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Abstract. Game-theoretic models of influence in networks often assume
the network structure to be static. In this paper, we allow the network
structure to vary according to the underlying behavioral context. This
leads to several interesting questions on two fronts. First, how do we
identify different contexts and learn the corresponding network struc-
tures using real-world data? We focus on the U.S. Senate and apply
unsupervised machine learning techniques, such as fuzzy clustering algo-
rithms and generative models, to identify different spheres of legislation
as context and learn an influence network for each sphere. Second, how
do we analyze these networks in order to gain an insight into the role
played by the spheres of legislation in various interesting constructs like
polarization and most influential nodes? To this end, we apply both
game-theoretic and social network analysis techniques. In particular, we
show that game-theoretic notion of most influential nodes brings out the
strategic aspects of interactions like bipartisan grouping, which typical
centrality measures fail to capture. We also show that for the same set
of senators, some spheres of legislation are more polarizing than others.

Keywords: Influence in networks · Machine learning and networks ·
Computational game theory · Graphical games

1 Introduction

In recent times, the study of social influence has extended beyond mathematical
sociology [12,31] and has entered the realm of computation [1,3–5,16,18,21–24].
A computational study of “influence”– however we define it – is key to under-
standing the behavior of individuals embedded in networks. In this paper, we
model and analyze social influence in a strategic setting where one’s behavior
depends on others’ behavior. Since game theory reliably captures such interde-
pendence of behavior in a population, we ground our computational approach
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in game theory. The strategic setting of our interest here is the U.S. Senate. We
model the influence structure among the senators by taking into account the
relevant context, which we call the spheres of legislation. We learn these mod-
els of influence from the real-world behavioral data on Senate bills and voting
records. Our particular focus is on analyzing machine learned influence networks
to answer various questions on polarization and most influential nodes.

Interestingly, most computational models of influence assume a fixed network
structure among individuals. We relax this simplifying assumption, allowing the
network of influence to vary according to the spheres of legislation. For example,
bills on finance may induce a very different influence network among senators
than bills on defense, which may in turn have different impacts on inference
problems like polarization and most influential nodes. One central question in
this regard is: How do we identify different spheres of legislation that may have
different implications on these inference problems? We address this in Sect. 2.

After identifying spheres of legislation, we can learn an influence network
among the senators for each sphere by adopting game-theoretic models of strate-
gic behavior. Broadly speaking, modeling and analyzing congressional voting
behavior has been a trending topic in both political science and computer sci-
ence [6,10,16,18,29], in part due to the availability of data. In particular, we
use the linear influence game (LIG) model of strategic behavior proposed by
Irfan and Ortiz [17,18] and its recent extension [16]. We learn these models
using data from the spheres of legislation. In LIG, each senator exerts influence
upon (and is subject to influences from) other senators in a network-structured
way. The model focuses on interdependence among the senators and adopts the
game-theoretic solution concept of Nash equilibrium to predict stable outcomes
from a complex system of influences. This notion of Nash equilibrium leads to
a definition of the most influential senators, where a group of senators is called
most influential with respect to a desirable outcome if their support for that
outcome influences enough other individuals to achieve that outcome. The LIG
model will be elaborated in Sect. 3 and machine learning of this model using the
spheres of legislation will be detailed in Sect. 4.

While game-theoretic prediction of congressional votes has been well studied
using the LIG model and its extensions [16–18], an analysis of the machine
learned networks of influence did not get much attention, which we address
here. Similarly, algorithms for computing most influential nodes in a strategic
setting have been studied before (e.g., [18]), but their structural analogs like
centrality measures have not been explored in a comparative fashion. In other
words, what do we gain by using a game-theoretic definition of most influential
nodes as opposed to a structural definition? We address questions like this.

Furthermore, polarization in social networks has been well studied [1,13,27],
especially in the political arena [7,9,26,32,33]. Three salient points distinguish
our approach from the rich body of literature: (1) Ours is a model-based app-
roach, where networks are central to predicting collective outcomes, (2) we learn
the networks using behavioral data, because the networks are not observable,
and (3) we seek to show that polarization in Senate varies according to the
spheres of legislation. We do not touch on the rising polarization in Senate over
time, which by now is a well-settled matter [8].
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The past two terms of Congress are especially interesting for analyzing net-
work behavior and polarization. The 114 th Congress ran from January 2015
to January 2017 and the 115 th Congress ran from January 2017 to January
2019. In both terms, Republicans controlled the Senate, but the executive power
was different. In the 114 th Congress, Barack Obama (D) held the presidency;
in the 115 th, Donald Trump (R) held the presidency. Despite the two oppos-
ing parties holding presidency, both terms are perceived to be deeply polarized.
Interestingly, when we study different influence networks among the same group
of senators arising from different spheres of legislation we find that polariza-
tion is not really equally applicable. It very much depends on the sphere under
consideration. Our aim is to put polarization and other inference questions like
most influential nodes in context. Before continuing, we note that all supplemen-
tary materials, including detailed literature reviews, visualizations, and technical
details, are included in the Appendix.

2 Spheres of Legislation

We use an unsupervised machine learning technique, namely fuzzy clustering,
to assign bills to different spheres of legislation based on the bill subjects. The
clustering algorithm uses data obtained from the @unitedstates project (https://
github.com/unitedstates/congress). In particular, we use bill data and roll-call
data. The latter contains each senator’s “yea,” “nay,” or abstaining votes, while
bill data includes a list of subjects incident to the bill, among other attributes.
There are 820 subjects ranging from “Abortion” to “Zimbabwe,” and multiple
subjects describe each bill. Additionally, each bill is assigned a single “top term,”
the broad subject which best describes the bill out of 23 possible top-level sub-
jects. We use the roll-call data to learn strategic interactions and bill data to
extract bill topics. For the 114 th and 115 th Senates, we have a total of 103
senators and 722 bills (details are in the Appendix).

We seek to split the bills into a small number of broad categories, each of
which encompasses many bills. On their own, the “top terms” are too specific
to be used as clusters of their own. Making each top term its own cluster would
result in some clusters containing only one bill and others containing a hun-
dred. Due to the exponential “outcome space” of LIGs, learning LIGs requires
a relatively large amount of data. Therefore, small clusters would be unusable.

Rather than manually re-categorizing bills, we took a statistical clustering
approach to grouping, based on a bill’s assigned “top term” in addition to all
subjects it contains. For each data point, we assigned each possible subject a
weight: 0 if missing, 1 if present, or 10 if it is the “top term.” By including both
measures of subjects (top and regular), we produce more meaningful categories
than using top terms or bill subjects lists alone.

In data science, K-Means (KM) is often used as a simple yet effective clus-
tering algorithm [25]. Cluster membership in KM is crisp, meaning each data
point belongs to one and only one cluster. While effective at producing distinct
clusters, KM is not ideal for our purposes because bills often belong to multiple
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clusters. For example, a bill about increasing defense spending is about national
security as well as economics. The Fuzzy C-Means (FCM) clustering algorithm
addresses this problem. FCM is an extension of KM which allows for overlaps
in clusters [2,30]. The objective function in FCM is largely the same as in KM,
with the addition of membership values wij and a fuzzifier m. Membership val-
ues describe how closely each data point i belongs to cluster j. The fuzzifier
changes membership values: m = 1 results in crisp clusters (wij ∈ {0, 1}), and
higher values of m result in fuzzier clusters.

Iterating over a range of values, we found that number of clusters, c = 4
and m = 1.3 resulted in clusters which were relatively distinct, had intuitive
descriptions and also contained an adequate number of bills for machine learning.
Additionally, we experimented with the threshold values for cluster membership
and settled on 0.15. That is, a bill is considered a member of a cluster if it’s
membership value is above 0.15. Table 1 describes the results of our chosen FCM
parameters. Each cluster is assigned a shorthand name describing its contents
and is called a sphere of legislation in this paper. We next describe the model.

Table 1. Shorthand names and descriptions for each of the spheres of legislation iden-
tified by the FCM algorithm. Spheres 1 and 2 are relatively distinct from the rest,
while Spheres 3 and 4 share a large number of bills.

Sphere# Size Name of

sphere

Sampling of bill subjects Ovlp. 1 Ovlp. 2 Ovlp. 3 Ovlp. 4

1 105 Security &

Armed Forces

Armed forces and national security (77),

Emergency management (11),

Transportation and public works (10)

7% 20% 20%

2 263 Economics &

Finance

Economics and public finance (263) 3% 0% 0%

3 284 Energy &

Infrastructure

Energy (69), Education (31), Taxation

(28), Transportation and public works (27)

7% 0% 76%

4 313 Public

Welfare

Health (52), Crime and law enforcement

(43), Taxation (38), Education (31)

7% 0% 69%

3 The LIG Model

We represent the senate influence network as a linear influence game (LIG)
[17,18], one type of 2-action graphical game [20]. Nodes represent senators, or
players, and are connected by directed edges. Edge weights represent the influ-
ence exerted by the source node upon the target. Influence weights can be nega-
tive, positive, or zero. The directed edges are allowed to be asymmetric, meaning
nodes A and B may exert different levels of influences on each other. Addition-
ally, nodes have a threshold level, which represents “stubbornness.” Nodes with
thresholds further from zero are more resistant to change. Absent influences, a
node with negative threshold is predisposed to adopting action +1 (yea vote),
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and a node with positive threshold is predisposed to −1 (nay vote). The matrix
of influence weights W ∈ Rn×n and the threshold vector b ∈ Rn constitute the
LIG model. The action xi ∈ {+1,−1} chosen by each node i is the outcome of
the model, as described below in game-theoretic terms.

Each node’s best response to other nodes’ actions depends on the net incom-
ing influence and the node’s threshold. When the total incoming influence from
nodes playing +1 minus the total incoming influence from nodes playing −1
exceeds the node’s threshold level, that node’s best response is +1. If below,
it is −1; in the case of a tie, the node is indifferent and can play either. Note
that the best responses of the nodes are interdependent. A vector of mutual best
responses of all the nodes is a stable outcome of the model, formally known as a
Nash equilibrium. It is stable because no node has any incentive to deviate from
it. The LIG model adopts Nash equilibria to represent stable collective outcomes
from a complex network of influence. Below is a formal description, using the
same notation as [18]. An example is provided in the Appendix.

Definition 1 (Linear Influence Game (LIG) [18]). In LIG, the influence
function of each individual i, given others’ actions x−i, is defined as fi(x−i) ≡∑

j �=i wijxj − bi where for any other individual j, wij ∈ R is a weight parameter
quantifying the “influence factor” that j has on i, and bi ∈ R is a threshold
parameter for i’s level of “tolerance.”

Here, individuals receive influences from other players and have an influ-
ence threshold of their own, which accounts for their own resistance to external
influence. The influence function fi calculates the weighted sum of incoming
influences on i, as described in the paragraph above Definition 1, and subtracts
i’s threshold from it. The payoff of each player is defined next.

Definition 2 (Payoff Function [18]). For an LIG, we define the payoff func-
tion ui : {−1, 1}n → R as ui(xi,x−i) ≡ xifi(x−i), where x−i denotes the vector
of a joint-action of all players except i and fi is defined in Definition 1.

The payoff function quantifies the preferences of the players based on the
actions of other players. Given the action of all other individuals x−i and influ-
ence function fi(x−i), an individual will prefer to choose either +1 or −1 as
follows. When fi(x−i) is negative, xi = −1 will result in a positive payoff; when
fi(x−i) is positive, xi = +1 will result in a positive payoff. Actions chosen in this
fashion in order to result in a positive payoff (i.e., to maximize payoff) is defined
as the best response. When everyone is playing their best responses simultane-
ously, we get a pure-strategy Nash Equilibrium (PSNE) as defined below.

Definition 3 (Pure-Strategy Nash Equilibrium [18]). A pure-strategy
Nash equilibrium (PSNE) of an LIG G is an action assignment x∗ ∈ {−1, 1}n
that satisfies the following condition. Every player i’s action x∗

i is a simultaneous
best-response to the actions x∗

−i of the rest.
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We adopt PSNE as the notion of stable outcomes arising from a network of
influence. We are interested in questions like how the network changes based on
the spheres of legislation and what impact the spheres have on polarization and
most influential nodes. For these, we learn the networks using the spheres data.

4 Machine Learning

We use Honorio and Ortiz’s machine learning algorithm in order to instantiate
an LIG from raw roll-call data [15]. The goal of the algorithm is to capture as
much of the ground-truth data as possible as PSNE (the empirical proportion
of equilibria), without having so many total PSNE (the true proportion of equi-
libria) that the model is meaningless. For example, if all influence weights and
threshold levels are 0 (W = 0, b= 0), then all 2n possible joint actions among
n players would be PSNE, trivially covering all observed voting data. However,
this is undesirable as it has no predictive power at all. Therefore, we would
like to maximize the empirical proportion of equilibria while minimizing the
true proportion. To balance the true and empirical proportions of equilibria, the
learning algorithm uses a generative mixture model that picks a joint action
which is either a PSNE or non-PSNE with probability q and 1 − q, respectively.
Maximizing the empirical proportion of equilibria relative to the true proportion
can be framed as a maximum likelihood estimation problem in this generative
model. Under mild conditions, the final optimization problem is the following:
minW,b

1
m

∑
l maxi �

[
x
(l)
i (wT

i,−ix
(l)
−i − bi)

]
+ ρ||w||1. Here, m is the number of

bills, � is the typical logistic loss function, and ρ is an l1 regularization parame-
ter controlling the number of edges ||w||1. This is a gist of Honorio and Ortiz’s
machine learning algorithm resulting from a very lengthy proof [15].

We solve the above optimization for each sphere of legislation and obtain an
influence network. While doing this, we rigorously cross validate to avoid over-
fitting or underfitting as follows. In the model selection phase, we wish to choose
an “appropriate” value of the l1 regularization parameter ρ. Since ρ penalizes
the number of edges, high values of ρ result in sparser graphs at the risk of
underfitting, and low values of ρ lead to denser graphs at the risk of overfitting.
The number of edges is important, because the problem of computing equilibria
is NP-hard [17,18], and an extremely complex model would have so many edges
that equilibrium computation would not finish within days. We use 10-fold cross-
validation, track multiple metrics, and choose ρ = 0.002728, 0.003888, 0.003070,
0.003888 for the four spheres, respectively. Details are in the Appendix.
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Fig. 1. A bird’s eye view of the LIG network for Sphere 2 (Economics & Finance). Red
nodes are Republicans, blue Democrats, green Independents. Darker nodes have higher
threshold and thicker edges have more influence weights. The strongest 40% incoming
and outgoing edges for each node are shown.

5 Polarization in Context

Visualization of the machine learned networks clearly shows that the network
structure varies according to the spheres of legislation. In all spheres, however,
the force-directed drawing algorithm automatically distinguishes Republicans
from Democrats. Figure 1 depicts this LIG visualization for Sphere 2 (Economics
& Finance) as a representative example. The visualizations for the remaining
spheres can be found in the Appendix.

The boundary between the two parties is interesting for studying polariza-
tion. Even though negative edges more often occur at the boundary, the connec-
tivity between the two parties varies a lot according to the spheres of legislation.
These are depicted in Fig. 2 for Spheres 1 and 2 (others are in the Appendix).

Figure 2b shows the cross-border edges in Sphere 2 (Economics & Finance),
which starkly contrasts those of Sphere 1 (Security & Armed Forces). In Sphere
2, only 12 of the strongest 40% of edges are between members of different parties.
Of these, 2/3 are negative, suggesting a very polarized network. Aside from two
positive influences between Maine senators King (a left-leaning Independent) and
Collins (a center-leaning Republican), the remaining two positive connections are
the weakest of all connections shown for this sphere.
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(a) Sphere 1 (Security & Armed Forces): 52 boundary edges are positive, 37 negative.
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(b) Sphere 2 (Economics & Finance): 4 cross-border edges are positive, 8 negative.

Fig. 2. Graphviz visualization of cross-border edges connecting members of the oppos-
ing parties within the strongest 40% of all edges.

Similarly, examining inter-party edges reveals that Sphere 3 (Energy & Infras-
tructure) is also very polarized. While there are many edges between both parties
in this network, about 70% of them are negative. Positive influences come from a
few sources, again including the centrist Senator Collins. Incongruously, promi-
nent right-wing senator Tom Cotton (R-AR) also exhibits positive influences
with democratic senators. However, most other far-left or far-right leaning sena-
tors, including Sanders (I-VT) and Cruz (R-TX) only exhibit negative influences
with the opposite party.

Sphere 4 (Public Welfare)’s inter-party edges strike a balance between the
polarities exhibited by the previous three spheres. There are slightly more pos-
itive edges (9) than negative edges (7), but still a low number of edges overall.
Again, there are positive influences between Maine senators King (I-ME) and
Collins (R-ME), but also positive influences between Senator McConnell and
Democratic senators King (D-ME) and Tester (D-MT).

Overall, each sphere exhibits some level of polarization, but influences within
some spheres are far less polarizing than others. Some senators are present in
every sphere’s inter-party boundary, whether for positive or negative influences.
Senators Collins and King often share positive influences with each other, as
well as other senators. Senator Lee (R-UT), a conservative libertarian, always
exhibits negative edges with members of the other party, although in Sphere
1, he also shares positive influences with senators Harris (D-CA) and Feinstein
(D-CA). Meanwhile, left-wing icon Bernie Sanders (I-VT) exhibits the equivalent
behavior, with only negative cross-border edges in all spheres except Sphere 1.
These results suggest that Sphere 1 (Security & Armed Forces) is least polarized,
whereas Spheres 2 (Economics & Finance) is highly polarized.
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Furthermore, a formal study of polarization rooted in network science pro-
duces similar results. Modularity [11,27,28] has been widely used as a measure of
polarization in networks. We apply the following definition of modularity derived
for directed networks with signed weights [14].

Q =
1

2w+ + 2w−
∑

i

∑

j

[

wij −
(

w+,out
i w+,in

j

2w+
− w−,out

i w−,in
j

2w−

)]

× δ (Ci, Cj) .

Here, wij is the weight of edge i to j, w+
ij = max{0, wij}, w−

ij = max{0,−wij},
and 2w± is the total weight of all positive or negative edges, expressed by∑

i

∑
j w±

ij . Furthermore, w±,out
i is the weighted out-degree

∑
k w±

ik and w±,in
j

is the weighted in-degree
∑

k w±
kj . The Kronecker delta function δ (Ci, Cj) is 1

if i and j belong to the same party; it is 0 otherwise.
Applying this definition, We obtain the following modularity scores for the

four spheres of legislation respectively: 0.7861, 0.8904, 0.8724, and 0.8857. This
shows that Sphere 1 (Security & Armed Forces) is least polarized and Spheres
2 (Economics & Finance), 3 (Energy & Infrastructure), and 4 (Public Welfare)
are much more polarized.

6 Most Influential Nodes in Context

There exists a number of centrality measures that are derived from a structural
analysis of networks [19]. However, our model is behavioral where nodes adopt
their best responses to each other. In a strictly game-theoretic model of behavior,
a set of nodes will be called most influential with respect to achieving a desirable
stable outcome if their choice of actions leads the whole system of influence
to that desirable outcome [17,18]. Here, a crucial aspect is a desirable stable
outcome, represented by a PSNE. For example, let us say that our desirable
outcome is to pass a bill by a 100-0 vote. A set of senators will be called most
influential if their voting together influences every other senator to also vote for
the bill, thereby having the desirable outcome as the unique PSNE outcome.
This concept can be extended to other types of desirable outcomes like passing
a bill with at least 60 votes, forcing/avoiding a filibuster, etc.

An approximation algorithm for computing most influential senators was
given by Irfan and Ortiz [18], which produces a directed acyclic graph (DAG).
The algorithm requires precomputation of all PSNE, which is a provably hard
problem [18]. We apply Irfan and Ortiz’s PSNE computation algorithm to the
LIG for each sphere of legislation. We elaborate this in the Appendix. Having
computed all the PSNE, we then compute the DAG representing most influential
sets of nodes. Figure 3 shows the results of the most influential nodes algorithm
for Spheres 1 and 3, where the desirable outcome is set as passing a bill unani-
mously. The way to read Fig. 3 is to inspect each DAG and find a top to bottom
path. Each of these paths gives a most influential set.
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 COTTON R AR

 TESTER D MT

 HARRIS D CA

 GILLIBRAND D NY

 LEE R UT

 REED D RI  WHITEHOUSE D RI

 ENZI R WY

 COCHRAN R MS

(a) Sphere 1 (Security & Armed
Forces): 4 Republicans and 4
Democrats are most influential.

 BURR R NC

 MORAN R KS

 SASSE R NE

 BARRASSO R WY  ENZI R WY

 SANDERS I VT

 CARPER D DE

 DUCKWORTH D IL  FRANKEN D MN

 MENENDEZ D NJ

 MERKLEY D OR  WYDEN D OR

 PETERS D MI  STABENOW D MI

 PAUL R KY

(b) Sphere 3 (Energy & Infras-
tructure): 5 Republicans and 6
Democrats are most influential.

Fig. 3. Directed acyclic graphs (DAGs) representing sets of most influential nodes for
Spheres 1 and 3. Any top to bottom path gives a most influential set.

The sets of most influential senators in each sphere support the inferences
gained from analyzing the LIG networks. As illustrated in Fig. 3, in Sphere 1
(Security & Armed Forces), 4 Republicans and 4 Democrats comprise a set of 8
most influential senators. In other words, 8 senators are sufficient to guarantee
enough support that a bill will pass unanimously. In Sphere 3 (Energy & Infras-
tructure), 5 Republicans and 6 Democrats comprise a set of 11. This suggests
that Sphere 3 is more polarized than Sphere 1, since it requires a larger body of
influencing senators. The DAGs for the other spheres are in the Appendix.

Game-Theoretic vs. Structural Centrality Measures. In the above game-
theoretic formulation of most influential nodes, we find that each set of most
influential senators across all spheres is comprised of an (almost) equal number
of Democrats and Republicans. This signifies the need for bipartisan support
to guarantee passing a bill unanimously. As we show next, this also happens
to be a distinguishing feature between game-theoretic and structural measures.
Table 2 shows various centrality measures and other quantities computed for
each sphere. For each sphere, we show the top 10 most central senators with
respect to four centrality measures: degree, closeness, betweenness, and eigen-
vector. Most notably, these centrality measures do not capture the strategic
aspects of behavior. Throughout most measures, Republican senators are over-
represented, comprising the majority of the top ten most central nodes. In con-
trast, the game-theoretic measure gives a balanced coalition between Democrats
and Republicans. This is important because when networks are polarized, achiev-
ing a desirable outcome requires support from both sides.
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Table 2. Network analysis of learned influence networks for different spheres of legis-
lation. Various centrality measures and network-level properties are shown.

Sphere 1 Sphere 2 Sphere 3 Sphere 4

Number of Edges 1191 1071 1280 1076
Network Diameter 5 5 4 5

Modularity 0.7861 0.8904 0.8724 0.8857
Avg. (Shortest) Path Length 2.2295 2.5132 2.1506 2.5476

Avg. Clustering Coefficient 0.1867 0.2057 0.174 0.2176
Degree Centrality

Degree (1) 0.5784: LEE R-UT 0.3529: TOOMEY R-PA 0.3725: LANKFORD R-OK 0.3725: COTTON R-AR
Degree (2) 0.4216: PAUL R-KY 0.3333: PERDUE R-GA 0.3627: SASSE R-NE 0.2941: LEAHY D-VT
Degree (3) 0.4118: SANDERS I-VT 0.3235: ENZI R-WY 0.3529: WARNER D-VA 0.2843: CAPITO R-WV
Degree (4) 0.3824: MORAN R-KS 0.3137: LANKFORD R-OK 0.3333: CAPITO R-WV 0.2843: MURKOWSKI R-AK
Degree (5) 0.3725: MANCHIN D-WV 0.3137: YOUNG R-IN 0.3235: TOOMEY R-PA 0.2745: AYOTTE R-NH
Degree (6) 0.3627: RUBIO R-FL 0.3039: COTTON R-AR 0.3235: MURKOWSKI R-AK 0.2745: SHELBY R-AL
Degree (7) 0.3529: CRUZ R-TX 0.2941: CASEY D-PA 0.3235: COTTON R-AR 0.2647: PERDUE R-GA
Degree (8) 0.3333: ALEXANDER R-TN 0.2843: CASSIDY R-LA 0.3137: BROWN D-OH 0.2549: ALEXANDER R-TN
Degree (9) 0.3333: ENZI R-WY 0.2843: WICKER R-MS 0.3137: FEINSTEIN D-CA 0.2549: PETERS D-MI

Degree (10) 0.3235: LEAHY D-VT 0.2745: CORKER R-TN 0.3137: PAUL R-KY 0.2549: PAUL R-KY
Closeness Centrality

Closeness (1) 0.5862: LEE R-UT 0.5126: PERDUE R-GA 0.5514: WARNER D-VA 0.5204: COTTON R-AR
Closeness (2) 0.5635: RUBIO R-FL 0.4951: COTTON R-AR 0.5426: LANKFORD R-OK 0.5178: KIRK R-IL
Closeness (3) 0.5574: PAUL R-KY 0.4766: COLLINS R-ME 0.5368: SASSE R-NE 0.4951: MURKOWSKI R-AK
Closeness (4) 0.5455: SANDERS I-VT 0.47: ENZI R-WY 0.5368: BENNET D-CO 0.4928: AYOTTE R-NH
Closeness (5) 0.5455: BALDWIN D-WI 0.4636: SASSE R-NE 0.534: KING I-ME 0.4766: SULLIVAN R-AK
Closeness (6) 0.5397: ENZI R-WY 0.4636: MANCHIN D-WV 0.5231: MURKOWSKI R-AK 0.4744: MCCONNELL R-KY
Closeness (7) 0.5368: MORAN R-KS 0.4615: FLAKE R-AZ 0.5178: COTTON R-AR 0.4722: PAUL R-KY
Closeness (8) 0.5285: CORKER R-TN 0.4595: SHELBY R-AL 0.5152: BROWN D-OH 0.4636: COLLINS R-ME
Closeness (9) 0.5258: CASEY D-PA 0.4595: YOUNG R-IN 0.5126: CASEY D-PA 0.4554: CAPITO R-WV

Closeness (10) 0.5231: DURBIN D-IL 0.4595: HEITKAMP D-ND 0.51: CARPER D-DE 0.4554: SANDERS I-VT
Betweenness Centrality

Betweenness (1) 0.0696: LEE R-UT 0.0538: PERDUE R-GA 0.0278: LANKFORD R-OK 0.0685: SANDERS I-VT
Betweenness (2) 0.0362: PERDUE R-GA 0.0468: HEITKAMP D-ND 0.0272: SASSE R-NE 0.0641: WYDEN D-OR
Betweenness (3) 0.033: MORAN R-KS 0.0452: GILLIBRAND D-NY 0.0265: WARNER D-VA 0.0559: COTTON R-AR
Betweenness (4) 0.0314: KING I-ME 0.045: ENZI R-WY 0.0226: BENNET D-CO 0.0533: MARKEY D-MA
Betweenness (5) 0.0301: MANCHIN D-WV 0.0434: COLLINS R-ME 0.0206: MURKOWSKI R-AK 0.0532: ALEXANDER R-TN
Betweenness (6) 0.0288: DURBIN D-IL 0.0383: MERKLEY D-OR 0.0196: BROWN D-OH 0.0421: MURKOWSKI R-AK
Betweenness (7) 0.0283: RUBIO R-FL 0.0382: COTTON R-AR 0.0194: CORNYN R-TX 0.0381: PAUL R-KY
Betweenness (8) 0.0283: PAUL R-KY 0.0381: SANDERS I-VT 0.0193: SCHATZ D-HI 0.0376: SASSE R-NE
Betweenness (9) 0.0253: SANDERS I-VT 0.0344: LEE R-UT 0.0187: SANDERS I-VT 0.0347: HARRIS D-CA

Betweenness (10) 0.0249: CRUZ R-TX 0.034: TESTER D-MT 0.0185: WICKER R-MS 0.032: AYOTTE R-NH
Eigenvector Centrality

Eigenvector (1) 0.271: LEE R-UT 0.2114: COTTON R-AR 0.181: WARNER D-VA 0.2029: KIRK R-IL
Eigenvector (2) 0.2291: SANDERS I-VT 0.2061: PERDUE R-GA 0.1703: CORNYN R-TX 0.2017: HOEVEN R-ND
Eigenvector (3) 0.228: PAUL R-KY 0.1866: SULLIVAN R-AK 0.1675: LANKFORD R-OK 0.1727: GARDNER R-CO
Eigenvector (4) 0.1894: BALDWIN D-WI 0.1865: ENZI R-WY 0.1567: BENNET D-CO 0.1724: PORTMAN R-OH
Eigenvector (5) 0.1892: RUBIO R-FL 0.183: YOUNG R-IN 0.1551: JOHNSON R-WI 0.1715: CAPITO R-WV
Eigenvector (6) 0.1696: ENZI R-WY 0.1758: THUNE R-SD 0.1541: SASSE R-NE 0.1706: COTTON R-AR
Eigenvector (7) 0.1681: BARRASSO R-WY 0.1734: WICKER R-MS 0.1525: MURKOWSKI R-AK 0.1706: ROBERTS R-KS
Eigenvector (8) 0.161: CASEY D-PA 0.1674: MORAN R-KS 0.1454: KING I-ME 0.1683: FISCHER R-NE
Eigenvector (9) 0.1607: MORAN R-KS 0.1653: JOHNSON R-WI 0.1426: COTTON R-AR 0.1682: MURKOWSKI R-AK

Eigenvector (10) 0.1602: MANCHIN D-WV 0.163: GARDNER R-CO 0.1379: BOOZMAN R-AR 0.1646: ISAKSON R-GA

7 Richer Models: Ideal Point Models with Social
Interactions

We also apply a richer model of influence recently proposed by Irfan and
Gordon [16] that extends the LIG model by incorporating ideal points of the
senators and polarities of bills [29]. Their work showed the value of combining
game-theoretic and statistical models for studying strategic interactions in con-
text, but they assume the network to be fixed, regardless of the bill context.
We use their model and allow the network to change based on the spheres of
legislation. We also perform an analysis of the networks learned.

As a cautionary note, the way Irfan and Gordon’s model [16] combines net-
works with ideal points makes it difficult to disentangle the two. Analyzing the
networks alone may be inconclusive, because ideal points also supply the model
with predictive power. Moreover, the machine learning algorithm also learns
these two components simultaneously. Figure 4 shows the learned network for
Sphere 2 (Economics & Finance) under this richer model. It is evident that the
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two parties are not as clustered as they are in the LIG model (see Fig. 1 for
Sphere 2 under LIG). This is because the ideal points are now being used in
addition to social interactions to discriminate the behaviors of opposing sena-
tors. More interestingly, an analysis of the cross-party edges show that there are
a lot more negative edges between the two parties under this richer model than
there are under the LIG model (details are in the Appendix).

Nevertheless, we still study the ideal point distributions and influence net-
works under this model. We apply ideal point-based polarization metrics [26] as
well as network modularity metrics [14] to calculate polarization levels across the
four spheres. The ideal point distributions for two of the spheres are depicted in
Fig. 5 (others are in the Appendix).

Applying the well-known ideal point-based polarization metric (i.e., distance
between the means of the two parties) [26], we obtain values of 0.754, 1.235,
1.126, and 0.889 for Spheres 1 to 4 respectively. Evidently, Sphere 1 is least
polarizing with respect to the ideal point distributions alone.
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Fig. 4. A bird’s eye view of the influence network for Sphere 2 (Economics & Finance)
learned under the ideal point model with social interactions. The strongest 33% of the
edges are shown. Contrast this with Fig. 1 where the two parties were relatively well
separated.

We also analyze the influence networks for the four spheres. The modular-
ity framework discussed in Sect. 5 yields scores of 0.5392, 0.6801, 0.6887, and
0.6229, respectively. Both the ideal point metric and modularity scores indi-
cate that Spheres 2 (Economics & Finance) and 3 (Energy & Infrastructure) are
most polarizing, whereas Sphere 1 (Security & Armed Forces) is least polarizing.
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(a) Sphere 1 (Security & Armed Forces): The distance between the mean ideal points
of the two parties is 0.754. It shows that Democratic and Republican senators are
ideologically close to each other when it comes to national security.

(b) Sphere 2 (Economics & Finance): The distance between the mean ideal points of
the two parties is 1.235, which shows more polarization compared to Sphere 1.

Fig. 5. The ideal point distributions of Democratic (blue +) and Republican (red x)
senators, scaled linearly between −1 and 1.

Sphere 4 (Public Welfare) sits in between. These results are somewhat similar
to our earlier conclusions based on LIG without ideal points.

As mentioned above, investigating the influence networks and ideal points
separately does not give us the complete picture since the model combines these
two components together to make predictions. Therefore, we should also combine
them in a meaningful way to infer polarization. We leave this as future work.
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