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Abstract

We provide the first fully polynomial time approximation
scheme (FPTAS) for computing an approximate mixed-
strategy Nash equilibrium in graphical multi-hypermatrix
games (GMhGs), which are generalizations of normal-form
games, graphical games, graphical polymatrix games, and
hypergraphical games. Computing an exact mixed-strategy
Nash equilibria in graphical polymatrix games is PPAD-
complete and thus generally believed to be intractable. In
contrast, to the best of our knowledge, we are the first to es-
tablish an FPTAS for tree polymatrix games as well as tree
graphical games when the number of actions is bounded by
a constant. As a corollary, we give a quasi-polynomial time
approximation scheme (quasi-PTAS) when the number of ac-
tions is bounded by a logarithm of the number of players.

Introduction

For over a decade, graphical games have been at the fore-
front of computational game theory. In a graphical game, a
player’s payoff is directly affected by her own action and
those of her neighbors. This large class of games has played
a critical role in establishing the hardness of computing a
Nash equilibrium in general games (Daskalakis, Goldberg,
and Papadimitriou 2009a). It has also generated a great deal
of interest in the AI community since Kearns, Littman, and
Singh (2001) drew a parallel with probabilistic graphical
models in terms of succinct representation by exploiting the
network structure. As a result, this is one of the select topics
in computer science that has triggered a confluence of ideas
from the theoretical computer science and AI communities.

This paper contributes to this development by providing
the first fully polynomial-time approximation scheme (FP-
TAS) for approximate Nash equilibrium computation in a
generalized class of tree graphical games. Tree-structured
interactions are natural in hierarchical settings, such as or-
ganizational management, supply chains, and even power
grids (Dvijotham et al. 2016); see Ortiz and Irfan 2016 for
discussion. Our algorithm also eliminates the exponential
dependency on the maximum degree of a node, a problem
that has plagued research for 15 years since the inception of
graphical games (Kearns, Littman, and Singh 2001).
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We consider the problem of computing approximate
MSNE in GMhGs (see Table 1 for a list of acronyms used
throughout this paper). Roughly speaking, in a GMhG,
each player’s payoff is the summation of several local pay-
off hypermatrices defined with respect to each individual
player’s local hypergraph. GMhGs generalize normal-form
games, graphical games (Kearns, Littman, and Singh 2001;
Kearns 2007), graphical polymatrix games, and hypergraph-
ical games (Papadimitriou and Roughgarden 2008). For ap-
proximate MSNE, we adopt the standard notion of ε-MSNE
(also known as ε-approximate MSNE), an additive (as op-
posed to relative) approximation scheme widely used in al-
gorithmic game theory (Lipton, Markakis, and Mehta 2003;
Daskalakis, Mehta, and Papadimitriou 2007; Deligkas et al.
2014; Barman, Ligett, and Piliouras 2015).

In this paper, we provide FPTAS and quasi-PTAS for
GMhGs in which the individual player’s number of actions
m and the hypertree-width w of the underlying game hy-
pergraph are bounded. The key to our solution is the for-
mulation of a CSP such that any solution to this CSP is an
ε-MSNE of the game. This raises two challenging questions:
Will the CSP have any solution at all? In case it has a solu-
tion, how can we compute it efficiently? Regarding the first
question, we discretize both the probability space and the
payoff space of the game to guarantee that for any MSNE of
the game (which always exists), the nearest grid point is a
solution to the CSP. For the second question, we give a DP
algorithm that is an FPTAS when m and w are bounded by a
constant. Most remarkably, this algorithm eliminates the ex-
ponential dependency on the largest neighborhood size of a
node, which has plagued previous research on this problem.

Related Work

In this section, we provide a brief overview of the previ-
ous computational complexity and algorithmic results for
the problem of ε-MSNE computation (additive approxima-
tion scheme as most commonly defined in game theory) in
general. A full account of all specific sub-classes of GMhGs
such as normal-form games and (standard) graphical games
is beyond the scope of this paper, just as is the discussion
on (a) other types of approximations such as the less com-
mon relative approximation; (b) other popular equilibrium-
solution concepts such as pure-strategy Nash equilibria and
correlated equilibria (Aumann 1974; 1987); and (c) other
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CSP Constraint Satisfaction Problem
DP Dynamic Programming
FPTAS Fully Polynomial Time Approx. Scheme
GMhG Graphical Multi-hypermatrix Game
MSNE Mixed-Strategy Nash Equilibrium
Quasi-PTAS Quasi-Polynomial Time Approx. Scheme

Table 1: Acronyms used in this paper.

quality guarantees of solutions, including exact MSNE and
“well-supported” approximate MSNE.

The complexity status of normal-form games is
well-understood today, thanks to a series of seminal
works (Daskalakis, Goldberg, and Papadimitriou 2009a;
2009b) that culminated in the PPAD-completeness of
2-player multi-action normal-form games, also known as
bimatrix games (Chen, Deng, and Teng 2009). Once the
complexity of exact MSNE computation was established,
the spotlight naturally fell on approximate MSNE, espe-
cially in succinctly representable games such as graphical
games. Chen, Deng, and Teng (2009) showed that bimatrix
games do not admit an FPTAS unless PPAD ⊆ P. This result
opened up computing a PTAS.

There has been a series of results based on constant-
factor approximations. The current best PTAS is a 0.3393-
approximation for bimatrix games (Tsaknakis and Spirakis
2008), which can be extended to the cases of three and four-
player games with the approximation guarantees of 0.6022
and 0.7153, respectively. Note that sub-exponential algo-
rithms for computing ε-MSNE in games with a constant
number of players have been known prior to all of these re-
sults (Lipton, Markakis, and Mehta 2003). As a result, it is
unlikely that the case of constant number of players will be
PPAD-complete. Along that line, Rubinstein (2015) consid-
ered the hardness of computing ε-MSNE in n-player suc-
cinctly representable games such as general graphical games
and graphical polymatrix games. He showed that there ex-
ists a constant ε such that finding an ε-MSNE in a 2-action
graphical polymatrix game with a bipartite structure and
having a maximum degree of 3 is PPAD-complete. Chen,
Deng, and Teng (2009) showed the hardness of bimatrix
games for a polynomially small ε, and Rubinstein (2015)
showed the hardness (in this case, PPAD-completeness) of
n-player polymatrix games for a constant ε.

On a positive note, Deligkas et al. (2014) presented an al-
gorithm for computing a (0.5 + δ)-MSNE of an n-player
polymatrix game. Their algorithm runs in time polynomial
in the input size and 1

δ . Very recently, Barman, Ligett, and
Piliouras (2015) gave a quasi-polynomial time randomized
algorithm for computing an ε-MSNE in tree-structured poly-
matrix games. They assumed that the payoffs are normalized
so that the local payoff of any player i from any other player
j lies in [0, 1/di], where di is the degree of i. This guar-
antees, in a strong way, that the total payoff of any player
is in [0, 1]. In comparison, we do not make the assumption
of local payoffs lying in [0, 1/di]. Also, our algorithm is a
deterministic FPTAS when m is bounded by a constant.

Closely related to our work, Ortiz (2014) recently gave

a framework for sparsely discretizing probability spaces in
order to compute ε-MSNE in tree-structured GMhGs. The
time complexity of the resulting algorithm depends on (kε )

k

when m is bounded by a constant. Ortiz’s result is a signif-
icant step forward compared to Kearns, Littman, and Singh
(2001)’s algorithm in the foundational paper on graphical
games. In the latter work, the time complexity depends on
( 2

k

ε )
k when m is bounded by a constant. Both of these al-

gorithms are exponential in the representation size of suc-
cinctly representable games such as graphical polymatrix
games. Compared to these works, our algorithm eliminates
the exponential dependency on k. Furthermore, compared
to Ortiz’s work, we discretize both probability and payoff
spaces in order to achieve an FPTAS. This joint discretiza-
tion technique is novel for this large class of games and has
a great potential for other types of games.

Hardness of Relaxing Key Restrictions. We use two re-
strictions: (1) Our focus is on GMhGs (e.g., graphical poly-
matrix games) with tree structure, and (2) our FPTAS for ε-
MSNE computation hinges on the assumption that the num-
ber of actions is bounded by a constant. We next discuss
what happens if we relax either of these two restrictions.

Tree-structured polymatrix games with unrestricted num-
ber of actions: A bimatrix game is basically a tree-structured
polymatrix game with two players. Chen, Deng, and Teng
(2009) showed that there exists no FPTAS for bimatrix
games with an unrestricted number of actions unless all
problems in PPAD are polynomial-time solvable. In this
paper, we bound the number of actions by a constant.
We should also note the main motivation behind graphi-
cal games, as originally introduced by Kearns, Littman, and
Singh (2001): compact/succinct representations where the
representation sizes do not depend exponentially in n, but
are instead exponential in k and linear in n. As Kearns,
Littman, and Singh (2001) stated, if k � n, we obtain ex-
ponential gains in representation size. Thus, it is n and k the
parameters of main interest in standard graphical games; the
parameter m is of secondary interest. Indeed, even Kearns,
Littman, and Singh (2001) concentrate on the case of m = 2.

Graphical (not necessarily tree-structured) polymatrix
games with bounded number of actions: Rubinstein (2015)
showed that for ε = 10−8 and m = 104, computing an ε-
MSNE for an n-player game is PPAD-hard. This hardness
proof involves the construction of graphical (non-tree) poly-
matrix games. Therefore, the result carries over to n-player
graphical polymatrix games. This lower bound result shows
that graph structures that are more complex than trees are in-
tractable (under standard assumptions) even for constant m
and small but constant ε.

Preliminaries, Background, and Notation

Denote by a ≡ (a1, a2, . . . , an) an n-dimensional vec-
tor and by a−i ≡ (a1, . . . , ai−1, ai+1, . . . , an) the same
vector without the i-th component. Similarly, for every set
S ⊂ [n] ≡ {1, . . . , n}, denote by aS ≡ (ai : i ∈ S)
the (sub-)vector formed from a using exactly the compo-
nents of S. Sc ≡ [n]− S denotes the complement of S, and
a ≡ (aS , aSc) ≡ (ai, a−i) for every i. If A1, . . . , An are



Figure 1: The primal graph of an example GMhG. The end-
points of each edge belong to some common hyperedge. The
sets of local hyperedges of players 1 to 5 are: C1 = {{1, 2}},
C2 = {{2, 5}}, C3 = {{3, 5}}, C4 = {{1, 4}, {4, 5}},
and C5 = {{1, 5}, {5, 2, 3}}. The neighborhood of 5 is
N5 = {1, 2, 3, 5} and the set of players affected by 5 is
N5 = {2, 3, 4}. The local payoff of 5 is the sum of pay-
offs from the hyperedges {1, 5} and {5, 2, 3}. For player 5,
κ5 = 2 and κ′5 = 3. For the whole graph, κ = 2 and κ′ = 3.

sets, denote by A ≡ ×i∈[n]Ai, A−i ≡ ×j∈[n]−{i}Aj and
AS ≡ ×j∈SAj . To simplify the presentation, whenever we
have a difference of a set S with a singleton set {i}, we often
abuse notation and denote by S − i ≡ S − {i}.

GMhG Representation

Definition 1. A graphical multi-hypermatrix game (GMhG)
is defined by a set V of n players and the followings for each
player i ∈ V :

• a set of actions or pure strategies Ai;
• a set Ci ⊂ 2V of local cliques or local hyperedges such

that if C ∈ Ci then i ∈ C, and two additional sets defined
based on Ci:
– i’s neighborhood Ni ≡ ∪C∈CiC (the set of players,

including i, that affect i’s payoff) and
– Ni ≡ {j ∈ V | i ∈ Nj , j �= i} (the set of players, not

including i, affected by i);
• a set {M ′

i,C : AC → R | C ∈ Ci} of local-clique payoff
matrices; and

• the local and global payoff matrices M ′
i : ANi

→
R and Mi : A → R of i defined as M ′

i(aNi) ≡∑
C∈Ci M

′
i,C(aC) and Mi(a) ≡ M ′

i(aNi), respectively.

We denote by κi ≡ |Ci| and κ ≡ maxi κi the number
of hyperedges of player i and the maximum number of hy-
peredges over all players, respectively. Similarly, we denote
κ′i ≡ maxC∈Ci |C| and κ′ ≡ maxi κ

′
i the size of the biggest

hyperedge of player i and the size of the biggest hyperedge
over all players, respectively. Also, for consistency with the
graphical games literature, we denote by ki ≡ |Ni| and
k ≡ maxi ki the size of the neighborhood of the primal
graph induced by the local hyperedges of i and the maxi-
mum neighborhood size over all players, respectively.

Fig. 1 illustrates some of the above terminology. The
GMhG shown there (without the actual payoff matrices) is
not a graphical game, because in a graphical game each Ci
must be singleton (i.e., only one local hyperedge for each

node i, which corresponds to Ni). This GMhG is not a poly-
matrix game either, because not all local hyperedges con-
sist of only 2 nodes. Furthermore, the GMhG is not a hy-
pergraphical game (Papadimitriou and Roughgarden 2008),
because the local hyperedges are not symmetric (player 1’s
local hyperedge has 2 in it, but 2’s local hyperedge does not
have 1).

The representation sizes of GMhGs, polymatrix games,
and graphical games are O(nκmκ′

), O(nkm2), and
O(nmk), respectively.

Normalizing the Payoff Scale. The dominant mode of ap-
proximation in game theory is additive approximation (Lip-
ton, Markakis, and Mehta 2003; Daskalakis, Mehta, and Pa-
padimitriou 2007; Deligkas et al. 2014; Barman, Ligett, and
Piliouras 2015). For ε to be truly meaningful as a global ad-
ditive approximation parameter, the payoffs of all players
must be brought to the same scale. The convention in the lit-
erature (see, e.g., Deligkas et al. 2014) is to assume that (1)
each player’s local payoffs are spread between 0 and 1, with
the local payoff being exactly 0 for some joint action and
exactly 1 for another; and (2) the local-clique payoffs (i.e.,
entries in the payoff matrices) are between 0 and 1. We do
not really need the second assumption to obtain our results;
that is, we can handle negative values and values larger than
1. Indeed, because of the additive nature of the local payoffs
in GMhGs, the “[0, 1] assumption” on those payoffs may re-
quire that some of the local-clique payoffs contain values
< 0 or > 1. This is a key aspect of payoff scaling, and in
turn the approximation problem, that the previous literature
on polymatrix games does not address. We only invoke the
second assumption here to simplify the presentation. As we
describe in more detail in Ortiz and Irfan (2016), we only
need the maximum spread of local-clique payoff values to
be bounded.

Note that the equilibrium conditions are invariant to affine
transformations. In the case of graphical games with local
payoff matrices represented in tabular/matrix/normal-form,
it is convention to assume, without loss of generality, that the
payoff values are such that, for each player i ∈ V , we have
mina Mi(a) = minaNi

M ′
i(aNi

) = 0 and maxa Mi(a) =

maxaNi
M ′

i(aNi
) = 1. Note that in the case of graphical

games using such “tabular” representations, we do not lose
generality by assuming the maximum and minimum local
payoff values of each player are 0 and 1, respectively, be-
cause we can compute them both efficiently. While this will
not be the case for graphical-game generalizations, in the
worst case, it is also computationally efficient for GMhGs
whose local hypergraphs have bounded hypertree-widths.
For instance, normalizing the payoffs of a graphical polyma-
trix game is in P . However, such an approach is intractable
in GMhGs in general.

Hence, in general, we do not have much of a choice but to
assume that the payoffs of all players are in the same scale,
so that using a global ε is meaningful.

Some additional notation is necessary regarding the pay-
off scale. Denote by ui,C ≡ maxaC∈AC

M ′
i,C(aC) and

li,C ≡ minaC∈AC
M ′

i,C(aC) the max and min payoff val-



ues achieved by the local payoff hypermatrix M ′
i,C , respec-

tively; and by Ri,C ≡ ui,C − li,C its largest range of values.

Discretization Scheme

In contrast with earlier discretization schemes (Kearns,
Littman, and Singh 2001), we allow different discretiza-
tion sizes for different players. Also, in contrast with re-
cent schemes (Ortiz 2014), we discretize both the probability
space (Definition 2) and the payoff space (Definition 3).
Definition 2. (Individually-uniform mixed-strategy dis-
cretization scheme) Let I = [0, 1] be the uncountable set
of the possible values of the probability pi(ai) of each ac-
tion ai of each player i. Discretize I by a finite grid de-
fined by the set Ĩi = {0, τi, 2τi, . . . , (si − 1)τi, 1} with in-
terval τi = 1/si for some integer si > 0. Thus the mixed-
strategy-discretization size is |Ĩi| = si + 1. We only con-
sider mixed strategies qi such that qi(ai) ∈ Ĩi for all ai, and∑

ai
qi(ai) = 1. The induced mixed-strategy discretized

space of joint mixed strategies is Ĩ ≡ ×i∈V Ĩ
|Ai|
i , subject

to the individual normalization constraints.
Definition 3. (Individually-uniform expected-payoff dis-
cretization scheme) Let I = [0, 1] denote the possible ex-
pected payoff values that each player i can receive from
each local-clique payoff matrix M ′

i,C(pC), where pC ∈ ĨC
(i.e., pC is in the grid). Discretize I by a finite grid de-
fined by the set Ĩ ′i = {0, τ ′i , 2τ ′i , . . . , (s′i − 1)τ ′i , 1} with
interval τ ′i = 1/s′i for some integer s′i > 0. Thus the
expected-payoff-discretization size is |Ĩ ′i| = s′i + 1. Then,
for any B ⊂ C ∈ Ci, we would only consider an expected-
payoff M̃ ′

i,C(aB , qC−B) in the discretized grid that is closest
to the exact local-clique expected payoff M ′

i,C(aB , qC−B).

More formally, M̃ ′
i,C(aB , qC−B) = argminr∈˜I′

i
|r −

M ′
i,C(aB , qC−B)| ≡ Proj

(
M ′

i,C(aB , qC−B)
)
. The induced

expected-payoff discretized space over all local-cliques of

all players is Ĩ ′ ≡ ×i∈V
(
Ĩ ′i
) |Ci|

.

A GMhG-Induced CSP

Consider the following CSP induced by a GMhG:
• Variables: for all i and ai, a variable pi,ai

correspond-
ing to the mixed-strategy/probability that player i plays
pure strategy ai and, for all C ∈ Ci, a variable Si,C,ai

corresponding to some partial sum of the expected pay-
off of player i based on an ordering of the local hyper-
edge elements of Ci. Formally, if Pi ≡ ⋃

ai
{pi,ai

} and
Si,C ≡ ⋃

ai
{Si,C,ai

}, then the set of all variables is⋃
i

(Pi

⋃
C∈Ci Si,C

)
.

• Domains: the domain of each variable pi(ai) is Ĩi, while
that of each partial-sum variable Si,C,ai

is Ĩ ′i .
• Constraints: for each i:

1. Best-response and partial-sum expected local-clique
payoff: We first compute a hyper-tree decomposition
of the local hypergraph induced by hyperedges Ci. We

then order the set of local-cliques Ci of each player
i such that Ci ≡ {C1

i , C
2
i , . . . , C

κi
i }. The superscript

denotes the corresponding order of the local-cliques
of player i. We make sure that the order is consistent
with the hypertree decomposition of the local hyper-
graph, in the standard (non-serial) DP-sense used in
constraint and probabilistic graphical models (Dechter
2003; Koller and Friedman 2009). For each ai:

(a)
∑

a′
i
pi,a′

i
Si,C

κi
i ,a′

i
≥ Si,C

κi
i ,ai

− ε/2;

(b) Si,C1
i ,ai

= M̃i,C1
i
(ai, pC1

i−i), and for l = 2, . . . , κi,

Si,Cl
i ,ai

= M̃i,Cl
i
(ai, pCl

i−i) + Si,Cl−1
i ,ai

.

2. Normalization:
∑

ai
pi,ai

= 1.

The number of variables of the CSP is O (nmκ). The
size of each domain Ĩi is O (s), where s ≡ maxi si. The
size of each domain Ĩ ′i is O (s′), where s′ ≡ maxi s

′
i.

The computation of each M̃i,Cl
i
(ai, pCl

i−i) in 1(b) above,

which takes time O(sκ
′−1), dominates the running time to

build the constraint set. The total number of constraints is
O (nmκ). The maximum number of variables in any con-
straint is O(mκ′). Given a hyper-tree decomposition, the
amount of time to build the constraint set using a tabular
representation is O(nmκsmκ′

(s′)m), which is the repre-
sentation size of the GMhG-induced CSP.

Correctness of the GMhG-Induced CSP

We use the following Lemma of Ortiz (2014). Note that
our results do not follow directly from this Lemma, since
we also discretize the payoff space. Furthermore, for tree-
structured polymatrix games, Ortiz (2014)’s running time
depends on (kε )

k when m is bounded by a constant, whereas
ours is polynomial in the maximum neighborhood size k.
Lemma 1. (Sparse MSNE Representation Theorem) For
any GMhG and any ε such that

0 < ε ≤ 2 min
i∈V

∑
C∈Ci Ri,C (|C| − 1)

maxC′∈Ci |C ′| − 1
,

a (uniform) discretization with si =⌈
2 |Ai| maxj∈Ni

∑
C∈Cj Rj,C (|C| − 1)

ε

⌉
=O

(
mκκ′

ε

)
for each player i is sufficient to guarantee that for every
MSNE of the game, its closest (in �∞ distance) joint mixed
strategy in the induced discretized space is also an ε-MSNE.

We next present our sparse-representation theorem, which
discretizes the partial sums of expected local-clique payoffs.
Theorem 1. (Sparse Joint MSNE and Expected-Payoff
Representation Theorem) Consider any GMhG and any ε,

0 < ε ≤ 2 min
i∈V

∑
C∈Ci Ri,C (|C| − 1)

maxC′∈Ci |C ′| − 1
.

Setting, for all players i, the pair (τi, τ
′
i) defining the joint

(individually-uniform) mixed-strategy and expected-payoff



discretization of player i such that

τi =
ε

8 |Ai| maxj∈Ni

∑
C∈Cj Rj,C (|C| − 1)

and
τ ′i =

ε

4κi
,

so that the discretization sizes si =⌈
8 |Ai| maxj∈Ni

∑
C∈Cj Rj,C (|C| − 1)

ε

⌉
=O

(
mκκ′

ε

)
and

s′i =
⌈
4κi

ε

⌉
= O

(κ
ε

)
for each mixed-strategy probability and expected payoff
value, respectively, is sufficient to guarantee that for every
MSNE of the game, its closest (in �∞ distance) joint mixed
strategy in the induced discretized space is a solution of the
GMhG-induced CSP, and that any solution to the GMhG-
induced CSP (in discretized probability and payoff space) is
an ε-MSNE of the game.

Proof. Let p′ be an MSNE of the GMhG. Let p be the mixed
strategy closest, in �∞, to p′ in the grid induced by the com-
bination of the discretizations that each τi generates. For
all i and ai, set p∗i,ai

= pi(ai); and for all i and ai, first
set S∗

i,C1
i ,ai

= M̃i,C1
i
(ai, p

∗
C1

i−i
), and then recursively for

l = 2, . . . , κi, set S∗
i,Cl

i ,ai
= M̃i,Cl

i
(ai, p

∗
Cl

i−i
) + S∗

i,Cl−1
i ,ai

.
The resulting assignment satisfies the normalization con-
straint of the CSP, by the definition of a mixed strategy.
The assignment also satisfies the partial-sum expected local-
clique payoffs by construction. By the setting of τi and
Lemma 1, we have that p is an (ε/4)-MSNE, and thus also
an ε-MSNE. In addition, for all i and ai, we have the follow-
ing sequence of inequalities:∑

a′
i
pi(a

′
i)
∑

C∈Ci M
′
i,C(a

′
i, pC−i) ≥∑

C∈Ci M
′
i,C(ai, pC−i)− ε

4 .∑
a′
i
p∗i,a′

i

∑κi

l=1 M
′
i,Cl

i−i
(a′i, p

∗
Cl

i−i
) ≥∑κi

l=1 M
′
i,Cl

i−i
(ai, p

∗
Cl

i−i
)− ε

4 .

By the definition of M̃i,C , for all i and C ∈ Ci, we have that
for all ai and l = 1, . . . , κi,

M̃i,Cl
i−i(a

′
i, p

∗
Cl

i−i
)− τ ′

i

2 ≤ M ′
i,Cl

i−i
(a′i, p

∗
Cl

i−i
)

≤ M̃i,Cl
i−i(a

′
i, p

∗
Cl

i−i
) +

τ ′
i

2 .

Combining the previous two inequalities, rearranging the
terms, and plugging in κi τ

′
i = ε/4 we get:∑

a′
i
p∗i,a′

i
S∗
i,C

κi
i ,a′

i

≥ S∗
i,C

κi
i ,a′

i

− ε
2 .

Hence, the assignment (p∗, S∗) also satisfies the best-
response constraints (1(a) of CSP) and is a solution to the
GMhG-induced CSP.

Now, for the second part of the theorem, suppose (p∗, S∗)
is a solution of the GMhG-induced CSP. Then, by the combi-
nation of the best-response and partial-sum expected local-
clique payoff constraints, we have that, for all i and ai,∑

a′
i
p∗i,a′

i
S∗
i,C

κi
i ,a′

i

≥ S∗
i,C

κi
i ,ai

− ε
2 ,

S∗
i,C1

i ,ai
= M̃i,C1

i
(ai, p

∗
C

|Ci|
i −i

) ,

S∗i,Cl
i ,ai

= M̃i,Cl
i
(ai, pCl

i−i) + S∗
i,Cl−1

i −i,ai
.

This in turn implies that for all i and ai, we can obtain the
following sequence of inequalities:∑
a′
i

p∗i,a′
i

κi∑
l=1

M̃i,Cl
i
(a′i, p

∗
Cl

i−i) ≥
κi∑
l=1

M̃i,Cl
i
(ai, p

∗
Cl

i−i)−
ε

2
.

∑
a′
i

p∗i,a′
i

∑
C∈Ci

M̃i,C(a
′
i, p

∗
C−i) ≥

∑
C∈Ci

M̃i,C(ai, p
∗
C−i)−

ε

2
.

Using the CSP constraints and after some algebra, we get:∑
a′
i
p∗i,a′

i

∑
C∈Ci M

′
i,C(a

′
i, p

∗
C−i) ≥∑

C∈Ci M
′
i,C(ai, p

∗
C−i)− ε

Hence, the corresponding joint mixed-strategy p∗ is an ε-
MSNE of the GMhG.

CSP-Based Computational Results
The CSP formulation in the previous section leads us to the
following computational results based on well-known algo-
rithms for solving CSPs (Russell and Norvig 2003, Ch. 5),
and the application of equally well-known computational re-
sults for them (Dechter 2003; Gottlob, Greco, and Scarcello
2014; Gottlob et al. 2016).
Theorem 2. There exists an algorithm that, given as input
a number ε > 0 and an n-player GMhG with maximum
local-hyperedge-set size κ and maximum number of actions
m, and whose corresponding CSP has a hypergraph with
hypertree-width w, computes an ε-MSNE of the GMhG in
time [n (mκκ′/ε)mκ′

]O(w).
For GMhGs with bounded hypertree width w, the follow-

ing corollary establishes our main CSP-based result.
Corollary 1. There exists an algorithm that, given as input
a GMhG with bounded w, outputs an ε-MSNE in polyno-
mial time in the size of the input and 1/ε, for any ε > 0;
hence, the algorithm is an FPTAS. If, instead, we have
w = O(polylog(n)), then the algorithm is a quasi-PTAS.

Theorem 2 also implies that we can compute an ε-MSNE
of a tree-structured polymatrix game in O(n (mk/ε)

2m
).

Note that the running time is polynomial in the maximum
neighborhood size k.

The following results are in term of the primal-graph rep-
resentation of the GMhG-induced CSP.
Theorem 3. There exists an algorithm that, given as input
a number ε > 0 and an n-player GMhG with maximum
number of actions m, primal-graph treewidth w′ of the cor-
responding CSP, maximum local-hyperedge-set size κ, and
maximum local-hyperedge size κ′, computes an ε-MSNE of
the game in time 2O(w′)n log(n) + n[(mκκ′/ε)m]O(w′).



Several corollary FPTAS results follow from the above
theorem (Ortiz and Irfan 2016).

DP for ε-MSNE Computation

We present a DP algorithm in the context of the special,
but still important class of tree-structured polymatrix games.
This is for simplicity and clarity, and as we later discuss,
is without loss of generality. We first designate an arbitrary
node as the root of the tree and define the notion of par-
ents and children nodes as follows. For any node/player i,
we denote by pa(i) the single parent of any non-root node
in the tree and by Ch(i) the children of node i in the root-
designated-induced directed tree. If i is the root, then pa(i)
is undefined. If i is a leaf, then Ch(i) = ∅.

The two-pass algorithm is similar in spirit to TreeNash
(Kearns, Littman, and Singh 2001), except that (1) here the
messages are {−∞, 0}, instead of bits {0, 1}; and (2) more
distinctly, our algorithm implicitly passes messages about
the partial-sum of expected payoffs across the siblings.

Collection Pass. For each non-root node i, we denote by
j = pa(i). We order Ch(i) as o1, . . . , o|Ch(i)|. We then ap-
ply the following DP bottom-up (i.e., from leaves to root).
We give an intuition before giving the formal specification.
The message Ti→j(pi, pj) is 0 iff it is “OK” for i to play pi
when i’s parent j plays pj (the notion of OK recursively
makes sure that i’s children are also OK). The message
Bi(pi, pj , So|Ch(i)|) is 0 iff i’s best response to j playing pj
is pi, given that i gets a combined payoff of So|Ch(i)| from its
children. The message Rol(pi, Sol) can be thought of as be-
ing implicitly passed from i’s child ol to the next (and back
to i from the last child o|Ch(i)|). Rol(pi, Sol) is 0 iff Sol is
the maximum payoff that i can get from its first l children
when i plays pi and those children are OK with that. Fig. 2
illustrates the message passing.

Formally, for each arc (j, i) in the designated-root-
induced directed tree (i.e., j is the parent of i), and (pi, pj)
a mixed-strategy pair in the induced grid:

Ti→j(pi, pj) =maxSo|Ch(i)|
Bi(pi, pj , So|Ch(i)|)+

Ro|Ch(i)|(pi, So|Ch(i)|)

Wi→j(pi, pj) = argmaxSo|Ch(i)|
Bi(pi, pj , So|Ch(i)|)+

Ro|Ch(i)|(pi, So|Ch(i)|)

where Bi(pi, pj , So|Ch(i)|) =

∑
ai

log

⎛⎝1

⎡⎣∑
a′
i

pi(a
′
i)
(
M̃i,j(a

′
i, pj) + So|Ch(i)|(a

′
i)
)
≥

M̃i,j(ai, pj) + So|Ch(i)|(ai)− ε
])

and, for l = 1, . . . , |Ch(i)|,

Vol(Sol , pol , Sol−1
) =

∑
ai

log (1 [Sol(ai) =

M̃i,ol(ai, pol) + Sol−1
(ai)

])

Figure 2: DP on a 5-node star polymatrix game. Solid
lines represent edges, broken lines show the final round of
message passing. The endpoints of every edge is playing
a matching pennies game between them. The visualization
of T1→0, for example, plots p1(a1 = 0) on x-axis and
p0(a0 = 0) on y-axis. Dark grid points denote OK (i.e.,
T1→0 = 0) and light grid points not OK. The Ri tables
are 3-dimensional. Here we only show one slice of Ri val-
ues corresponding to p0 = (0.5, 0.5). The x-axis represents
Si(a0 = 0) (partial sum up to the i-th child when player 0
plays 0) and y-axis Si(a0 = 1). A 0.1-MSNE computed for
this instance is: p0 = p3 = (0.5, 0.5), p1 = (0.75, 0.25),
p2 = p4 = (0, 1).

Fol(pi, Sol , pol , Sol−1
) =Tol→i(pol , pi) +Rol−1

(pi, Sol−1
)

+ Vol(Sol , pol , Sol−1
)

Rol(pi, Sol) = max
pol

,Sol−1

Fol(pi, Sol , pol , Sol−1
)

Wol(pi, Sol) = arg max
pol

,Sol−1

Fol(pi, Sol , pol , Sol−1
) .

Following are the boundary conditions: Ro0 ≡ 0
and So0 ≡ 0, so that Fo1(pi, So1 , po1 , So0) ≡
Fo1(pi, So1 , po1) = To1→i(po1 , pi). If i is the root, then
Ti→j(pi, pj) ≡ Ti(pi) and Wi→j(pi, pj) ≡ Wi(pi). If i
is a leaf, Ti→j(pi, pj) takes a simpler, non-recursive form.

Assignment Pass. For root i, set p∗i ∈ argmaxpi Ti(pi)
and S∗o|Ch(i)| ∈ Wi(p

∗
i ). Then recursively apply the fol-

lowing assignment process starting at o|Ch(i)|: for l =
|Ch(i)|, . . . , 1, set (p∗ol , S

∗
ol−1

) ∈ Wol(p
∗
i , S

∗
ol
).

The Running Time of the DP Algorithm

A running-time analysis of the DP algorithm presented
above yields the following theorem, which is one of our
main algorithmic results of this paper.
Theorem 4. The DP algorithm computes an ε-MSNE in
a graphical polymatrix game with a tree graph in time
n
(
mk
ε

)O(m)
.

Corollary 2. The DP algorithm is an FPTAS to compute
an ε-MSNE in an n-player graphical polymatrix game with



a tree graph and a bounded number of actions m. If m =
O(polylog(n)), then the DP algorithm is a quasi-PTAS.

Further Refinement

We describe a more refined alternative to the GMhG-
induced CSP that reduces the dependency on κ. The main
idea is to evaluate the expressions involving the expected
local-clique payoffs matrices M̃i,C(ai, pC−i) in a smart way
by decomposing the sum involving the expectation, consid-
ering one player mixed-strategy at a time, and projecting to
the discretized payoff space after evaluating each term in
the sum. This approach gives us an FPTAS for tree graphi-
cal games (in normal form) and bounded number of actions,
for which the best known approximation result to-date is a
quasi-PTAS. The resulting alternative CSP is considerably
more complex and hence we refer the reader to Ortiz and
Irfan (2016) for a detailed, formal presentation. With the
above proof sketch, we present the following result.

Theorem 5. There exists a DP algorithm that com-
putes an ε-MSNE in a tree graphical game in time
n

(
mk
ε

)3m+2
O
((

mk
)2)

. If m is bounded, then the run-

ning time is poly
(
nmk, 1

ε

)
and the algorithm is an FPTAS.

If m = O(polylog(n)), then this algorithm is a quasi-PTAS.

Concluding Remarks

We have presented tractable algorithms for computing ε-
MSNE in tree-structured GMhGs when the number of
actions is bounded. The implications of our results can
best be highlighted by considering a very simple 101-
node star polymatrix game with a constant number of
actions. For computing an ε-MSNE of this game, the
algorithm of Kearns, Littman, and Singh (2001) takes
O((( 2

k+2k log k
ε )2)k) time (here k = 100), the algorithm of

Ortiz (2014) takes O((kε )
k) time, and ours takes O(poly(kε ))

time and thereby solves a 15-year-old open problem. We
conclude by emphasizing that our DP algorithm is simple
to implement and that simplicity is a strength of this work.
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