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Abstract. A proximity drawing of a plane graph G is a straight-line
drawing of G with the additional geometric constraint that two vertices
of G are adjacent if and only if the well-defined “proximity region” of
these two vertices does not contain any other vertex. In one class of prox-
imity drawings, known as β-drawings, the proximity region is parameter-
ized by β, where β ∈ [0,∞]. Given a plane graph G, the “β-drawability
problem” asks whether G has a β-drawing Γ and in that case G is called
“β-drawable.” The problem of whether a class of graphs is β-drawable,
for some value of β, has been studied for two classes of graphs– trees
and outerplanar graphs. However, for larger classes of graphs the β-
drawability problem is still an open problem. In this paper we focus on
the problem of β-drawability of 2-outerplane graphs for 1 < β < 2. We
provide a set of sufficient conditions for a biconnected 2-outerplane graph
to have a β-drawing, for 1 < β < 2. We provide a drawing algorithm as
well. We also identify a subclass of biconnected 2-outerplane graphs that
are not β-drawable for 1 < β < 2.

Keywords: Proximity graphs, Graph drawing, Proximity drawings of graphs,
β-drawings.

1 Introduction

Geometric graphs such as Voronoi diagrams, Delaunay triangulations, convex
hulls, visibility graphs, etc. have evolved over time for modeling and solving var-
ious practical problems. Proximity graphs are another class of geometric graphs
that has received a great deal of interest from the computational geometry com-
munity. Proximity graphs have been used in a wide range of application areas.
In this section, first we introduce proximity graphs. Then we specify several
application areas where proximity graphs are being used. We introduce a pa-
rameterized family of proximity graphs, known as the β-proximity graphs, for
0 ≤ β ≤ ∞. Then we review the literature and finally, state the results of the
paper.
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1.1 Proximity Graphs

Even though the notion of “proximity graphs” was coined in much later, essen-
tially the foundation of this has been the Gabriel graph, introduced by Gabriel
and Sokal in the context of geographic variation analysis [GS69]. A Gabriel graph
is a plane graph in which two vertices are adjacent if and only if the closed circle
having these two vertices as its two antipodal points contains no other vertex
of the graph. Here the closed circle just mentioned is also known as the prox-
imity region, specifically the Gabriel region, of the two vertices. Like Gabriel
graphs other types of proximity graphs also have a well-defined proximity re-
gion. Proximity regions are also termed as regions of influence by some authors.
A definition of the proximity region is at the heart of a proximity graph. All the
geometric properties of any proximity graph are just results of the definition of
its proximity region. For different proximity regions we get different proximity
graphs although they might have the same set of points in the plane, each point
being represented by a vertex of the corresponding graph. We clarify this idea
by an example of constructing a proximity graph from a point set.

Let us consider a set of points in 2-dimensional space, as illustrated in
Fig. 1(i). Taking these points as the vertices, we can compute the corresponding
Gabriel graph by adding an edge between any two distinct vertices if and only
if the proximity region, i.e. the closed circle having the points corresponding to
these two vertices as its antipodal points, does not contain any other point. The
corresponding Gabriel graph is shown in Fig. 1(ii).

Another type of proximity graph is the relative neighborhood proximity
graph. In this type of proximity graph the proximity region of two points x

and y is the intersection of two open disks of radius d(x, y) centered at x and y.
In a relative neighborhood graph there is an edge between x and y if and only if
the relative neighborhood proximity region of x and y is empty. Fig. 1(iii) shows
the relative neighborhood graph resulting from the point set shown in Fig. 1(i).

As shown above, given a set of points and a definition of the proximity region
we can construct a proximity graph. An important property of this graph is that
it provides us a description of the internal structure of the set of points. For
some other definition of the proximity region, namely the γ-proximity region,
the resulting proximity graph can describe the external shape of the point set
[Velt92]. The ability of proximity graphs to describe the internal or external
structure of a set of points has found its application in computational morphol-
ogy, which is concerned with the analysis of the shape of a set of points. Research
findings in computational morphology have industrial applications in computer
vision. Proximity graphs have also been used in graph-based methods of cluster-
ing and manifold learning [CZ05]. Besides that, proximity graph-based methods
have been applied in data mining [Tous05], topology control in wireless sensor
networks [Li03] and in many other diverse fields.

We have just seen two types of proximity graphs: the Gabriel graph and
the relative neighborhood graph. One might wonder how many other types of
proximity graphs are there. In fact, there is an infinite number of different types
of proximity graphs. For example, an infinite family of parameterized proximity
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Fig. 1. (i) A set of points (ii)Gabriel graph and (iii) relative neighborhood graph cor-
responding to the set of points shown in (i). The dotted regions explain why the edges
(a,b) and (c,d) have been added and why the edge (e,f) has not been added.

graphs have been introduced by Kirkpatrick and Radke [KR85]. This family
of proximity graphs is called β-skeletons, where β stands for the parameter
that can take any real number value in [0,∞]. Interestingly, Gabriel graph and
relative neighborhood graph both belong to this family of proximity graphs.
Gabriel graph is the closed proximity graph for the value of β = 1 and relative
neighborhood graph is the open proximity graph for β = 2.

1.2 Literature Review

Being brought to light in the year of 1969, proximity graphs might seem to be old
geometric graphs. But the most interesting thing is that it has been providing
new research trends quite regularly. The oldest research direction concerning
proximity graphs is: given a set of points and a definition of the proximity region,
how can we compute the proximity graph efficiently and what are the properties
of this graph? This research area has been explored and reviewed very nicely in
a paper by Jaromczyk and Toussaint [JT92].

Apart from the problem of computing a proximity graph and analyzing its
underlying properties, another problem that has been receiving a lot of atten-
tion from the graph drawing community of late is: given a planar embedding
of a graph and a definition of the proximity region, is it possible to achieve
a straight-line drawing of the graph maintaining the proximity constraints? If
yes then how can it be drawn? This has emerged as one of the relatively new
graph drawing challenges. Today it is widely known as the proximity drawability
problem. Intuitively, the initial research effort in this direction has focused on
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proximity drawability of trees. The problem of proximity drawability of trees
can be framed in this way: given a class of trees and a value of β, does this
class of trees admit a β-drawing? Here we can classify the trees according to the
maximum vertex degree. This problem has been studied in [BDLL95,BLL96]
and the classes of trees that admit open β-drawings for 0 ≤ β ≤ 1
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also been been found. Outside these ranges of β values, for β = 2 it has been
found that the class of finite trees with maximum vertex degree at most 5 are β-
drawable [BLL96]. However, there is some gray area for 1
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and β 6= 2 in the sense that determining which classes of trees are β-drawable
for this range of β values is still an open problem.

Another class of graphs that has been studied from the graph drawing per-
spective is the class of outerplanar graphs. It has been shown that all biconnected
outerplanar graphs can be β-drawn for 1 ≤ β ≤ 2 [LL96]. In the same paper
it has been shown that β-drawability of connected outerplanar graphs for some
value of β ∈ [0,∞] depends on the maximum vertex degree in the block-cut-
vertex tree of that graph. One of the open problems left in [LL96] is to extend
the problem of β-drawability of graphs to other nontrivial classes of graphs apart
from trees and outerplanar graphs. In this paper we characterize a subclass of
biconnected 2-outerplane graphs that can be β-drawn for β ∈ (1, 2). We also
show that all biconnected 2-outerplane graphs are not β-drawable for this range
of β values.

1.3 Results

In this paper we are concerned with the problem of β-drawability of biconnected
2-outerplane graphs. The results of the paper are summarized as follows:

– We have specified a necessary condition for β-drawability of biconnected
2-outerplane graphs, for 1 < β < 2.

– We have specified sufficient conditions for β-drawability of biconnected 2-
outerplane graphs, for 1 < β < 2. The sufficient conditions induce a large
and nontrivial class of biconnected 2-outerplane graphs.

– For a biconnected 2-outerplane graph that satisfies the sufficient conditions,
we have provided an O(n2) drawing algorithm for β-drawing the graph, for
1 < β < 2.

– The specified necessary condition implies a forbidden class of biconnected
2-outerplane graphs which cannot be β-drawn, for 1 < β < 2. The sufficient
conditions imply a subclass of biconnected 2-outerplane graphs that are β-
drawable for the same range of β values. We have shown that if a biconnected
2-outerplane graph does not belong to the forbidden class and also not to
the above mentioned β-drawable class, then this graph is not necessarily
β-drawable.
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2 Preliminaries

In this section we first present definitions of planar and plane graphs, 1-outerplanar
and 2-outerplanar graphs and then we define β-proximity graphs and state sev-
eral properties of β-drawings of graphs. We assume that the reader is familiar
with basic graph theoretic and graph drawing terminologies, for which we follow
[West01,NR04].

A graph is planar if it has an embedding in the plane without any edge-
crossing, except at vertices on which two or more edges are incident. A plane
graph G is defined as a planar graph with a fixed embedding in the plane without
any edge-crossing, except at vertices on which two or more edges are incident.
In fact, a planar graph can have many planar embeddings and each of these
embeddings is a plane graph. A plane graph divides the plane into connected
regions called faces. The unbounded region is called the external face.

An outerplanar graph is a graph that has a planar embedding such that all
the vertices lie on the external face. This graph is also known as a 1-outerplanar
graph. For a specific embedding of a graph if all the vertices are on the external
face we say that the embedded graph is a 1-outerplane graph, otherwise the
embedded graph is not 1-outerplane. So the definition of 1-outerplanar graph
is independent of embeddings, whereas the definition of 1-outerplane graph is
concerned with a specific embedding.

These definitions can be generalized as follows. For an integer k > 1, an
embedded graph is k-outerplane if the embedded graph obtained by removing
all the vertices of the external face is a (k − 1)-outerplane graph. On the other
hand, we call a graph k-outerplanar if it has an embedding that is k-outerplane.
A related notion is the outerplanarity of a graph which is defined as follows. For
an integer k > 0, a graph has outerplanarity k if k is the least positive integer
such that the graph is k-outerplanar.

For a biconnected 2-outerplanar graph G, let Γ be a 2-outerplane embedding
of G. We call the vertices of G that are in the external face in Γ the external ver-
tices. The remaining vertices are called the internal vertices. Each edge between
two external vertices is called an external edge. Similarly each edge between two
internal vertices is called an internal edge. The remaining edges each connecting
an external vertex with an internal vertex are called mixed edges.

Let G = (V, E) be a biconnected outerplanar graph. For any vertex u ∈ V ,
the fan of u, denoted by Fu, is the subgraph of G induced by the vertices in V

that share an internal face with u in a 1-outerplanar embedding of G. Here, the
vertex u is called the apex of Fu. Since G is outerplanar, Fu is also outerplanar.
Let Γ be a 1-outerplanar embedding of G in which Fu has the 1-outerplanar
embedding Φ. Let u1, u2, . . . , uk be the vertices of neighbors of u in clockwise
order in Φ. The edge (u, u1) is called the first edge of Fu and (u, uk) the last
edge of Fu for that embedding. We call each edge (u, ui) a radial edge of Fu, for
i = 2, . . . , k − 1. Apart from the first edge, the last edge and the radial edges,
all other edges of Fu are called fan edges. We denote by ui,1, ui,2, . . . , ui,m the m

vertices on the boundary of Φ in between ui and ui+1 in clockwise order, where
1 ≤ i ≤ k − 1. These notations are illustrated in Fig. 2. In this paper, we adopt
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the notion of fan of a vertex in a biconnected 2-outerplane graph by allowing
the apex of the fan to be an external vertex of the graph. A cycle C in a plane
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Fig. 2. Fan of a vertex u of a biconnected outerplanar graph and related notions: u is
the apex; uu1 is the first edge, uu3 is the last edge; uu2 is a radial edge; u1,2u2 and
u2u2,1 are two fan edges and the shaded subgraph is the fan of apex u, denoted by Fu.

graph G is called a complex cycle if there is a vertex v ∈ V (G) located in proper
inside of C. If there are k vertices on the complex cycle C then C is called a
complex k-cycle.

For any two distinct points in the plane there is an associated region pa-
rameterized by β, which is called the β-region of the two points. Kirkpatrick
and Radke introduced β-regions in two variants– lune-based and circle-based
β-regions [KR85]. In this paper we study only the lune-based variant. This prox-
imity region can be further subdivided into two types– open β-regions (also
denoted by (β)-regions) and closed β-regions (also denoted by [β]-regions). In
the (β)-region, the boundary of the region is considered to be outside the region.
However, in the [β]-region, the boundary of the region is included in the region
of interest.

For two distinct points x and y in the plane the associated lune-based open
β-region R(x, y, β) and closed β-region R[x, y, β] are defined as follows.

– For β = 0, R(x, y, β) is the empty region and R[x, y, β] is the straight line
segment connecting x and y.

– For β in (0, 1), R(x, y, β) is the intersection of two open disks of radius d(x,y)
2β

passing through both x and y and R[x, y, β] is the intersection of the two
corresponding closed disks. Here, d(x, y) denotes Euclidean distance between
the points x and y.

– For β in [1,∞), R(x, y, β) is the intersection of two open disks or radius
βd(x,y)

2 , centered at the points (1 − β
2 )x + β

2 y and β
2 x + (1 − β

2 )y. R[x, y, β]
is the intersection of the two corresponding closed disks.
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– For β = ∞, R(x, y, β) is the open infinite strip perpendicular to the line
segment xy and R[x, y, β] is the corresponding closed infinite strip.

Examples of R[x, y, β] are shown in Fig. 3 for several values of β. It can
be observed that as the value of β increases, the corresponding β-region also
increases and for 0 ≤ β1 < β2 ≤ ∞, R[x, y, β1] is contained inside R[x, y, β2].

R[x, y, 3]

x y

R[x, y, 2]

R[x, y, 1]
R[x, y, 0.5]
R[x, y, 0]

R[x, y, inf]

Fig. 3. R[x, y, β] for several values of β.

Given a straight-line drawing Γ of a graph G = (V, E) and the value of
parameter β, we say that Γ is an open β-drawing, also written as (β)-drawing,
of G if Γ maintains the following proximity constraint: uv ∈ E if and only if
R(u, v, β) does not contain any vertex of V − {u, v} in the drawing Γ . We can
define closed β-drawings, written as [β]-drawings, similarly by considering closed
β-regions.

A graph is (β)-drawable (or [β]-drawable) if it admits a (β)-drawing (or [β]-
drawing). The (β)-drawability problem asks the question of whether an input
plane graph G is (β)-drawable or not for a specified value of β. Similarly, the
[β]-drawability problem can be defined. In this paper we simply use the notations
β-regions, β-drawings or β-drawable graphs whenever the discussion applies for
both (β)-regions and [β]-regions.

We use two angular measurements α(β) and γ(β) that are defined as follows
[BDLL95,BLL96,LL96].

– For β ≥ 0, α(β) = inf{∠xzy ‖ z ∈ R[x, y, β], z 6= y}.
– For β ≥ 2, γ(β) = ∠zxy, where z 6= y is a point on the boundary of R[x, y, β]

and d(x, y) = d(x, z).

The following property expresses the relationship between β and either of
α(β) and γ(β). The property can be proved starting from the definitions of α(β)
and γ(β) and using elementary geometry.

Property 1. [BDLL95,LL96]
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– β = sinα for 0 ≤ β ≤ 1 and π
2 ≤ α ≤ π.

– β = 1
1−cosα

for 1 < β ≤ 2 and 0 ≤ α < π
2 .

– β = 1
cosγ

for 2 ≤ β ≤ ∞ and π
3 ≤ γ < π

2 .

3 β-Drawability of Biconnected 2-Outerplane Graphs

In this section we give characterization of biconnected 2-outerplane graphs for
having a β-drawing. We provide a constructive proof of our claim which gives
an O(n2) algorithm for β-drawing a biconnected 2-outerplane graph satisfying
a set of sufficient conditions.

There are biconnected 2-outerplane graphs that are not β-drawable for β ∈
(1, 2). For example, let us consider a biconnected 2-outerplane graph with exactly
4 external vertices and exactly 1 internal vertex. Suppose that we want to achieve
a [1]-drawing of this graph. No matter where we place the four external vertices,
the internal vertex will be inside the proximity region of at least one of the four
pairs of neighboring external vertices. And hence the graph is not [1]-drawable.
This geometric property has been outlined in [LL96]. The mentioned graph will
not be β-drawable for β > 1 as well, since the proximity regions will only increase
and we will have no place to position the internal vertex. The same situation will
arise for a 2-outerplane graph with three external vertices. Thus we can arrive
at the following lemma.

Lemma 1. Let G be a biconnected 2-outerplane graph. Then G has no β-drawing
for 1 < β < 2 if G has less than five external vertices.

By definition, Lemma 1 implies that some of graphs in the class of bicon-
nected 2-outerplane graphs are not β-drawable for β ∈ (1, 2). We are now in-
terested in finding a subclass of biconnected 2-outerplane graphs that are β-
drawable for 1 < β < 2. The following theorem characterizes a subclass of
biconnected 2-outerplane graphs that are β-drawable for 1 < β < 2.

Theorem 1. A biconnected 2-outerplane graph G is β-drawable for β ∈ (1, 2)
if G satisfies the following conditions:

1. There are at least five external vertices; and
2. There is an external vertex u such that the fan Fu has all of the following

properties:
(a) Fu is biconnected 1-outerplane;
(b) Fu contains all the internal vertices; and
(c) Every vertex in Fu has at most one neighbor outside Fu and every vertex

outside Fu has at most one neighbor in Fu.

In the rest of this section we provide a constructive proof of Theorem 1.
But before going on to the proof, an interesting question arises regarding a
biconnected 2-outerplane graph G that satisfies all the conditions in Theorem 1:
is there any possibility of the occurrence of a complex 3-cycle or a complex
4-cycle in G? The following lemma, whose proof is omitted in this extended
abstract, confirms that this can never happen.
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Lemma 2. Let G be a biconnected 2-outerplane graphs satisfying the conditions
in Theorem 1. Then every 3-cycle, as well as every 4-cycle, of G is a face.

We are now going to present a constructive proof of Theorem 1. The outline
of the proof is as follows. Let G be a biconnected 2-outerplane graph satisfying
the conditions specified in Theorem 1. According to the conditions, G has at
least five external vertices. In addition to that, G has an external vertex u such
that the fan Fu satisfies the Conditions 2(a), 2(b) and 2(c). We first have to find
this external vertex u. Once such an external vertex u has been found, then we
draw the fan Fu. We next draw the remaining graph G− (V (Fu)) and add edges
between the vertices of Fu and the vertices of G− (V (Fu)). We finally prove the
correctness of the drawing procedure.

3.1 Finding an appropriate apex

In the next lemma we give an algorithm that takes as input a biconnected
2-outerplane graph G that satisfies the conditions stated in Theorem 1 and
finds a set of external vertices of G such that for each vertex u in this set, the
corresponding fan Fu satisfies Conditions 2(a), 2(b) and 2(c) of Theorem 1. We
call such a set of external vertex the set of candidate apices.

Lemma 3. Let G be a biconnected 2-outerplane graph satisfying all the condi-
tions specified in Theorem 1. Then the set C of external vertices u for which
Fu satisfies Conditions 2(a), 2(b) and 2(c) of Theorem 1 can be found in O(n2)
time, where n is the number of vertices of G.

Outline of proof. For each external vertex u, it can be checked whether
the fan Fu satisfies all the required conditions: whether a vertex of the fan at
most one neighbor outside the fan, whether a vertex outside the fan has at most
one neighbor in the fan and whether the fan is biconnected 1-outerplane. For a
specific fan Fu, checking these three conditions requires O(n) time. Since these
three conditions are checked for fans of all the external vertices of the graph, the
total time complexity of this algorithm is O(n2). Q.E .D.

3.2 Drawing the fan

We can obtain a set C of candidate apices using Lemma 3. We can choose any
apex from this set for the purpose of β-drawing of the graph. In the next lemma
we show how we can β-draw the fan Fu corresponding to an apex u ∈ C. This
lemma is due to Lenhart and Liotta [LL96]. We change Lemma 4 slightly from
the original lemma given in [LL96] to fit our purpose.

Lemma 4. Let Fu be a biconnected outerplane fan with apex u. Then Fu can
be β-drawn inside a triangle ∆abc, for β ∈ (1, 2), ∠abc > π

2 and ∠bac < π
4 .

Furthermore, this drawing has the property that the fan edges form a convex
chain such that for any three vertices v1, v2 and v3 on the chain in clockwise
order, ∠v1v2v3 > π

2 .
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Outline of proof. The statement can be proved constructively by induction
on the number of neighbors of u, as shown in [LL96].

Q.E .D.

3.3 Drawing the remaining graph

Once we find an apex u by Lemma 3, we can β-draw the fan Fu that satisfies the
conditions in Theorem 1 according to Lemma 4. Suppose that the fan Fu has
been drawn inside an obtuse triangle ∆abc such that ∠abc > π

2 and ∠bac < π
4 .

We now show how we can draw the remaining part of the graph so that the
graph G, as a whole, is correctly β-drawn.

Regions for drawing Fu and G − V (Fu)

First of all, we want to find two regions R1 and R2 in the plane such that
for any two points x and y in R1, R[x, y, β] never overlaps R2 and vice versa for
any two points in R2. The intention is to place the drawing of Fu in R1 and the
drawing of G − V (Fu) in R2. Then edges will be added in between vertices of
Fu and vertices of G−V (Fu) so that the proximity constraints are not violated.
Of course, there are other issues apart from selection of such regions, which will
be considered as well.

Let us compute two non-parallel and non-perpendicular straight lines L1 and
L2 such that the acute angle δ at the intersection point of the two straight lines
satisfies π

4 < δ < α(β). The two intersecting straight lines divide the plane into
four regions. Among these four regions two regions contain the acute angle δ and
these two are the regions of our interest: R1 and R2. The constraint δ < α(β)
ensures that the proximity region of any two points of R1 is outside the region
R2 and vice versa.

We place the triangle ∆abc, inside which Fu is drawn, on the plane as follows
(please see Fig. 4 for illustration):

– All the vertices of Fu are inside the region R2 and with respect to the convex
chain of fan vertices, u is positioned opposite to the region R1.

– Let uu1 be the first edge and uuk be the last edge of Fu, for k ≥ 2. The
line segments uu1 and uuk, when extended, intersect the lines L1 and L2

at points p and q, respectively, on the boundary of the region R1. Since the
acute angle between the lines uu1 and uuk is less than π

4 , we need to impose
the constraint δ > π

4 so that the above mentioned intersections are always
possible.

Placement of the vertices of G − V (Fu)

The fan Fu being drawn in the region R2, the vertices of G − V (Fu) are
drawn in the region R1 as follows:

First, compute an arc xzy in the region R1 with a as the center and x

and y being the intersection points with the extended line segments ap and aq

respectively, as illustrated in Fig. 4. Suppose that ut1 is the first edge and utm
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is the last edge of the fan Fu and the chain of fan vertices in clockwise order are:
t1, t2, . . . , tm. Let us now compute the rays emanating from the point u, passing
through the chain of fan vertices t1, t2, . . . , tm and intersecting the arc xzy at
the points w1, w2, . . . , wm respectively. See Fig. 4 for illustration.
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Fig. 4. Illustration of the drawing procedure.

Vertices of G − V (Fu) can be divided into two types–

– Type 1: The vertices of G − V (Fu) that share an internal face with the
vertices of Fu

The vertices of Type 1 can further be subdivided into two subtypes:
• Type 1A: Some of the vertices of Type 1 are adjacent to the vertices of

Fu. We name these vertices Type 1A.
• Type 1B: The remaining vertices of Type 1 are nonadjacent to any vertex

of Fu. We name these vertices Type 1B.
– Type 2: The vertices of G − V (Fu) that do not share an internal face with

any vertex of Fu

Placement of vertices of Type 1A:

Note that by the property of the graph G, for each of the fan vertices ti, for
1 ≤ i ≤ m, there can be at most one neighbor in G − V (Fu). For 1 ≤ i ≤ m, if
∃v ∈ V (G − V (Fu)) such that v ↔ ti then place the vertex v on the arc xzy at
the point wi that has been computed previously. Let the newly placed vertices
be v1, v2, . . . , vl in clockwise order, where l ≤ m since some of the m fan vertices
might not have neighbors in G − V (Fu).
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Placement of vertices of Type 1B:

As mentioned above, the Type 1B are those vertices of Type 1 that are not
adjacent to any vertex of Fu, but share an internal face with a vertex of Fu.
We can find these vertices by clockwise traversal of the external face of G. For
1 ≤ i ≤ l − 1, the vertices on the external face in between vi and vi+1, such
that vi and vi+1 are nonadjacent, form the set of the vertices of Type 1B. We
place these vertices of Type 1B on a convex curve maintaining the relative order
by induction as follows. We prove the correctness of the placement later on. See
Fig. 5 for illustration.

– Base case
Suppose that there are exactly two vertices of Type 1A: vi and vi+1, where
vi ↔ tj , vi+1 ↔ tj′ and tj , tj′ ∈ V (Fu). Suppose that vi,1, vi,2, . . . , vi,r are
vertices of Type 1B from vi to vi+1 in clockwise order and tj,1, tj,2, . . . , tj,s
are fan vertices of Fu also in clockwise order from tj to tj′ .
Let gg′ and g1g1

′ be the tangents to the arc xzy at the points vi and vi+1

respectively. From the proof of Lemma 4, ∠utjtj,1 < π
2 . So, ∠tj,1tjvi > π

2 .
Let us draw a straight line tjd such that ∠tj,1tjd ≥ π

2 and gg′ intersects the
line tjd at the point d′ “below” the point d′′ at which g1g1

′ intersects tjd.
Note that intersections in this way are always possible since ∠tj,1tjvi > π

2 .
Furthermore, the line tjd will intersect the arc xzy at a point in between vi

and vi+1, because of the convex placement of the fan vertices and ∠tj,1tjd ≥
π
2 and ∠tj,stj′vi+1 > π

2 . Here, the word “below” indicates relative order of
the intersection points on the line tjd with respect to u.
Let w be a point on the arc xzy such that w, vi, vi+1 occur in clockwise
order and the straight line wviw

′ intersects the line tjd at the point d′′′ in
between d′ and d′′ such that ∠vid

′′′vi+1 > π
2 . Let hh′ be perpendicular to

the line ww′ at the point vi. Let us draw an arc x1viy1 with center on the
straight line hh′ and y1 being a point on the line tjd in between d′′′ and d′.
Note that this is always possible since wd′′′w′ is the tangent to the arc at
the point v′. We place the vertices of Type 1B vi,1, vi,2, . . . , vi,r on the arc
x1viy1 in between the points vi and y1 maintaining their relative order. This
placement guarantees that for any three vertices of Type 1 s1, s2 and s3 in
clockwise order around the external face of G, π

2 < ∠s1s2s3 < π.
– Induction Step

Suppose that if there are less than k vertices of Type 1A, for some positive
integer k, then the vertices of Type 1B can be placed with the property that
for any three consecutive vertices of Type 1 v1, v2 and v3,

π
2 < ∠v1v2v3 < π.

Now assume that there are k ≥ 2 vertices of Type 1A with vi, vi+1 and
vi+2 being the last three vertices of Type 1A in clockwise traversal of the
external face of G. By the induction hypothesis we can place all the vertices
of Type 1B occurring before vi+1 in clockwise order maintaining the required
constraint. We now have to correctly place the vertices of Type 1B in between
vi+1 and vi+2.
Let vi+1 ↔ tj′ and vi+2 ↔ tj′′ , where tj′ , tj′′ ∈ V (Fu) and tj′,1, tj′,2, . . . ,
tj′,s′ are the fan vertices of Fu from tj′ to tj′′ in clockwise order. Let h1h1

′
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Fig. 5. Placement of vertices of Type 1B.

be perpendicular to the line vi,rvi+1 at the point vi+1. Suppose that g2g2
′ be

the tangent to the arc xzy at the point vi+2. By Lemma 4, ∠tj′,1tj′u < π
2 .

Let us compute a straight line tj′d1 such that ∠tj′,1tj′d1 ≥ π
2 and tj′d1

intersects g1g1
′ at a point “below” its intersection points with g2g2

′ and with
vi,rvi+1w1. Note that this is always possible. Furthermore, using the same
argument as in the base case, it can be shown that the line tj′d1 intersects
the arc xzy at a point between vi+1 and vi+2.



Computing β-Drawings 59

Now, let us compute an arc with center on the line h1h1
′ and passing through

vi+1 and a point y2 on the line tj′d1 such that y2 is “above” the intersection
point of the lines tj′d1 and g1g1

′, “below” the intersection point of tj′d1 and
g2g2

′ and also “below” the intersection point of tj′d1 and vi,rvi+1w1. Here,
the words “above” and “below” indicate relative order of the intersection
points on the line tj′d1 with respect to u.
It can be proved that all the vertices of Type 1 have been placed on a convex
curve such that for any three vertices of Type 1 s1, s2 and s3 in clockwise
order, ∠s1s2s3 > π

2 .

Placement of the vertices of Type 2:

Since all the internal vertices of G are in the fan Fu, none of the vertices of
Type 2 can be adjacent to more than two vertices of Type 1, otherwise some
of the vertices of Type 1 become internal vertices of G. We have placed the
vertices of Type 1 so that the chain of edges formed by the vertices of Type 1
is convex. Let e1 be an edge between two vertices of Type 1 w1 and w2 and a
subset of the vertices of Type 2 shares an internal face with the vertex w1. By
Lemma 4, we can draw this subset of vertices inside an obtuse triangle ∆w1w2p1

with ∠w1w2p1 > π
2 . Similarly if e2 is the next edge with w2 and w3, which

are vertices of Type 1, as endpoints, then the subset of the vertices of Type
2 sharing an internal face with the vertex w2 can be drawn inside an obtuse
triangle ∆w2w3p2, with ∠w2w3p2 > π

2 . Here, we can choose the points p1 and
p2 such that ∠w1w2p1 > π

2 and ∠p1w2p2 > π
2 , since every external angle on

the chain of the vertices of Type 1 is greater than π because of convexity. We
perform the placement of the vertices of Type 2 recursively until all of them
have been placed.

3.4 Proof of proximity constraints

It can be proved that the drawing procedure described above maintains the
proximity constraints. Proving that the proximity constrained are satisfied in
the following cases is sufficient for this purpose– any two vertices of Fu, any two
vertices of Type 1, any two vertices of Type 2, a vertex of Fu and another of
Type 1, a vertex of Fu and another of Type 2, a vertex of Type 1 and another
of Type 2.

4 Forbidden 2-Outerplane Graphs

Up to this point, we have found a set of sufficient conditions and proved that if
a biconnected 2-outerplane graph G satisfies these conditions then G can be β-
drawn, for 1 < β < 2. But what can we say about the biconnected 2-outerplane
graphs that do not satisfy these conditions? Are these graphs β-drawable? In
this section we address this question. We define a class of graphs as forbidden if
no graph of this class is β-drawable for a specified value of β.
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Lemma 1 specifies a necessary condition for β-drawability of biconnected
2-outerplane graphs. The necessary condition is that if G is a biconnected 2-
outerplane graph having less than five external vertices then G has no β-drawing,
for 1 < β < 2. Thus we have identified a forbidden class of biconnected 2-
outerplane graphs, that is the class of biconnected 2-outerplane graphs having
less than five external vertices. On the other hand, by Theorem 1 we get a
subclass of biconnected 2-outerplane graphs that is β-drawable for 1 < β < 2.

We now show that the biconnected 2-outerplane graphs violating the suffi-
cient conditions specified in Theorem 1 are not always β-drawable for 1 < β < 2.

Theorem 2. Let F be the class of biconnected 2-outerplane graphs that do not
satisfy at least one of the conditions specified in Theorem 1. Then every graph
in the class F is not necessarily β-drawable, for 1 < β < 2.

Outline of proof. For each of the sufficient conditions, we can find a member
of F that does not satisfy the condition and that is not β-drawable for 1 < β < 2.
In proving this claim we use Lemma 1.

Q.E .D.

5 Conclusion

In this paper we have studied the β-drawability problem for biconnected 2-
outerplane graphs. We have specified a necessary condition for β-drawability
of biconnected 2-outerplane graphs, for 1 < β < 2. We have found sufficient
conditions for β-drawability of biconnected 2-outerplane graphs, for 1 < β < 2.
For a biconnected 2-outerplane graph that satisfies the sufficient conditions,
we have given a drawing algorithm for β-drawing the graph, for 1 < β < 2.
Finally, we have identified a forbidden class of biconnected 2-outerplane graphs
and proved that a biconnected 2-outerplane graph that does not satisfy the
mentioned sufficient conditions, is not necessarily β-drawable. We conclude this
paper with the following open problems–

– Complete characterization of biconnected 2-outerplane graphs is yet to be
done. In this problem, one has to provide necessary and sufficient condi-
tions for β-drawability of a biconnected 2-outerplane graph. Interestingly,
complete characterizations of trees and outerplanar graphs are still open
problems as well [BDLL95,LL96].

– β-drawings of trees, outerplanar graphs and biconnected 2-outerplane graphs
in polynomial area is an open problem. Interestingly, the simplest of these
problems, i.e. polynomial area β-drawings of trees for β = 1, is still unsolved.

– Characterization of β-drawability of k-outerplane graphs, for any k ≥ 1, will
be a very interesting finding.
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