ = 1, by taking & = 0 (and so so = kg = 0 as well)

in (1 = k) = Gp,so (ko).

5. DIRICHLET L-FUNCTIONS

In this section, we would like to define the Dirichlet L-functions and observe some of their
properties. In order to define the Dirichlet L-function, we first need to know the Dirichlet
characters.

Let m be a positive integer. A map x : Z — S' := {z € C: |z] = 1} is called Dirichlet
character modulo m if it satisfies the following conditions.

(1) For all a, b € Z, x(ab) = x(a)x(b)
(2) If a =0 (mod m) then x(a) = x(b)
(3) x(a) =0 if and only if (a, m) > 1.

If the character, x°, is defined as

0 1 if (a,m) =1
X(“):{ 0 ifga,m%>1,

then \V is called the trivial character. In particular, if m = 1, it is called the principal char-
acter and is denoted as 1. Furthermore, the Dirichlet character x mod m is called primitive
if, for any m’ that divides m, there does not exist a character x’ such that y(a) = x/(a) for
all a, i.e., m is the smallest integer that defines x. In this case, m is called the conductor of
X, and denoted by f,. (We will simply denote f when it is clear from the contexts.)

Remark 1. A primitive Dirichlet character x mod f satisfies the following conditions:
(1) x(a) =1 for all a such that a =1 (mod f).
(2) If x is nontrivial, then 25:1 x(a) = 0.

Proof. Choose a such that (a, f) = 1. Then, by the third condition of the definition, x(a) # 0.
Also, by taking b = 1 in the first condition, we may write x(a) = x(a)x(1). Hence x(1) =1,
and so x(a) = x(1) =1 for all a such that a =1 (mod f) by the second condition.

To prove (2), let x be a nontrivial Dirichlet character, and choose b such that x(b) # 0, 1.
(Since x is nontrivial, such b must exist.) Note that Zf::l x(a) = Zf::l x(ab), because for
each a € {1,2,---, f} there exists a’ € {1,2,---, f} such that a’ = ab (mod f). Therefore,

f f /
X)) > x(a) = x(ab) = x(a),
a=1 a=1 a=1
and we get (1 — x(b)) 32/_, x(a) = 0. Since x(b) # 1, the sum must be zero. O

The Dirichlet L-function associated to x is defined by the formula

L(s,x) := %
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We note that if we take xy = 1, then L(s, 1) = ((s).

Proposition 5.1. L(s, x) converges absolutely for Re(s) > 1 and satisfies the Euler identity,

L(S7X):H1_ !

1= Xx(p)p~

where p runs through all the primes.

This can be proved in the exactly same way as the Riemann zeta fucntion (see Proposition
1.1), and the proof is omitted.

The Gauss sum, 7(x,n), associated to the Dirichlet character x is defined as

f

r(xn) = 3 x(a)eens,

a=1

where f is the conductor of x. In case of n = 1, we simply write 7(x, 1) = 7(x).

Let 6 = 6, be

0 if y(-1)=1
5:{1ﬁ§@&:—y

Proposition 5.2. Let x be a nontrivial primitive Dirichlet character mod f, and let

A(s,x) = (f)s/Qr <S ; 5) L(s, ).

™

Then A is called the completed L-series and satisfies the functional equation

A(Sa X) = W(X)A(l -5 X)a

where W(x) = ;%
f ze% 4 e
Proof. Let F(z) = Zx(a)efz—_l, G(2) = F(=2)z"" = ZX(G)_l Ry and
a=1 a=1

d
H(s) = / F(z)zs’l—z where C~ is the path defined in the proof of Proposition 2.2. The
z

c
proof can be completed in the same way as in (2.2). 0

For a primitive Dirichlet character x mod f, the k-th generalized Bernoulli number, By, ,
is defined as
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Note that
<t ! tert telf ot
D By = 2x@)——=> x(f—a)
k=0 a=1 a=1
f —a 00 1k
(=t)e
= x(=1) ZIX@m kZ kakr
a= =0

Thus, B, =0 for k # § (mod 2) if y # 1.

Proposition 5.3. For a nontrivial primitive Dirichlet character x mod f, the k-th general-
ized Bernoulli polynomial, By, satisfies the following equation:

= gx(a)Bk (%) ,

where By (x) is the k-th Bernoulli polynomial defined in the previous section.
/

1
In particular, By, = ? Zx(a)a
Proof. In the definition of By ,, substitute ¢t/ f for ¢, and we have

Biy S
Z fk IR

a=1
1 ! > a\ t*
RN

Comparing the coefficients of the t*-th term, we obtain the desired equation. B, follows
from the fact Zf::l x(a) =0 (see Remark). O

Some other properties of the generalized Bernoulli numbers are proved in the appendix.

Theorem 5.4. For a Dirichlet character x and any positive integer k,
By

e

This can be shown by using the proof of Theorem 5.2 and the functional equations of the
gamma function, and by the same way as Theorem 2.5.

L(1—k,x)=—

Theorem 5.5. Let x be a primitive Dirichlet character of conductor f. For a positive integer
k with k = 0 mod 2,

k
Lk, ) = (~1) 0927 (2; ) 2z

Proof. The functional equations of the gamma function will be used without proofs, again.
(See [1], [2], etc. for the proofs.)
The funtiona equation for L(s, x) shows that

L(s,y) = ;(\’% (?)Smr (1 - ”) r (S;(S)lL(l —5%). (See (5.2).)
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Under the hypothesis £ = § (mod 2), (k + §)/2 is a positive integer, and it follows by a
k49 k490

property of the gamma function that I" (%) = (% — 1) I. Also, another property

of the gamma function shows

Is+1) I'(s+n)
F<S)_T_“._s(s—l—l)--«(s—i—n—l)’

which gives that

p(L=k+0Y _ I'(1/2) G R e e )]
( 2 )‘2(k+6>/2(1—k+5)(3—k+5)---(—1)_ (k—06—1)! '

Applying these and also Theorem 5.4, L(k, x) may be written as

@HT( ) (7 : k=01 (kTié_l)!
160 =0T (G) G

But a fraction part on the right hand side can be reduced to 2¥/k! for any k = ¢ (mod 2),
and the desired result is obtained. O

6. p-ADIC DIRICHLET L-FUNCTIONS

Finally, we would like to construct p-adic L-functions in this section. This section is based
on Iwasawa [5, Chapter 3|. Throughout this section, let K be a finite extension of Q, in
Q, and K[[z]] := {A(z) = > %, @iz’ : a; € K} the set of all power series. We say that A(z)
converges at s to mean that |a;s'|, — 0 as i — co. We start this section from an important
property of power series:

Lemma 6.1. Let A(x), B(x) € K|[[z]] be convergent in a neighborhood of 0 in Q,. Suppose
there exists a sequence, {s;}, in Q, such that s; # 0, s; — 0 as i — 0, and A(s;) = B(s;) for
all i. Then A(z) = B(x).

Proof. Suppose A(x) # B(x) and write A(z) — B(z) = >, ¢,2". Then, there must exist
n such that ¢, # 0. Let ny be the minimum of such n. Then one has 0 = A(s;) — B(s;) =
D nsng Cosy for all i, and

—ng n
s; g CnS;

n>ng

— 1
§ CnS? no+

n>ng

|_Cno|p: = |5i|p

p p

Since ‘anno Cpsl ot |p is bounded, if we take 7 — oo then we get c,, = 0. This contradicts
to our assumption. O

Now, let us define ||>°° ) a;a’|| := sup; |a;|, and Px := {A(x) € K[[z]] : ||A]] < oo}. We
claim that | || is a norm on Pk, and Pk is complete in || ||. The proofs are shown below.

Proposition 6.2. || || is a norm on Pk.
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Proof. Let A =3"" a;a" and B =Y .2, ba'.
(i) Clearly ||A|| > 0. Also, ||A]| =0 < sup, |a;|, =0 < |a;|, =0 for all i & A = 0.
(i) [A + Bl = sup; a; + bil, < sup; (max{|aily, [bil,}) = max([[A[], | B]]).
(iii) [AB| = sup;([a:bil,) < (sup; |ailp) (sup; [bi]p) = [|A] - || Bl O

Lemma 6.3. Pk is complete in the norm, || ||

Proof. Let {Ax(x)}2, be Cauchy in Px and write Ax(z) = >~ arnx”, with ay, € K for
all & and n.

Let € > 0. Since Ay is Cauchy, there exists N such that ||Ay — Aj|| < e for all k, 1 > N.
Therefore, by the definition of || ||, |akn — ain|p, < € for all k, I > N and for all n. Hence
{akn}p2, is Cauchy in K for all n. But then, since K is complete (this is because Q, is
complete), there exists a,, in K such that {ay,} converges to a, as k approaches co. Let
A(z) = > 07 azz™. To complete the proof, we need to show that Ay(z) converges to A(x)
and A(x) is in Pg.

Suppose that Ag(z) does not converge to A(x). Then, there exists € > 0 and a subsequence,
{ar, n}, of {arn} such that |ag,n; — an,|, > 2¢ for some n;. For this €, choose N so that
\agn — apnlp < € for all k, I > N and for all n. If we let I > N and fix k; > N, we have
|G, — @y lp 2> |Gk, n; — Gnglp — |Gin; — Gk m,lp > € Thus, {a;,,} does not converge to a,, as
[ — oo, and it contradicts that {ay,} converges to a, as k — oo for all n.

Finally, since sup,, |ag, — a,| < € for some k large enough and |ay,,|, is bounded, |a,|, must
be also bounded for all n, and thus A(x) € Pk. O

Now, define (Z), for any non-negative integer n, to be the polynomial of degree n given by

(x) _wle—1)-r—nt1)

n n!

This is continuous on Z,.

Proposition 6.4. Let n be a non-negative integer, and write it to the base p, i.e. n =

ag +op+ -+ apt, with 0 < a; <p—1 for all i, and let S,, = ZEZO «;. Then,

1)

, and so we wish to compute |1/n!| . We claim that ord,(n!) =
p

' < pm=Sn)/(=1)

IN

Proof. Clearly H (z) H
(n=5.)/(p—1).

1
n!

ord,(n!) = Zordp(z')
(6.5) = > 14 D) 24+ >

1<i<n 1<i<n 1<i<n
plii p?[li Pl

Note that the number of positive integers less than or equal to n and divisible by p is

[n/p] = a1 + agp + - - - aup'™!. Similarly, the number of positive integers that are less than
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or equal to n and divisible by p’ is [n/p’] = aj + ajip- -+ aup'™? for all j = 2,3,--- |t
Hence (6.5) is equal to

t

t t t
n
SR SRR SR SRS
P i=1 i=2 i=3
On the other hand,

n— Sy, 1 _
o1 = o mDtan(T -4 ta(p - 1)

= ay(Ltp+-+p ) +ai (L+p+ - +p )+ 4o

t t
= > ait+p) ai++p
=1 =2

—ord,(1/n!)

This proves the claim, and so |1/n!|p =p = pordr() — p(n=5)/(p=1) O

Theorem 6.6. Let 0 < r < p~/®=Y and A(z) = 302 a;(5) with a; € K and |a;| < Mr?

for some M, for all i. Then A(x) € Pk and the radius of convergence of A(x) is at least
(rp"/ =)~
rp .

Proof. Let Ag(z) = Zﬁ:o ap (Z) Then, Ag(x) is a polynomial of degree k, so it can be also
written as Ay(z) = > ", aknx™ with ag, = 0 for all n > k. By Proposition 6.5, we have

(z)

and so Ag(z) is in Px. Also, {Ax(x)}32, is Cauchy because, for [ > k, we have

T k+1
A< 1)
A = Ay]| < max (Ilan (n> ||) < M (rp!/PV)

and this converges to 0 as k, [ — oo. By the choice of A(x), it is clear that {A(z)}
converges to A(z), and the limit is in Py by the completeness of Pg.

Now, we wish to prove the last assertion. Write A(z) as A(z) := ) aonz™. Then, by
Lemma 6.3, ag, — ao, as k — oo for each n. Let n < k, then

8

‘ < ‘an|pp(n—5n)/(17—1) < M?”np(n_S”)/(p_l) <M (Tpl/(p_l))n,

|ak,n|p = |ak,n - CLn—l,n|p S ||Ak - An—l“ <M (Tpl/(p_l))na

and by taking k — oo, we obtain |ag,|, < M (rp/P~!)". Hence, if |z|, < (7“101/1’_1)_1 then
lagnx™, — 0 as n — oo. O

Theorem 6.7. Let {b;}3°, C K and define ¢, := 3" (") (—=1)""'b;. If there exists M > 0

such that |c,|, < Mr™ for some r with 0 <r < p= /@D then A(z) := 3" ¢, (%) is in Pk
and A(k) = by for allk=1,2,3,---.

Proof. By the previous theorem, A(z) is well-defined, and is in Px. So we only need to show
that A(k) = by for all k. Let us write A(z) = )~ a,z"™. First, we note that for any positive

integer k, |k|, < 1, and that the radius of convergence of A is at least (7“191/(1"*1))71 > 1 by
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the theorem above. Thus, A(k) is well-defined for all £k =1,2,3,---.
Let A;(z) =Y _, cn(%). We claim A;(k) = by, for k < i. This can be proven as follows:

ety = 3 (S (1)) G

n=0 i=0

< (S (En)

so by multiplying both sides by e!, we get

Sein (500) (£5) -5 (5005

Thus, b, = 7, c]( '), and it follows that, if i > k, then A;(k) = 30 _, cx (") = S o Cn (") =
by
Let o € Q, with |a|, < (rpl/(p_l))_l. It is now enough to show that |A;(a) — A(a)|, — 0 as
i — 00, or equivalently |a; ,a" — a,a™|, — 0 as i — oo for all n. ‘
If i < n, a0 — a0, = |a,a™, < M (rp/®)" |am < M (rpV/@®D)"|ali. (See the
proof of the previous theorem.)
If ¢ > n, then

@@ — anQ”| = ain — anlplaly <suplain — anlp - |aly

- M (Tp1/<p—1>)i+1

_ M) al,iffa], > 1
M (rpl/(p_l))l if |af, <1

|l by the proof of the previous theorem

Thus, |a;, — anl, is bounded for all n and converges to 0 as i — oo. Hence A(k)

1l

We note that Lemma 6.1 guarantees the uniqueness of such a power series A(x).

Let g be an integer such that:

_Jp ip#2
=Y 4 ifp=2

We will fix this notation for the rest of this section. Now, let a be an element in Z; and
write a = > a;p' with 0 < o; < p—1 and ap # 0. First suppose p # 2. Since ay is not
divisible by p, we have 0/8_1 = 1 (mod p). Therefore we can identify «y with a primitive
(p—1)-th root of unity. Let us w(a) be such a (p—1)-th root of unity. (This is the Teichmiiller
representative of ag.) If p = 2, take an element such that a = 1+ ;2 + Y .2, ;2" with
a; € {0,1}, and similarly identify 1 4+ «;2 with {£1}. Also, let (a) := a/w(a). In this way,
any p-adic unit @ can be written as w(a)(a). We also note that (a) is an element in 1+ ¢Z,.
Let us extend w to Z,, by setting w(a) = 0 for all a € Z,,/Z5. Then, clearly this is a Dirichlet
character of conductor q.

For any Dirichlet character, y, of conductor f, we define y,, := x-w™" where w is a Dirich-
let character defined as above and n is any positive integer. Let us say f,, is the conductor
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of xn. Then, f,, must be a factor of fg. But f must be also a factor of f,q since y = x,, -w",
and so f, differs from f by only a power of p. Therefore, if a is a rational integer such that
(a,p) =1 then (a, f) = (a, f,), and it follows that y,(a) = x(a)w(a)™" for any such a.

Let K = Q,(x) and define

k

by, = (1 — Xk(p)pk_l) By, and ¢ := Z (

i=1

k) (—1)""b,.

]

Also let Ay (z) :== 307 ¢ (7). We define p-adic Dirichlet L-functions as:

n

1
Ly(s,x) = s A1 = 5).

We claim that this converges in {s €EQy:ls—1], < (pl/(f"_l))*1 |q|p}. However, it re-

quires a bit more work to prove that this function is even well-defined.

1
Proposition 6.8. In Q,(x), Bk, = lim —fSkX(p”f), where Sy, (n) =Y "_ x(a)a”.
n—oo pn ’ )
In order to prove this proposition, we will use the k-th generalized Bernoulli polynomzial,
which is defined as follows:

f £k
Fy(z,t) = Fy(t)e™ = ZX(a)Bk,x(x)H-

z=1

Similar to the Bernoulli polynomials, one can show that By, (z) = Zf:o (]:) B x". Some

other properties of the generalized Bernoulli polynomials are listed in the Appendix.
Now we are ready to prove the above proposition.

Proof. of Proposition 6.8.  We are going to use a property of the generalized Bernoulli
polynomials, which says By, (x) — Biy(z — f) = k:Z(’:Zl x(a)(a +z — f)*! for all k > 0.
For the proof of this property, see the proposition A.2.(3).

1
We claim that Sy, (nf) = —— (Br+1x(nf) — Bi11,,(0)). In order to prove this, take x =

kE+1
nf,(n—1)f,---, f in the equation above, and we get

f
Bisin(nf) = Brpix (n=1)f) = (k+1)) x(a)(a+ (n—1)f)"

Biaialf) = Buoan(0) = (k+1)3 x(a)d".
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Taking the sum of each side shows that:

f n—1
BkJer(nf)_BkJrl,X(O) = (k-i—l ZX Z a_|_2f k
=0

1

—

n—

x(a)(a+if)"

ng

= (k+1)

1

-
I
o

a

i
L

xla+if)(a+if)*

]~

= (k+1)

1 =0

= (k+1) ZX +1)Sky(nf),

a

&h

and this completes the proof of our claim.
Using our claim and the property, By, (z) = Zf:o (]f) B xh =t

k+1

n 1 E+1Y\, , i " "
Skx(P"f) = 1 Z ( ; )( FFYB = p"fBiy + (0" f)* - (other terms),
i=1

or Spx(P"f)/(P"f) = Bix + D" f - (other terms). So take n — oo and we get the desired
result. 0

Proposition 6.9. ¢, =0 (mod ¢*"2f~1) for all k =1,2,3, -

Proof. By the definition of b, and Proposition 6.8, one can see that
pf k—1 p"f
Xk(P)p" .
b, = lim xr(a)a® — lim Xk xk(a)a
n—oo P j‘jg: n—oo pnj? 2;;

1 pnf Xk (p)pkfl pnflf
= lim — » xi(a) lim xr(a)ak
n—»aypnf 2;; n—o0 m 1f —
"f nflf
= lm Zxk a* =Y xk(pa)(pa)*
n—oo P f —
1 p"f
= lim — » xp(a)a” = — > x(@w(a)*w(a)*(a)*
n—00 P f EE: n%aapnf 2;;
aEZ>< aEZ;
= lim — k
n—%oo])tf jg:
aGZ><

Hence

k ' . 1 " f i
o=t L3 S (M)t = i LS e o) -1

=0 a=1
a€Zy a€Zy
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So we need to show that — Z =0 (mod ¢*~2f71) for all n > 1. We wish

aEZ><
to show it by induction.
First let n = 1. Then the left hand side of the congruence is congruent to 0 modulo (¢*~!f~1)
since ((a) —1)¥ =0 (mod ¢*), and so is congruent to 0 modulo (¢*=2f~1).
Now let n > 1, and a a positive integer less than ¢"™ f with (a,p) = 1. Write a = ap+a1¢4"f
with 0 < ap < ¢"f —1and 0 < oy < ¢ — 1. This ag satifies w(a) = w(ag) and x(a) = x ()
because a = « (mod ¢), and

a=w(a)(a) = wla)la) +wlag"f)(arg"f)
= w(a){ao) +1-ong"f
This shows that (a) = () + w(a) 'a1¢" f, and so we obtain

(@) =1 = ((ag) = 1 +w(a)"arg"f)"

k

= Z( ) ag — 1) ( (a)_lalq"f)kﬂ.
1=0

But then since ((ag) —1)" =0 (mod ¢') and (w(a) a1 )" = 0 (mod ¢"*~9), the i-th

term of the sum is zero mod (¢"+"*~9). Tt follows that ((a) — 1)* = ((ag — 1)* (mod ¢"++1)

since, for any i < k, i+n(k—1i)=(n—1)(k—1i)+k >n+ k— 1. Multiplying by x and

taking the sum give

i f

Z x(a) ({a) = 1) =¢ Z (a) (g — 1) = 1" (mod g™+ 1),
a=1 ap=1

pta prog

or equivalently

i q"f
1 1 Lo,
7 > X(@ (@) =1 = == "x(a) ((a) = 1" (mod ¢"2f 7).
¢ = " f =
pla
This is zero mod (¢"~2f~1) by the induction hypothesis. Take n — oo, and we get the
desired result. U

This proposition says |cg|, < |q_2f_1}p |q|';. Thus, by taking r = |g|, (< p~%/®~V) and
= [¢~?f~!|, in Theorem 6.7, one can show that A, is well-defined in Py () and that it
converges at s for {5 €Q,:ls—1], < (pl/(p_1)|q|p)71}.

Proposition 6.10. For a Dirichlet character x and any positive integer k,

L1 ko) = (L=l (<2 )

Proof. This follows directly from the definition and Proposition 6.7, because

L,(1—k,y) = —le(k) _ ! (1= x(@)P" ") B,

k k
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O

We also note that this proposition and Lemma 6.1 prove the uniquness of such a mero-
morphic function. Moreover, since A,(x) € Py, (y), one can write A, as a power series, say
A (x) =" yan—1z". Then,

Lp(87X) = S—lzan 1 1_3

o0

V'a,_1(s—1)"
:0

n+1 1)n

If s =1, then we have A, (0) = (1 - X(p)p DBy, since xo = x. If x # 1, then By, =0
by Proposition 4.4 and Remark 1, and so A,(0) = 0. Therefore, a_; = 0 and Ly(s, x) is
holomorphic at s = 1. If x = 1, then By, =1 and so A,(0) =1 —1/p. Hence L,(s,1) has a
pole at s = 1 and its residue is 1 — 1/p.
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APPENDIX A. BERNOULLI NUMBERS

In this appendix, we will prove some properties of Beroulli polynomials and generalized
Bernoulli polynomials. First recall each definition.

Definition A.1.

Bernoulli numbers: Z Bk i

: . te™

Bernoulli polynomials: Z Bk(a:)y =5
I et —

Generalized Bernoulli numbers: Z kX Z x(a f T
e
k=0
! e(a+x>
Generalized Bernoulli polynomials: Z By (2 Z x(a

Proposition A.2. For the Bernoulli polynomials, the followings are true.

(1) By(z) = i (k) Bt

Jj=0 J

Proof. Consider the following.

s tk te®t tk =, xktk
2 Bl = e :(Z%; >

(2)  Bix) = Zk:<_1)j (’f) B+

Proof. Note that

t te! >, w1
et—1 1—et :Z(_l) BkE'
k=0
Therefore,
" » o0 Lotk otk
et = (D) (S
k= k=0
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(3) Bp(x +1) — Bi(z) = k"' (k> 0)
Proof. Consider the following,

o0 k wt o0 kik+t1
Z t te ¢ Zx t
k=0 (Belz +1) = Bula)) K ﬁ(e = Pl ’

and compare the coefficients.

(1) Bl-12)=(-D)'Bia)  (k20)
Proof.

— tk —xt —xt
I;)Bk(l_x)ﬁ - et—le :e*t—le

Il
YRS
(]

T

—

=

&

ol
&=| %
~_—
N
(]

N
=8
| T

~
ol
~__—

(5) By(x) = kB ()
Proof. Use the second property to get

Bl = 31 (5) Bt
and apply (k — ) (’;) = k(k ; 1). Then
Bi(z) = kkil(—1)j <k . 1) Bjzk—i—1
=0

(6) Br(0) = By, and Bi(1)=(-1)*B,  (k>0)

Proof. For the first part, take © = 0 in (1), and for the second part, take = 0 in (4).

(7) /0 Bi(z)dx =0
Proof.

1 1 1 ,
| B@ar = =5 [ Ba@a w6

1

= i1 (Be+1(1) — Be41(0)) =0 by (6).

27
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Proposition A.3. For the generalized Bernoulli polynomaials, the followings are true.

1) B —Z()

Proof. Consider the following.

> tk test . > tk > xktk
Y Brx(@)ym = Y x@) g e =D Bram | (DT
k=0 k=0

I
[~
[~]=

PR
S
~_

&
=
N

=

Eal

d
~_
=| %

k=0 \ j=0
O
. k
. i
@ Bl a0 0 (§) Bt
— J
J
Proof. First, note that
f f _
teat te at
;X(a)eftfl = ;X(f )176 ft
DY
= X x(a —
a=1
= XD DB
k=0
Since S B oy teat“ ly th It for th
ince ; k,x(x)ﬁ = ;X( ) —¢" now apply the previous result for the right hand side
and follow the same argument as of (1) to get the desired result. |
f
k—1
(3) By (%) = Bex(z — ) =k Y x(a)(a+z — f)
a=1
Proof. Consider the following.
tk te(a-i—a,)t 3
Z (B, (z Bk,x(x_f))ﬂ = Zx(a)ﬁ(l—e )
k=0 a=1
f _
te(a+x)te ft
= ZX(G Tt —1 1)
a=1
f
= Zx(a)te(“” Nt
a=1
f > (a+z — f)ktk
= D xty
a=1 k=0
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This shows that

k!

X(a)(a +r— f)kil (k‘ — 1)|

M-

Bk,x(x) - Bk,x(x - f) =

1

)
Il

= kZX(a)(a—i—x—f)k_l for k>0.

a=

[

k ik
(@) Budf—2) =x(=D ) 1>Jf’“(j)3j,x<x>
j=0
Proof.
[e.¢] k 00 .
k=0 k=0

(5) By (x) = kBy_1x(x)
Proof. Using the second property, we get
k—1 ke ‘
B (o) =x(-1) 2 (1)) Bt )

Jj=0

-1
:k<k ) )toget
J

k-1 .
Bl/c,)((‘r) = X(_l) (_1)j < ] )Bj7xmk_j_l k= kBk—l7x(x)~
7=0

Apply the property (k — j) (I;

N———

x>
|
—

f
) Bin® =B (k20), and Buyl(f) =3 x(@a + By,
a=1
Proof. For the first part, take 2 = 0 in (1), and for the second part, take = f in (3).

f
(7) /0 By (z)dx = Zx(a)ak

29
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Proof.

f 1 f
B, d —_— B, d by (5
; ko (@)d k:+1/0 k1 (@)da y (5)
1
= m(BkH,X(f) — Biy1,,(0))

f
1
T o kr1 ((k +1) Zx(a)ak + Bit1,x — Bk+1,x> by (6)
a=1

Theorem A.4. (Clausen and von Staudt)
(1) Ifp>2 and (p—1)|k, then pBy = —1 (mod p).

(2) If p=2 andk is even or 1, then 2By =1 (mod 2).
Proof. To prove the first statement, let & = 1 + p and consider

B el - _ _
(A.5) pBy = —k:p< kk) = —kp(1—pFH(a" =1) 1/ 2" g
Zy
Since a ™ —1 = (1+p)™* —1 = —kp (mod p¥**2) —kp/(a=* — 1) = 1 (mod prdrk+2),
and so this is congruent to 1 modp. Therefore (A.4) is congruent to fo ¥y o mod p.
P
Now we claim that [« 2"y 0 = [« 27 10 (mod p) for any p-adic unit, 2. This can
P P
be proven by mimicking the first paragraph of Section 4. To complete the proof, we claim
that [,x 27 ' = —1 (mod p). For any z € ZX, write z = Y%  x;p" with zo # 0, and
P
define g(x) = 1/x. Note that this is a locally Constant function, for g(z¢ + pZ,) = 1/x,.
Repeating the same argument as the proof of the previous claim, we get fZX T . =
P

fz; gl (mod p), and it is now enough to show the right hand side of the last equality is

congruent to —1 mod p.
Write g as g = Y277, Xat(p)/@ Where Xoq(p)(2) = 1if 2 € a + (p) and 0 otherwise, and we

obtain
p—1

p—1
1
/ gl = Z / Lina =D, ~piala+(p))
VA +(p) a= 1
Simplify the right hand side by using the definition of y; , and substituting o = a + p, the
desired result follows. This also completes the proof of the theorem.

For the second part, if &k = 1 or 2 then clearly 2B, = 1 (mod 2). So now suppose k > 4
and k is even, and let o = 5. The same proof as above shows that 2Bj, = 1/2 [, 2" 'y 5
2

(mod 2?) = 1/2 [ « 2 'y 5 (mod 2%). Now, we claim that [,« 2 ;5 = 2 (mod 2%). This
2 2
can be shown in the same manner as the first part, with a locally constant function g(z) =
1/(1 + z; - 2) for any 2-adic unit © = 1+ >, x; - 2*. This gives that 2B, =1 (mod 4) and
so it is congruent to 1 mod2.
([l
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