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Abstract. A straight-line drawing of a plane graph G is a drawing of G where
each vertex is drawn as a point and each edge is drawn as a straight-line segment
without edge crossings. A proximity drawing Γ of a plane graph G is a straight-
line drawing of G with the additional geometric constraint that two vertices of G
are adjacent if and only if no other vertex of G is drawn in Γ within a “proximity
region” of these two vertices in Γ . Depending upon how the proximity region
is defined, a given plane graph G may or may not admit a proximity drawing.
In one class of proximity drawings, known as β-drawings, the proximity region
is defined in terms of a parameter β, where β ∈ [0, ∞). A plane graph G is
β-drawable if G admits a β-drawing. A sufficient condition for a biconnected
2-outerplane graph G to have a β-drawing is known. However, the known algo-
rithm for testing the sufficient condition takes time O(n2). In this paper, we give
a linear-time algorithm to test whether a biconnected 2-outerplane graph G sat-
isfies the known sufficient condition or not. This consequently leads to a linear
algorithm for β-drawing of a wide subclass of biconnected 2-outerplane graphs.

Keywords: Graph Drawing, Proximity Drawing, β-Drawing, Proximity Graph,
2-Outerplane graph, Slicing Path, Good Slicing Path.

1 Introduction

Let Γ be a straight-line drawing of a plane graph G. Let Γ (u) be the point on the plane
to which the vertex u of G is mapped in Γ . Then Γ is a proximity drawing of the plane
graph G if Γ satisfies the following proximity constraint: two vertices u and v of G are
adjacent if and only if a well-defined “proximity region” corresponding to the points
Γ (u) and Γ (v) is empty, i.e. the region does not contain Γ (w) for any other vertex
w of G. The exact definition of proximity region is problem-specific. As a matter of
fact, there is an infinite number of different types of proximity regions. For example,
an infinite family of parameterized proximity regions has been introduced in [5]. This
family of parameterized proximity regions gives rise to an important class of proximity
drawings, known as β-drawings, where β stands for a parameter that can take any real
number value in [0, ∞).

A plane graph G is β-drawable if G admits a β-drawing. Not all graphs are β-
drawable for all values of β. For example, the graph G1 illustrated in Fig. 1(a) is not
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Fig. 1. (a) A graph G1 which is not β-drawable for β ∈ (1, 2), and (b) a graph G2 which is
β-drawable under the same constraints

β-drawable for β = 1. This fact can be explained as follows. Suppose we want to
achieve a β-drawing of G1 with β = 1. The β-region of two vertices u and v for β = 1
is a circle with Γ (u) and Γ (v) as its two antipodal points. For the graph G1, wherever
we place the four external vertices, the internal vertex will be inside the β-region of at
least one of the four pairs of neighboring external vertices (as shown with the dotted
circle in Fig. 1(a)). Therefore the graph G1 is not β-drawable for β = 1. Following this
same line of reasoning, one can easily work out that the graph G2 shown in Fig. 1(b) is
β-drawable for β = 1.

The proximity drawability problem, i.e. the problem whether a given graph admits
a particular proximity drawing or not, has originated from the well-known “proximity
graphs.” Proximity graphs have wide applications in computer graphics, computational
geometry, pattern recognition, computational morphology, numerical analysis, compu-
tational biology, GIS, instance-based learning and data-mining [3].

Several research outcomes regarding the proximity drawability of trees and outer-
planar graphs are known [1, 2, 6]. One of the problems left open in [6] is to extend the
problem of β-drawability of graphs to other nontrivial classes of graphs apart from trees
and outerplanar graphs. In [4], the authors gave a sufficient condition for β-drawability
of biconnected 2-outerplane graphs, where β ∈ (1, 2). Although their sufficient con-
dition induces a large and non-trivial class of biconnected 2-outerplane graphs, their
algorithm for testing whether a given biconnected 2-outerplane graph satisfies those
conditions or not, takes time O(n2).

In this paper, we give a linear-time algorithm for testing whether a biconnected 2-
outerplane graph G satisfies the sufficient condition presented in [4]. Our algorithm
essentially relies on the sufficient condition presented in [4], but works on a new set of
conditions devised by us on “slicing paths” of G.

The rest of this paper is organized as follows. In Section 2, we present some def-
initions and preliminary results. In Section 3, we give a linear-time algorithm to test
whether G satisfies the sufficient condition presented in [4] or not, and in the positive
case, to compute a β-drawing of G. Finally, Section 4 is a conclusion.

2 Preliminaries

In this section we give some definitions and present our preliminary results.
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A graph G is connected if there is a path between every pair of vertices of G, other-
wise G is disconnected. A connected graph G is biconnected if at least two vertices of
G are required to be removed to make the resulting graph disconnected. A component of
G is a maximal connected subgraph of G. A graph G is planar if G has an embedding in
the plane where no two edges cross each other, except at vertices on which two or more
edges are incident. A plane graph is a planar graph with a fixed planar embedding. A
plane graph partitions the plane into topologically connected regions called faces. The
unbounded face is called the external face, while the remaining faces are called internal
faces.

An outerplanar graph is a graph that has a planar embedding in which all the vertices
lie on the external face. An outerplanar graph is also known as a 1-outerplanar graph.
If all the vertices of a 1-outerplanar graph G appear on the external face of a given
embedding of G, then we say that the embedded graph is a 1-outerplane graph, oth-
erwise the embedded graph is not 1-outerplane, even though G is 1-outerplanar. These
definitions can be generalized as follows. For an integer k > 1, an embedded graph is
k-outerplane if the embedded graph obtained by removing all the vertices of the exter-
nal face is a (k−1)-outerplane graph. On the other hand, we call a graph k-outerplanar
if it has an embedding that is k-outerplane.

Let G be a biconnected 2-outerplane graph. The vertices on the external face of
G are called the external vertices of G. The remaining vertices of G are called the
internal vertices of G. For any external vertex u of G, the fan of u, denoted by Fu, is
the subgraph of G induced by the vertices of G that share an internal face with u. The
vertex u is called the apex of Fu.

For any two distinct points in the plane there is an associated region parameterized
by β, where β ∈ [0, ∞), which is called the β-region of the two points. There exist two
variants of β-regions, namely lune-based and circle-based β-regions [5]. These regions
can be further subdivided into two types: open β-regions and closed β-regions. In an
open β-region, the boundary of the region is excluded from the region. However, in a
closed β-region, the boundary of the region is included in the region. In [4], the authors
studied the lune-based closed β-regions and gave the following sufficient condition for
a biconnected 2-outerplane graph G to admit a β-drawing where β ∈ (1, 2).

Theorem 1. A biconnected 2-outerplane graph G is β-drawable for β ∈ (1, 2) if G
satisfies the following conditions 1 and 2.

1. There are at least five external vertices; and
2. There is an external vertex u such that the fan Fu has all of the following properties:

(a) Fu is biconnected 1-outerplane; (b) Fu contains all the internal vertices of G
and the internal vertices of G induces a single connected component of G; and
(c) every vertex in Fu has at most one neighbor outside Fu and every vertex outside
Fu has at most one neighbor in Fu.

��

However, the sufficient conditions mentioned in Theorem 1 apply for lune-based open
β-regions as well [4].

A constructive proof of Theorem 1 has been provided in [4]. In that proof, the authors
have first tested whether a biconnected 2-outerplane graph G satisfies the conditions
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stated in Theorem 1 or not and in the positive case, they have computed a set of external
vertices of G such that for each vertex u in that set, the corresponding fan Fu satisfies
Conditions 2(a)–2(c) of Theorem 1. Such a set of external vertices is called the set of
candidate apices. For the purpose of computing this set, the authors in [4] have adopted
the following approach. For each external vertex u of G they have tested whether the
fan Fu of u satisfies the Conditions 2(a)–2(c) of Theorem 1. For a specific fan Fu, this
checking will take O(n) time. Since there are O(n) number of external vertices of G,
this would require O(n2) time to compute the set of candidate apices. After computing
the set of candidate apices, the authors in [4] have computed a β-drawing of G in time
O(n) as follows. They have first drawn the fan Fu of vertex u where u is a candidate
apex. They have next drawn the remaining graph G − (V (Fu)) and have added edges
between the vertices of Fu and the vertices of G−(V (Fu)). Thus the constructive proof
of Theorem 1 presented in [4] yields an O(n2) time algorithm which finds candidate
apices in O(n2) time and computes a β-drawing in O(n) time.

In the remainder of this section, we present some fundamental observations which
we use to compute the set of candidate apices in linear-time. We first have the following
lemma whose proof is omitted in this extended abstract.

Lemma 1. Let G be a biconnected 2-outerplane graph. Let u be an external vertex of
G and Fu be the fan of vertex u. If Fu is 1-outerplane and Fu contains all the internal
vertices of G then Fu is biconnected. ��
It is important here for us to mention the significance of Lemma 1 in our work. Through-
out the remainder of this paper, given a biconnected 2-outerplane graph G, we will con-
centrate on an external vertex u of G and its fan Fu such that: (a) the condition given in
Condition 2(a) of Theorem 1 stating that Fu should be 1-outerplane holds; and (b) Con-
ditions 2(b) and 2(c) of Theorem 1 hold. Lemma 1 ensures that Fu will be biconnected
in every such scenario, and hence, all the three conditions 2(a)–2(c) hold.

Let G be a biconnected 2-outerplane graph which satisfies the sufficient condition
given in Theorem 1. We now have the following lemma regarding the subgraph Gin of
G induced by the internal vertices of G. We have omitted the proof of Lemma 2 in this
extended abstract.

Lemma 2. Let G = (V, E) be a biconnected 2-outerplane graph which satisfies the
sufficient condition of Theorem 1. Let Gin be the subgraph of G induced by the internal
vertices of G. Then Gin is a simple path. ��

3 Linear-Time Algorithm for β-Drawings of G

In this section, we first introduce the concept of a “slicing path” and a “good slic-
ing path” of G. We next use the notion of good slicing paths of G to devise a linear-
algorithm to test whether G satisfies the sufficient condition of Theorem 1 or not, and
in the positive case, to compute a set of candidate apices of G. By using the linear-time
algorithm presented in [4] for computing a β-drawing of such a graph G, we thus give
a linear-time algorithm for computing a β-drawing of G.

Let Gin be the subgraph of G induced by the internal vertices of G. If G satisfies The-
orem 1, then Lemma 2 implies that Gin is a simple path. Let Pst = us, us+1, . . . , ut,
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denote the path induced by the internal vertices of G. Clearly, every neighbor of us in
G other than us+1 is an external vertex of G. Similarly, every neighbor of ut in G other
than ut−1 is an external vertex of G. For an internal vertex v of G, let Nouter(v) denote
the number of those neighbors of v which are external vertices of G. We now have the
following lemma.

Lemma 3. Let G be a biconnected 2-outerplane graph which satisfies the sufficient
condition of Theorem 1. Let Pst = us, us+1, . . . , ut, be the path induced by the internal
vertices of G. Let w ∈ {us, ut}. Then Nouter(w) ≤ 3. ��

x1

x2

x3 y1

y2

y3

us us+1 ut

u

Fig. 2. Illustration of Lemma 3. The shaded region corresponds to the fan of vertex u

Proof. Let us assume that u is a candidate apex of G as illustrated in Fig. 2. Then Fu,
the fan of u, will contain exactly one edge connecting us with an external vertex x of G
where x �= u. Similarly, Fu will contain exactly one edge connecting ut with an external
vertex y of G where y �= u. Clearly, if Nouter(w) > 3 for either w = us or w = ut as
illustrated in Fig. 2, then w will have more than one neighbor outside Fu which violates
Condition 2(c) of Theorem 1. Hence, Nouter(w) ≤ 3, for each w ∈ {us, ut}. ��
Let G be a biconnected 2-outerplane graph which satisfies the sufficient condition of
Theorem 1. Let the path Pst = us, us+1, . . . , ut, be the subgraph of G induced by
the internal vertices of G. Then Lemma 3 holds for the end-vertices us and ut of Pst.
Let x and y be two of those external vertices of G which are neighbors of us and ut

respectively. We say that the path P ∗
st = x, us, us+1, . . . , ut, y, is a slicing path of G

obtained from Pst. Given a slicing path P ∗
st = x, us, us+1, . . . , ut, y, if we traverse P ∗

st

from x to y, then some of the vertices of G will lie on our left hand side, and some will
lie on our right hand side. Let GL

st denote the subgraph of G induced by those vertices
of G which lie on our left hand side while traversing P ∗

st from x to y. Similarly, let GR
st

denote the subgraph of G induced by those vertices of G which lie on our right hand side
while traversing P ∗

st from x to y. We say that a slicing path P ∗
st = x, us, us+1, . . . , ut, y,

is a good slicing path of G if the following Conditions (gs1) and (gs2) hold.
(gs1) There is no vertex v of P ∗

st such that v has more than one neighbor in GL
st and

more than one neighbor in GR
st; and

(gs2) there are no two vertices u and v of P ∗
st such that u and v have a common

neighbor in GL
st and a common neighbor in GR

st.
The following lemma is immediate from the above definition of a good slicing path

of G.

Lemma 4. Let G be a biconnected 2-outerplane graph which satisfies the sufficient
condition of Theorem 1. Let Pst be the path induced by the internal vertices of G. Then
a good slicing path of G can be obtained from the path Pst. ��
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We now have the following lemma.

Lemma 5. Let G be a biconnected 2-outerplane graph which satisfies the sufficient
condition of Theorem 1. Let Pst = us, us+1, . . . , ut, be the path induced by the internal
vertices of G. In order to obtain a good slicing path of G from Pst, we need to check at
most four slicing paths of G obtained from Pst. ��

Before presenting the proof of Lemma 5, we first give the following lemma whose proof
is omitted in this extended abstract.

Lemma 6. Let G be a biconnected 2-outerplane graph which satisfies the sufficient
condition of Theorem 1. Let Pst = us, us+1, . . . , ut, be the path induced by the internal
vertices of G. Let Nouter(w) = 3, for each w ∈ {us, ut}. Let x1, x2, x3 be the three
neighbors of w which are external vertices of G appearing in counter-clockwise order
on the external face of G. Then x2 cannot be a candidate apex of G, but x1 or x3 can
be a candidate apex of G. ��

Proof of Lemma 5. Let w ∈ {us, ut}. We can obtain slicing paths P ∗
st from Pst as

follows. (1) If Nouter(w) = 1, then let x denote the neighbor of w which is an external
vertex of G. In this case, we include x in P ∗

st. (2) If Nouter(w) = 3, then let x1, x2, x3
be the three neighbors of w appearing counter-clockwise on the external face of G. As
we have shown in Lemma 6, x2 cannot be a candidate apex of G, but x1 or x3 can be a
candidate apex of G. In this case, we include x2 in P ∗

st. (3) If Nouter(w) = 2, then let
x1 and x2 be the two neighbors of w on the external face of G. In this case, we construct
two slicing paths from Pst, by including x1 in one and including x2 in another.

Hence, our claim holds from Lemma 6 and the above mentioned method to construct
slicing paths P ∗

st from Pst. ��

We finally have the following lemma.

Lemma 7. Let G be a biconnected 2-outerplane graph. Then one can check in linear
time whether G satisfies the sufficient condition of Theorem 1 or not, and can compute
the set of candidate apices of G in linear time if G satisfies the condition.

Proof. Our proof is constructive. We first check whether G has at least five external
vertices or not. We next check whether Gin is a simple path or not. If Gin is not a
simple path, then Lemma 2 implies that G does not satisfy the sufficient condition of
Theorem 1. In the positive case, let Pst denote the path induced by the internal vertices
of G. Then we check whether Lemma 3 holds for Pst or not. If Lemma 3 does not
hold for Pst, then Lemma 3 implies that G does not satisfy the sufficient condition of
Theorem 1. Clearly, the operations in this first step can be performed in linear-time.

In our next step, we construct slicing paths P ∗
st of G from Pst according to the

method outlined in the proof of Lemma 5. It is also implied by Lemma 5 that we will
have to construct at most four such slicing paths P ∗

st. For each P ∗
st, we check whether it

is a good slicing path of G or not. If no good slicing path of G can be obtained from Pst,
then we get from Lemma 4 that G does not satisfy the sufficient condition of Theorem 1.
The checking of this step is independent of the previous step, and can be performed in
linear-time. In this phase, we also remember which of the two subgraphs GL

st and GR
st

can contain a candidate apex.
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In our last step, for each good slicing path P ∗
st, we traverse all the internal faces

of GL
st and GR

st that can contain a candidate apex. Let u be an external vertex of G
which appears on each of these faces. All such vertices u will constitute the set of
candidate apices. This step can also be implemented in linear time, since we can gather
the whole information by traversing each such internal face at most once. Hence the
total algorithm has linear time complexity. ��

We finally present the main result of this paper in the following theorem.

Theorem 2. Let G be a biconnected 2-outerplane graph. Then one can check in linear
time whether G satisfies the sufficient condition of Theorem 1 or not, and can find a
β-drawing of G, where β ∈ (1, 2), in linear time if G satisfies the condition.

Proof. The claim holds directly from Lemma 7 and the linear-time drawing algorithm
presented in [4]. ��

4 Conclusion

In this paper, we have given a linear-time algorithm to test whether a biconnected 2-
outerplane graph G satisfies the sufficient condition presented in [4], and thus, we
have achieved a linear algorithm for computing β-drawings of biconnected 2-outerplane
graphs where β ∈ (1, 2). It remains as our future work to obtain efficient algorithms for
computing β-drawings of larger classes of graphs.
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