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Abstract

One of the relatively new graph drawing problems is the proximity drawing of graphs.

A proximity drawing of a plane graph G is a straight-line drawing of G with the additional

geometric constraint that two vertices of G are adjacent if and only if the well-defined

“proximity region” of these two vertices does not contain any other vertex. In general,

a proximity drawing of a graph has some appealing features. For example, the group

of vertices which are adjacent to each other tend to stay close together in the proximity

drawing and the vertices that are nonadjacent tend to stay relatively far apart from each

other. These underlying features of a proximity drawing of a graph have made it useful

in many practical application areas. One class of parameterized proximity drawings is

the β-drawing, where the value of the parameter β can be any nonnegative real number

including ∞. The problem of whether a class of graphs is β-drawable, for some value of β,

has been studied for two classes of graphs, namely trees and outerplanar graphs. However,

for larger classes of graphs the problem of β-drawability is still an open problem. In this

thesis we concentrate on the problem of β-drawings of 2-outerplane graphs for 1 < β < 2.

We provide a characterization of a subclass of biconnected 2-outerplane graphs for having

a β-drawing for the specified range of β values. We provide a drawing algorithm as well.

We also identify a subclass of biconnected 2-outerplane graphs that are not β-drawable

for 1 < β < 2.

viii



Chapter 1

Introduction

In general, a graph represents relationships among a set of entities. When each vertex v

of a graph represents a point p in space, the graph takes upon some geometric properties.

There are many graphs that have interesting geometric properties. Such graphs are known

as geometric graphs. Well-known geometric graphs such as Voronoi diagrams, Delaunay

triangulations, convex hulls, visibility graphs, etc. have evolved over time for modeling

and solving various practical problems. Compared to the mentioned geometric graphs,

proximity graphs are relatively new in the field of computational geometry. Still, proximity

graphs have been used in a wide range of applications. In this chapter, first we introduce

proximity graphs. Then we specify several application areas where proximity graphs are

being used. We introduce a parameterized family of proximity graphs, known as the β-

proximity graphs, for 0 ≤ β ≤ ∞. Then we review the literature and finally, state the

results of the thesis.

1.1 Proximity Graphs

Proximity graphs are geometric graphs. Although the notion of “proximity graphs” was

coined in much later, essentially the foundation of this fast expanding field of study has

1



CHAPTER 1. INTRODUCTION 2

been the Gabriel graph, introduced by Gabriel and Sokal in the context of geographic

variation analysis [GS69]. A Gabriel graph is a plane graph in which two vertices are

adjacent if and only if the closed circle having these two vertices as its two antipodal

points contains no other vertex of the graph. Here the closed circle just mentioned is also

known as the proximity region, specifically the Gabriel region, of the two vertices. Like

Gabriel graphs other types of proximity graphs also have a well-defined proximity region.

Proximity regions are also termed as regions of influence by many authors. A definition

of the proximity region is the heart of a proximity graph. In fact, this is the prime reason

why a proximity graph is known as a geometric graph. All the geometric properties of

any proximity graph are just results of the definition of its proximity region. For different

proximity regions we get different proximity graphs although they might have the same

set of points in the plane, each point being represented by a vertex of the corresponding

graph. We clarify this idea in the next section by an example from the application domain

of pattern recognition, more specifically instance-based learning.

1.2 Applications of Proximity Graphs

In this section we specify several applications of proximity graphs with the aim of clarifying

the idea of constructing a proximity graph of a plane graph.

1.2.1 Dataset Thinning in NN-rule

The nearest neighbor classification rule, also known as the NN-rule, is one of the most

famous classification rules in pattern recognition. It has gained its popularity because

of its simplicity and also because of Cover and Hart’s theorem that the probability of a

classification error using the nearest neighbor rule is at most twice the Bayes probability

of classification error [CH67]. It may be mentioned here that the Bayes probability of

classification error is the minimum among all classification rules. The nearest neighbor
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classification rule says that given a set of N training vectors {xi, θi}N
i=1, where xi =

{xi1, xi2, ..., xil} is the l-dimensional feature vector of the i-th object and θi is the class of

that object, classify the test feature vector xtest to the class θk if min1≤i≤Nd(xi, xtest) =

d(xk, xtest), where d denotes Euclidean distance. Simply stating, classify a test feature

vector to the class of its nearest training vector. Now what’s the problem of this very

simple approach of classification? The first problem is that for a large value of dataset size

N we need huge storage space. The second and related problem is that of computational

requirement, since we need to find distance of the test feature vector from every training

feature vector to find the minimum distance. For these two reasons researchers have been

looking for ways to reduce the size of the training dataset without incurring too much

degradation in performance. Bhattacharya et. al. has achieved it using two types of

proximity graphs, namely the Gabriel graph and the relative neighborhood graph [BPT92].

They have also provided experimental results showing that training dataset reduction

using Gabriel graph introduces a very low margin of additional error. Next we illustrate

how this reduction in dataset is achieved.

Figure 1.1: Training dataset for nearest neighbor decision rule– filled circles and unfilled circles

represent points of two different classes.

Let us consider 2-dimensional feature vectors and two classes for simplicity. The

training data points are shown in fig. 1.1. We represent training data points of class

1 by filled circles and those of class 2 by unfilled circles. Taking these data points as

the vertices, we can compute the Gabriel graph by adding an edge between any two

distinct vertices if and only if the proximity region, i.e. the closed circle having the points
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corresponding to these two vertices1 as its antipodal points, does not contain any other

point. The corresponding Gabriel graph is shown in fig. 1.2. According to the training

dataset reduction algorithm of [BPT92], we have to delete every vertex from the Gabriel

graph whose neighbors all belong to its own class. The vertices that will remain after

deletion are shown by double circles in fig. 1.2.

Figure 1.2: Gabriel graph corresponding to points shown in fig. 1.1. The dotted circles explain

why the edges (a, b) and (c, d) have been added and why the edge (e, f) has not been added.

Figure 1.3: Relative neighborhood graph corresponding to points shown in fig. 1.1. The dotted

lunes (intersection of two circles) explain why the edges (a, b) and (c, d) have been added and

why the edge (e, f) has not been added.

1Henceforth we use the notations of a vertex and its physical location as a point equivalently for the

purpose of simplification.
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Another way to reduce the training dataset, as proposed by Bhattacharya et. al.,

is by constructing the relative neighborhood proximity graph [BPT92]. In this type of

proximity graph the proximity region of two points x and y is the intersection of two open

disks of radius d(x, y) centered at x and y. In a relative neighborhood graph there is an

edge between x and y if and only if the relative neighborhood proximity region of x and

y is empty. Fig. 1.3 shows the relative neighborhood graph resulting from the training

dataset shown in fig. 1.1. After constructing the relative neighborhood graph we apply

the same vertex deletion rule as described above and the remaining vertices after deletion

are shown as double circles in fig. 1.3.

1.2.2 Other Applications

Given a set of points and a definition of the proximity region we can construct a proximity

graph. An important property of this graph is that it provides us a description of the

internal structure of the set of points. For some other definition of the proximity region,

namely the γ-proximity region, the resulting proximity graph can describe the external

shape of the point set [Velt92]. The ability of proximity graphs to describe the internal or

external structure of a set of points has found its application in computational morphology ,

which is concerned with the analysis of the shape of a set of points. Research findings

in computational morphology have industrial applications in computer vision. Proximity

graphs have also been used in graph-based methods of clustering and manifold learning

[CZ05]. Besides that, proximity graph-based methods have been applied in data mining

[Tous05], topology control in wireless sensor networks [LCWW03, LSW04, Li03] and in

many other diverse fields.
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1.3 Parameterized Family of Proximity Graphs

We have just seen two types of proximity graphs– the Gabriel graph and the relative

neighborhood graph. One might wonder how many other types of proximity graphs are

there. In fact, there is an infinite number of different types of proximity graphs. This is

due to an infinite family of parameterized proximity graphs introduced by Kirkpatrick and

Radke [KR85]. This family of proximity graphs is called β-skeletons, where β stands for

the parameter that can take any real number value in [0,∞]. Interestingly, Gabriel graph

and relative neighborhood graph both belong to this family of proximity graphs. Gabriel

graph is the closed proximity graph for the value of β = 1 and relative neighborhood

graph is the open proximity graph for β = 2.

1.4 Literature Review

Being brought to light in the year of 1969, proximity graphs might seem to be old geometric

graphs. But the most interesting thing is that it has been providing new research trends

quite regularly. In this section we review two basic problems concerning proximity graphs:

firstly, how one can compute a proximity graph when a set of points is given as input and

secondly, how a given plane graph be proximity-drawn.

1.4.1 Computation of Proximity Graphs

The oldest research direction concerning proximity graphs is– given a set of points and

a definition of the proximity region, how can we compute the proximity graph efficiently

and what are the properties of this graph? This research area has been explored and

reviewed very nicely in a paper by Jaromczyk and Toussaint [JT92]. One research prob-

lem in this direction is– what are the lower bounds and upper bounds of the number

of edges in different types of proximity graphs? This would have direct application in
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the dataset thinning problem of k-nearest neighbor classification rule, as outlined in the

example above. There has been a great deal of research on this problem primarily for

Gabriel graphs and relative neighborhood graphs. Taking n as the number of vertices,

upper bounds of 3n − 8 edges for Gabriel graphs [MS84] and 3n − 10, n ≥ 8, for rela-

tive neighborhood graphs [Urqu83] have been known for 2-dimensional Euclidean space.

For higher dimensions, proximity graphs are known to become thicker in the number of

edges. For relative neighborhood graphs, the maximum number of edges in 3-dimensional

or higher dimensional Euclidean space is O(n3/2+ε), for any ε > 0 [JK91]. And for Gabriel

graphs, the lower bound on the maximum number of edges in 3- or more dimensional

Euclidean space is Ω(n2) [Smit89, CEG90, JT92]. Moreover, there have been studies on

the expected number of edges of a Gabriel graph and a relative neighborhood graph.

Interested readers are referred to [Smit89, Devr88, JT92].

There have also been studies on how to compute a proximity graph on a given set of

points efficiently. For the 2-dimensional case, The brute-force approach to computing a

proximity graph would have time complexity of θ(n3). The brute-force algorithm is: for

each potential edge and for each point in the given point set, check whether the point is

in the proximity region of the two endpoints of the potential edge in consideration. If the

answer of this checking is yes then this edge is discarded, otherwise this edge is added to

the graph. Here, the number of potential edges is θ(n2) since every vertex has the poten-

tial to be neighbor of any of the other n − 1 vertices. The brute-force algorithm would

be very expensive in case of large values of n. So a substantial amount of research efforts

has been made to reduce this θ(n3) time complexity. For relative neighborhood graphs,

Toussaint reduced this to O(n2) using the fact that the relative neighborhood graph is

a subgraph of the Delaunay triangulation on the same set of points [Tous80]. Given a

point set, the Delaunay triangulation can be found in O(nlogn). Since the Delaunay tri-

angulation has O(n) edges, once the Delaunay triangulation has been found some of the

edges can be deleted from the Delaunay triangulation in O(n2) time. Thus this two-step
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procedure has an overall complexity of O(n2). The same algorithm would also work for

Gabriel graphs, since Gabriel graphs are also subgraphs of corresponding Delaunay trian-

gulations. Later on, further reduction in the complexity leading to O(nlogn) algorithms

has been accomplished for both Gabriel graphs [MS84] and relative neighborhood graphs

[Supo83]. Algorithms have also been developed to compute Gabriel graphs and relative

neighborhood graphs in 3- or more dimensional space. Interested readers are referred to

[JK91, SC91, AM92, Supo83, Smit89, JT92].

1.4.2 Proximity Graph Drawing

Apart from the problem of computing a proximity graph and analyzing its underlying

properties, another problem that has been receiving a lot of attention from the graph

drawing community of late is– given a planar embedding of a graph and a definition

of the proximity region, is it possible to achieve a straight-line drawing of the graph

maintaining the proximity constraints? If yes then how can it be drawn? This has

emerged as one of the relatively new graph drawing challenges. Today it is widely known

as the proximity drawability problem, or the β-drawability problem, when the proximity

regions are parameterized by β. Intuitively, the initial research effort in this direction

has focused on proximity drawability of trees. The problem of proximity drawability of

trees can be framed in this way– given a class of trees and a value of β, does this class of

trees admit a β-drawing? Here we can classify the trees according to the maximum vertex

degree. This problem has been studied in [BDLL95, BLL96] and the classes of trees that

admit open β-drawings for 0 ≤ β ≤ 1
1−cos( 2π

5
)

and 1
cos( 2π

5
)

< β < ∞ have been found. In

the same paper the classes of trees that admit closed β-drawings for 0 ≤ β < 1
1−cos( 2π

5
)

and 1
cos( 2π

5
)
≤ β ≤ ∞ have also been been found. Outside these ranges of β values, for

β = 2 it has been found that the class of finite trees with maximum vertex degree at most

5 are β-drawable [BLL96]. However, there is some gray area for 1
1−cos( 2π

5
)
≤ β ≤ 1

cos( 2π
5

)

and β 6= 2 in the sense that determining which classes of trees are β-drawable for this
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range of β values is still an open problem.

Another class of graphs that has been studied from the graph drawing perspective

is the class of outerplanar graphs. It has been shown that all biconnected outerplanar

graphs can be β-drawn for 1 ≤ β ≤ 2 [LL96]. In the same paper it has been shown

that β-drawability of connected outerplanar graphs for some value of β ∈ [0,∞] depends

on the maximum vertex degree in the block-cut-vertex tree of that graph. One of the

open problems left in [LL96] is to extend the problem of β-drawability of graphs to

other nontrivial classes of graphs apart from trees and outerplanar graphs. In this thesis

we characterize a subclass of biconnected 2-outerplane graphs that can be β-drawn for

β ∈ (1, 2). We also show that all biconnected 2-outerplane graphs are not β-drawable for

this range of β values.

The β-drawability problem we have discussed so far is also known as the strong β-

drawability problem. In this problem, two points x and y will be connected by a straight

line segment (i.e. there is an edge xy in the corresponding graph) if and only if the

β-proximity region of x and y is devoid of other points. A more relaxed version of this

problem is known as the weak β-drawability problem. In the weak β-drawability problem

the only condition is that if x and y are adjacent then their proximity region must not

contain any other point. Due to this relaxation, if x and y are not adjacent then their

proximity region may be or may not be empty. It has been shown that although weak

β-drawability is a relaxed problem, yet it is more practically applicable than the strong

β-drawability problem [DLW96]. In the same paper it has been shown that a weak β-

drawing of any graph G can be obtained in linear time for β ∈ [0, sin( π
(d+1)

)), where

d is the maximum vertex degree of G. Since the weak proximity drawability problem

is a relaxed version of the strong proximity drawability problem, any strong proximity

drawing also implies a weak proximity drawing. This gives us the impression that finding a

weak proximity drawing of a graph would be easier compared to finding a strong proximity

drawing of it. A more challenging problem regarding weak proximity drawings is to embed
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each vertex at an integer coordinate and find a polynomial area drawing. Extending the

hv-drawing algorithm to satisfy the weak proximity constraint, Penna and Vocca have

given an O(n2)-area weak β-drawing of binary trees for any β ∈ [0,∞) [PV98]. The

algorithm places every vertex at an integer coordinate. Penna and Vocca have further

extended their procedure to obtain polynomial volume (i.e. in 3-dimension space) weak

Gabriel drawings of trees of any degree [PV04]. Their results imply that graphs that do

not admit proximity drawings in 2-dimension space might still admit proximity drawings

in 3-dimension space. However, polynomial area or volume strong proximity drawings of

graphs is still an open problem, even for drawing binary trees for β = 1.

1.5 Summary

In this thesis we are concerned with the problem of β-drawability of biconnected 2-

outerplane graphs. Previous results related to our studies and new findings in this thesis

are summarized in table 1.1. We have used several abbreviations in table 1.1. BC denotes

biconnected and BC2O denotes biconnected 2-outerplane.

The results of the thesis are summarized as follows:

• We have given a necessary condition for β-drawability of biconnected 2-outerplane

graphs, for 1 < β < 2. The necessary condition comes from the geometric property

that irrespective of the positions of the four vertices of a quadrilateral, if we draw

four circles, each circle having two endpoints of each side of the quadrilateral as its

antipodal points (i.e. β = 1), then each point inside the quadrilateral is covered by

at least one circle.

• We have given sufficient conditions for β-drawability of biconnected 2-outerplane

graphs, for 1 < β < 2. The sufficient conditions induce a large and nontrivial

class of biconnected 2-outerplane graphs. In table 1.1, this class of biconnected

2-outerplane graphs is indicated as a subset of the β-drawable class, for 1 < β < 2.
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Table 1.1: Summary of previous and new results

Value of β Classes of β-drawable graphs

β = 1 [β]-drawable: trees with the maximum degree 4, except a

forbidden class of trees

[BLL96]

[β]-drawable: all BC 1-outerplanar graphs [LL96]

1 < β < 1
1−cos 2π

5

(β)-drawable: trees with the maximum degree 4 [BDLL95]

[β]-drawable: trees with the maximum degree 4

(β)-drawable: all BC 1-outerplanar graphs [LL96]

[β]-drawable: all BC 1-outerplanar graphs

(β)-drawable: a proper subset of BC2O graphs Ours

[β]-drawable: a proper subset of BC2O graphs

Forbidden: BC2O graphs with less than 5 external vertices

β = 1
1−cos 2π

5

(β)-drawable: trees with the maximum degree 4 [BDLL95]

[β]-drawable: subset of trees with the maximum degree 5,

superset of trees with the maximum degree 4

(β)-drawable: all BC 1-outerplanar graphs [LL96]

[β]-drawable: all BC 1-outerplanar graphs

(β)-drawable: a proper subset of BC2O graphs Ours

[β]-drawable: a proper subset of BC2O graphs

Forbidden: BC2O graphs with less than 5 external vertices

1
1−cos 2π

5

< β < 2 (β)-drawable: subset of trees with the maximum degree 5,

superset of trees with the maximum degree 4

[BDLL95]

[β]-drawable: subset of trees with the maximum degree 5,

superset of trees with the maximum degree 4

(β)-drawable: all BC 1-outerplanar graphs [LL96]

[β]-drawable: all BC 1-outerplanar graphs

(β)-drawable: a proper subset of BC2O graphs Ours

[β]-drawable: a proper subset of BC2O graphs

Forbidden: BC2O graphs with less than 5 external vertices

β = 2 (β)-drawable: trees with the maximum degree 5 [BLL96]

(β)-drawable: all BC 1-outerplanar graphs [LL96]
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• For a biconnected 2-outerplane graph that satisfies the sufficient conditions, we have

provided an O(n2) drawing algorithm for β-drawing the graph, for 1 < β < 2. This

drawing algorithm is obtained by the constructive proof of the sufficient conditions.

The drawing algorithm requires to find an external vertex that is described as the

“apex”. Finding an apex takes O(n2) time and once an apex is found the remaining

drawing algorithm needs O(n) time.

• The specified necessary condition implies a forbidden class of biconnected 2-outerplane

graphs which cannot be β-drawn, for 1 < β < 2. In table 1.1, this class of bicon-

nected 2-outerplane graphs is indicated as a subset of the forbidden class. The

sufficient conditions imply a subclass of biconnected 2-outerplane graphs that are

β-drawable for the same range of β values. We have shown that if a biconnected

2-outerplane graph does not belong to the forbidden class and also not to the above

mentioned β-drawable class, then this graph is not necessarily β-drawable.

1.6 Organization of the Thesis

The remainder of the thesis is organized as follows. In chapter 2 we state preliminary

definitions, notations and basic properties of proximity drawings. Then in chapter 3

we characterize a subclass of biconnected 2-outerplane graphs that admits β-drawings

for β ∈ (1, 2). In chapter 4, we prove that all biconnected 2-outerplane graphs do not

admit β-drawings for the specified range of β values and we identify a forbidden class of

biconnected 2-outerplane graphs. In chapter 5, we conclude the thesis with an outline of

future research directions related to our studies.



Chapter 2

Preliminaries

In this chapter we first present definitions of graphs, planar and plane graphs, straight-line

drawings of planar graphs, 1-outerplanar and 2-outerplanar graphs and then we define

β-proximity graphs and state several properties of β-drawings of graphs.

2.1 Graphs

A graph is used to model relationships among a set of objects or entities. Mathematically,

a graph G is a tuple (V, E), where V denotes the set of vertices and E denotes the set

of edges, each edge being an unordered pair of vertices. The set of vertices of G is also

denoted by V (G) and the set of edges by E(G).

Figure 2.1: A graph representing a road network among seven cities.

13
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Fig. 2.1 shows the graph-based model of a fictitious road network among seven cities.

For this graph we have V (G) = {Dhaka, Chittagong, Feni, Comilla, Rajshahi, Khulna,

Bogra}. Each edge, denoted by a straight-line segment between the corresponding ver-

tices, indicates a direct road link between two cities.

If two vertices u and v are endpoints of an edge, then u and v are called adjacent and

are neighbors. We denote “u is adjacent to v” by u ↔ v. If vertex v is an endpoint of

edge e, then e is incident to v. The degree of vertex v is the number of edges incident to

v, assuming that v is not connected to itself by means of an edge.

A path is a simple graph whose vertices can be ordered in a list so that two vertices

are adjacent if and only if they are consecutive in the list of vertices. A cycle is a graph

with an equal number of vertices and edges whose vertices can be placed around a circle

so that two vertices are adjacent if and only if they appear consecutively along the circle.

A subgraph of a graph G is a graph H such that V (H) ⊆ V (G) and E(H) ⊆ E(G)

and the assignment of endpoints to edges in H is the same as in G. A graph G is

called connected if each pair of vertices in G belongs to a path; otherwise, G is called

disconnected . An induced subgraph G[T ] is a subgraph obtained by deleting a set of

vertices T from G, where T = V (G)− T . We denote G[T ] = G− T .

The components of a graph G are its maximal connected subgraphs. A separating set

of a graph G is a set S ⊆ V (G) such that G − S has more than one component. The

connectivity of G is the minimum size of a separating set S such that G−S is disconnected

or has only one vertex. A graph is k-connected if its connectivity is at least k.

2.2 Planar Graphs and Plane Graphs

A graph is planar if it has an embedding in the plane without any edge-crossing, except

at vertices on which two or more edges are incident. For example, the graph in fig. 2.2(i)

is a planar graph, because it has an embedding in the plane without any edge-crossing,
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namely the embedding shown in fig. 2.2(ii).

Figure 2.2: (i) A planar graph. (ii) A plane graph: planar embedding of the planar graph in

(i).

A plane graph G is defined as a planar graph with a fixed embedding in the plane

without any edge-crossing, except at vertices on which two or more edges are incident.

For example, the graph shown in fig. 2.2(ii) is a plane graph, where the embedding is fixed

and there is no edge-crossing. In fact, a planar graph can have many planar embeddings

and each of these embeddings is a plane graph.

2.3 Straight-line Drawings

The discipline of graph drawing is concerned with visualizing a graph “nicely”. While

there are many factors related to this objective, i.e. aesthetic visualization, one of the

main factors is crossing of edges. We know that a planar graph has an embedding in the

plane without any edge crossings. Thus a planar graph can be drawn in a plane without

incurring any edge-crossings. Here, each vertex is drawn as a point in the plane. However,

there is a question of how the edges will be drawn. If each edge is drawn as a straight-line

segment and in this way there occurs no edge-crossing, then the resulting drawing is called

a straight-line drawing of the given planar graph. Besides straight-line drawings, there

are many other ways of drawing a graph. However, in this thesis we are concerned mainly
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with straight-line drawings.

2.4 1-Outerplanar Graphs and 2-Outerplanar Graphs

An outerplanar graph is a graph that has a planar embedding such that all the vertices

lie on the external face. This graph is also known as a 1-outerplanar graph.

Figure 2.3: (a) A straight-line drawing of a 1-outerplanar graph. (b) Another straight-line

drawing of the same graph.

Fig. 2.3(a) and (b) show two straight line drawings of a 1-outerplanar graph. Although

in the embedding shown in fig. 2.3(a) all vertices are not on the external face, yet the graph

is 1-outerplanar since it has an embedding where all the vertices lie on the external face

as shown in fig. 2.3(b). For a specific embedding of a graph if all the vertices are on the

external face (as in fig. 2.3(b)) we say that the embedded graph is a 1-outerplane graph,

otherwise the embedded graph is not 1-outerplane (as in fig. 2.3(a)). So the definition of

1-outerplanar graph is independent of embeddings, whereas the definition of 1-outerplane

graph is concerned with a specific embedding.

Figure 2.4: A straight-line drawing of a graph of outerplanarity 2.

These definitions can be generalized as follows. For an integer k > 1, an embedded

graph1 is k-outerplane if the embedded graph obtained by removing all the vertices of

1In this thesis whenever we use the term embedded graph we mean planar embedded graph.
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the external face is a (k − 1)-outerplane graph. On the other hand, we call a graph

k-outerplanar if it has an embedding that is k-outerplane. A related notion is the out-

erplanarity of a graph which is defined as follows. For an integer k > 0, a graph has

outerplanarity k if k is the least positive integer such that the graph is k-outerplanar.

For example, the graph corresponding to fig. 2.3 is 1-outerplanar as it has a 1-

outerplane embedding (fig. 2.3(b)) and the same graph is also 2-outerplanar as it has

a 2-outerplane embedding (fig. 2.3(a)). Therefore, k = 1 is the least positive integer

such that it is k-outerplanar and thus the outerplanarity of the graph is 1. Fig. 2.4

shows a straight-line drawing of a graph that has no 1-outerplane embedding, but has a

2-outerplane embedding. So the outerplanarity of this graph is 2.

We now define a few notations related to a biconnected 2-outerplane graph.

Figure 2.5: Straight-line drawing of a 2-outerplane graph and related notations: a,b,c and d are

internal vertices; ab, bc, cd and da are internal edges; e, f , g, h, i and j are external vertices;

ef , fg, gh, hi, ij and je are external edges and all the edges except internal and external edges

are mixed edges.

For a biconnected 2-outerplanar graph G, let Γ be a 2-outerplane embedding of G. We

call the vertices of G that are in the external face in Γ the external vertices . The remaining

vertices are called the internal vertices . Each edge between two external vertices is called

an external edge. Similarly each edge between two internal vertices is called an internal

edge. The remaining edges each connecting an external vertex with an internal vertex are



CHAPTER 2. PRELIMINARIES 18

called mixed edges . These definitions are illustrated in fig. 2.5.

2.5 Fan of a Vertex

In this section we define the notion of fan of a vertex of a biconnected outerplanar

graph.Let G = (V, E) be a biconnected outerplanar graph. For any vertex u ∈ V , the

fan of u, denoted by Fu, is the subgraph of G induced by the vertices in V that share

an internal face with u in a 1-outerplanar embedding of G. Here, the vertex u is called

the apex of Fu. Since G is outerplanar, Fu is also outerplanar. Let Γ be a 1-outerplanar

embedding of G in which Fu has the 1-outerplanar embedding Φ. Let u1, u2, . . . , uk be

the vertices of neighbors of u in clockwise order in Φ. The edge (u, u1) is called the first

edge of Fu and (u, uk) the last edge of Fu for that embedding. We call each edge (u, ui)

a radial edge of Fu, for i = 2, . . . , k − 1. Apart from the first edge, the last edge and

the radial edges, all other edges of Fu are called fan edges . We denote the m vertices on

the boundary of Φ in between ui and ui+1 by ui,1, ui,2, . . . , ui,m in clockwise order, where

1 ≤ i ≤ k − 1. These notations are illustrated in fig. 2.6.

In this thesis, we adopt the notion of fan of a vertex in a biconnected 2-outerplane

graph by allowing the apex of the fan to be an external vertex of the graph.

2.6 Complex Cycle

Let C be a cycle in a plane graph G. C is called a complex cycle if there is a vertex

v ∈ V (G) located inside C. If there are k vertices on the complex cycle C then C is called

a complex k-cycle.

Fig. 2.7 shows a complex 4-cycle C in a plane graph G.
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Figure 2.6: Fan of a vertex u of a biconnected outerplanar graph and related notions: u is the

apex; uu1 is the first edge, uu3 is the last edge; uu2 is a radial edge; u1,2u2 and u2u2,1 are two

fan edges and the shaded subgraph is the fan of apex u, denoted by Fu.

Figure 2.7: A complex 4-cycle C in a plane graph G: C is shaded in the figure.

2.7 β-Regions

In this section, we define β-proximity regions or β-regions in short. For any two distinct

points in the plane there is an associated region parameterized by β, which is called the

β-region of the two points. Kirkpatrick and Radke introduced β-regions in two variants–

lune-based and circle-based β-regions [KR85]. In this thesis we study only the lune-based
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variant. This proximity region can be further subdivided into two types– open β-regions

(also denoted by (β)-regions) and closed β-regions (also denoted by [β]-regions). In the

(β)-region, the boundary of the region is considered to be outside the region. However,

in the [β]-region, the boundary of the region is included in the region of interest.

Figure 2.8: R[x, y, β] for several values of β ∈ [0,∞].

For two distinct points x and y in the plane the associated lune-based open β-region

R(x, y, β) and closed β-region R[x, y, β] are defined as follows.

• For β = 0, R(x, y, β) is the empty region and R[x, y, β] is the straight line segment

connecting x and y.

• For β in (0, 1), R(x, y, β) is the intersection of two open disks of radius d(x,y)
2β

pass-

ing through both x and y and R[x, y, β] is the intersection of the two corresponding

closed disks.2 If the coordinates of x are (a, b) and the coordinates of y are (c, d) then

these two disks are centered at the points (
a2−c2+b2−d2−2(b−d)−B+

√
B2−4AC
2A

2(a−c)
, −B+

√
B2−4AC
2A

)

2d(x, y) denotes Euclidean distance between the points x and y.
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and (
a2−c2+b2−d2−2(b−d)−B−

√
B2−4AC
2A

2(a−c)
, −B−

√
B2−4AC
2A

), where A = 1 + (b−d)2

(a−c)2
, B = −2b−

(b−d)(a2−c2+b2−d2)
(a−c)2

+ 2a(b−d)
a−c

and C = a2+b2+ (a2−c2+b2−d2)2

4(a−c)2
− a(a2−c2)+a(b2−d2)

a−c
−(d(x,y)

2β
)2.

• For β in [1,∞), R(x, y, β) is the intersection of two open disks or radius βd(x,y)
2

,

centered at the points (1− β
2
)x+ β

2
y and β

2
x+(1− β

2
)y. R[x, y, β] is the intersection

of the two corresponding closed disks.

• For β = ∞, R(x, y, β) is the open infinite strip perpendicular to the line segment

xy and R[x, y, β] is the corresponding closed infinite strip.

Examples of R[x, y, β] are shown in fig. 2.8 for several values of β. It can be observed

that as the value of β increases, the corresponding β-region also increases and for 0 ≤

β1 < β2 ≤ ∞, R[x, y, β1] is contained inside R[x, y, β2].

2.8 Notions of β-Drawings

In this section we define β-drawings and the β-drawability problem, which is the problem

of interest in this thesis. We also state several properties of a β-drawing of a graph.

2.8.1 β-drawings

Given a straight-line drawing Γ of a graph G = (V, E) and the value of parameter β,

we say that Γ is an open β-drawing , also written as (β)-drawing, of G if Γ maintains

the following proximity constraint: uv ∈ E if and only if R(u, v, β) does not contain

any vertex of V − {u, v} in the drawing Γ. We can define closed β-drawings, written as

[β]-drawings , similarly by considering closed β-regions.

2.8.2 The β-drawability problem

A graph is (β)-drawable (or [β]-drawable) if it admits a (β)-drawing (or [β]-drawing).

The (β)-drawability problem asks the question of whether an input plane graph G is (β)-
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drawable or not for a specified value of β. Similarly, the [β]-drawability problem can be

defined.

A class of graphs G is called (β)-drawable if every graph G ∈ G admits a (β)-drawing

[BDLL95]. If there is a graph G ∈ G that does not admit a (β)-drawing then we say that

G is not (β)-drawable. We use similar definition for closed β-drawable class of graphs.

In this thesis we simply use the notations β-regions, β-drawings or β-drawable graphs

whenever the discussion applies for both (β)-regions and [β]-regions.

2.8.3 Angular measurements related to β-drawings

The definitions of β-regions and β-drawings imply that β-drawings are essentially scaling-

independent. That is, if we scale a β-drawing maintaining the aspect ratio, that is the

ration of width and height, then the resulting drawing still maintains the β-proximity

constraints. As a result, lengths of edges or distances among vertices are seldom used

in the analysis of β-drawings of graphs. What actually matters is some form of angular

measurement. In this thesis we use two angular measurements α(β) and γ(β) that are

defined as follows:

• For β ≥ 0, α(β) = inf{∠xzy ‖ z ∈ R[x, y, β], z 6= y}. This angle is illustrated in

fig. 2.9(a).

• For β ≥ 2, γ(β) = ∠zxy, where z 6= y is a point on the boundary of R[x, y, β] and

d(x, y) = d(x, z). This angle is shown in fig. 2.9(b).

It can be observed from fig. 2.9(a) that as the value of β increases the angle α(β)

decreases. For example, α(0) = π, α(1) = π
2
, α(2) = π

3
and α(∞) = 0. On the other

hand, with the increase of β the angle γ(β) also increases as shown in fig. 2.9(b). For

example, γ(2) = π
3

and γ(∞) = π
2
.

The following property expresses the relationship between β and either of α(β) and

γ(β). The property can be proved starting from the definitions of α(β) and γ(β) and
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Figure 2.9: (a) The angle α(β) for β = 2 and β = 4. (b) The angle γ(β) for β = 2 and β = 4.

using elementary geometry. For brevity we denote α(β) by α and γ(β) by γ.

Property 2.8.1 [BDLL95, LL96]

• β = sinα for 0 ≤ β ≤ 1 and π
2
≤ α ≤ π.

• β = 1
1−cosα

for 1 < β ≤ 2 and 0 ≤ α < π
2
.

• β = 1
cosγ

for 2 ≤ β ≤ ∞ and π
3
≤ γ < π

2
.

2.8.4 What values of β are most interesting?

The following two properties state that given a point set P , G(P, β) and G[P, β] are planar

for β > 1 and are connected for β < 2. These properties explain the choice of β ∈ (1, 2)

in our study.

Property 2.8.2 [BDLL95] For β > 1, G(P, β) and G[P, β] are planar. Furthermore,

G[P, 1] is planar, but G(P, 1) is not necessarily planar. For β < 1, G(P, β) and G[P, β]

are not necessarily planar.
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Property 2.8.3 [BDLL95] For β < 2, G(P, β) and G[P, β] are connected. Furthermore,

G(P, 2) is connected, but G[P, 1] is not necessarily connected. For β > 2, G(P, β) and

G[P, β] are not necessarily connected.

2.8.5 The β-boundary curve

We now define the β-boundary curve that has been introduced by Lenhart and Liotta

[LL96]. For β ∈ [1, 2], any distinct pair of points u and v in the plane is associated with

a β-boundary curve denoted by Cu,v,β such that for every point z on the curve Cu,v,β, v is

on the boundary of R[u, z, β]. Each point z on the curve Cu,v,β is parameterized by the

angle θ ≡ ∠vuz and positive values of θ correspond to the occurrence of u, v and z in

clockwise order.

Figure 2.10: Cu,v,β(θ) for −π
4 ≤ θ ≤ π

4 and for the values of β = 1.6 and β = 3.0.

Fig. 2.10 illustrates Cu,v,β(θ) for −π
4
≤ θ ≤ π

4
and for several values of β, where u is

plotted at the point (0, 0) and v at (0, 1). It can be observed that with the decrease of

the value of β the curve becomes more and more flat and for β = 1, the curve becomes a

straight line through v and perpendicular to the line uv. The physical significance of the

curve Cu,v,β is that it implies the region where we can place the endpoint x of the edge
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(u, x) so that the point v does not lie in the β-region of u and x. For example, if we place

x outside the curve Cu,v,β (w.r.t. u) then v will be inside R[u, x, β]. To the contrary, if we

place x inside Cu,v,β then R[u, x, β] will not contain v.

The following lemma presents the mathematical definition of the β-boundary curve.

Lemma 2.8.1 [LL96] For θ ∈ [−π
4
, π

4
], if u = (0, 0) and v = (0, 1) then

Cu,v,β(θ) =
2(
√

1−(2/β−1)2sin2θ−(2/β−1)cosθ)

β(1−(2/β−1)2)
(sinθ, cosθ).

2.9 Chapter Summary

In this chapter we have defined various notations and terminologies that are used in this

thesis. We have defined graphs, planar and plane graphs, 1-outerplanar and 2-outerplanar

graphs and various other notions. We have also defined the β-drawability problem, on

which we focus in this thesis. We have illustrated the concepts of β-regions and described

several properties of proximity graphs parameterized by β. In the next chapter we are

going to shed light on one of the main works of this thesis– β-drawings of biconnected

2-outerplane graphs. We are going to give a necessary condition and a set of sufficient

conditions for β-drawability of a biconnected 2-outerplane graph.



Chapter 3

β-Drawability of Biconnected

2-Outerplane Graphs

In this chapter we give characterization of biconnected 2-outerplane graphs that can be

β-drawn. We provide a constructive proof of our claim. The constructive prove gives us

an O(n2) drawing algorithm for β-drawing a biconnected 2-outerplane graph that satisfies

a set of sufficient conditions.

3.1 A Necessary Condition for β-Drawability

There are biconnected 2-outerplane graphs that are not β-drawable for β ∈ (1, 2). For

example the graph shown in fig. 2.4 is not β-drawable. In this biconnected 2-outerplane

graph there are four external vertices and one internal vertex. Suppose that we want to

achieve a [1]-drawing of this graph. No matter where we place the four external vertices,

the internal vertex will be inside the proximity region of at least one of the four pairs of

neighboring external vertices. As a result the graph is not [1]-drawable. The graph will

not be β-drawable for β > 1 as well, since the proximity regions will only increase and

we will have no place to position the internal vertex. The same situation will arise for a

26
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2-outerplane graph with three external vertices. Thus the following lemma holds.

Lemma 3.1.1 Let G be a planar embedded graph. If G has a complex 4-cycle or a complex

3-cycle then G cannot be β-drawn for 1 < β < 2.

From lemma 3.1.1, we can arrive at the following corollary expressing a necessary

condition for β-drawability of a biconnected 2-outerplane graph, for 1 < β < 2.

Corollary 3.1.2 Let G be a biconnected 2-outerplane graph. G has no β-drawing, for

1 < β < 2, if G has less than five external vertices.

3.2 Sufficient Conditions

By definition, corollary 3.1.2 implies that not all of the graphs in the class of biconnected

2-outerplane graphs are β-drawable, for β ∈ (1, 2). We are now interested in finding a

subclass of biconnected 2-outerplane graphs that are β-drawable for 1 < β < 2. The

following theorem characterizes a subclass of biconnected 2-outerplane graphs that are

β-drawable for 1 < β < 2.

Theorem 3.2.1 A biconnected 2-outerplane graph G is β-drawable for β ∈ (1, 2) if G

satisfies the following conditions:

1. There are at least five external vertices; and

2. There is an external vertex u such that the fan Fu has all of the following properties:

(a) Fu is biconnected 1-outerplane;

(b) Fu contains all the internal vertices; and

(c) Every vertex in Fu has at most one neighbor outside Fu and every vertex outside

Fu has at most one neighbor in Fu.
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3.2.1 Proof of the Sufficient Conditions

In the rest of this chapter we provide a constructive proof of theorem 3.2.1. But before

going on to the proof, an interesting question arises regarding a biconnected 2-outerplane

graph G that satisfies all the conditions in theorem 3.2.1: is there any possibility of the

occurence of a complex 3-cycle or a complex 4-cycle in G? The following lemma confirms

that this can never happen.

Lemma 3.2.2 Let G be a biconnected 2-outerplane graph satisfying the conditions in

theorem 3.2.1. Then a 3-cycle or a 4-cycle of G is a face of G.

Proof. We prove the statement by contradiction. Since G satisfies the conditions

in theorem 3.2.1, G has an external vertex u such that Fu is biconnected 1-outerplane,

contains all the internal vertices and has the property that every vertex in Fu has at most

one neighbor in G− Fu and every vertex in G− Fu has at most one neighbor in Fu.

Suppose that there is a 4-cycle C in G with a vertex v inside the cycle. The following

cases can occur regarding C:

Figure 3.1: Case I in the proof of lemma 3.2.2: apex u is on the 4-cycle with a vertex v inside

it (all edges are not shown). (a) Vertex x of the subgraph G− Fu has two neighbors in Fu. (b)

Fu is not 1-outerplane.
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Figure 3.2: Case II in the proof of lemma 3.2.2: apex u is not on the 4-cycle C having a vertex

v inside it. C is shown by a dotted closed contour. Fu and G − Fu may contribute 0 or more

vertices to C, provided that the total number of vertices on C is 4. In any case, v is an internal

vertex of G not contained in Fu.

• Case I: Apex u is on the cycle C. In this case, if there is a vertex v inside C then

either a vertex of G− Fu will have two neighbors in Fu (violating condition 2(c) of

theorem 3.2.1), or Fu will not be 1-outerplane (violating condition 2(a)). This case

is illustrated in fig. 3.1.

• Case II: Apex u is not on the cycle C. In this case, taking Fu to be 1-outerplane, if

C has a vertex v inside it then v is an internal vertex of G not present in Fu, which

violates condition 2(b) of theorem 3.2.1. This case is illustrated in fig. 3.2.

Thus every 4-cycle of G is always a face. Using similar arguments it can be proved

that every 3-cycle of G is also a face. 2

We are now going to present a constructive proof of theorem 3.2.1. The outline of the

proof is as follows.

Let G be a biconnected 2-outerplane graph satisfying the conditions specified in the-

orem 3.2.1. According to the conditions, G has at least five external vertices. In addition

to that, G has an external vertex u such that the fan Fu satisfies the conditions 2(a), 2(b)

and 2(c). First we have to find this external vertex u. Once such an external vertex u has
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been found, then we draw the fan Fu. Next we draw the remaining graph G − (V (Fu))

and add edges between the vertices of Fu and the vertices of G − (V (Fu)). Finally, we

prove the correctness of the drawing procedure.

Finding an appropriate apex

Now, let us see how we can find an external vertex of G such that the corresponding

fan satisfies the required conditions. In the next lemma we give an algorithm that takes

as input a biconnected 2-outerplane graph G that satisfies the conditions stated in theo-

rem 3.2.1 and finds a set of external vertices of G such that for each vertex u in this set,

the corresponding fan Fu satisfies conditions 2(a), 2(b) and 2(c) of theorem 3.2.1. We call

such a set of external vertex the set of candidate apices.

Lemma 3.2.3 Let G be a biconnected 2-outerplane graph satisfying all the conditions

specified in theorem 3.2.1. The set Sa of external vertices u for which Fu satisfies con-

ditions 2(a), 2(b) and 2(c) of theorem 3.2.1 can be found in O(n2) time, where n is the

number of vertices of G.

Proof. The set Sa, which we call the set of candidate apices, can be found by considering

each external vertex of G and including only those external vertices of G into Sa for which

the corresponding fan satisfies the required conditions. For a given external vertex u of

G, verifying whether Fu satisfies the conditions 2(a), 2(b) and 2(c) of theorem 3.2.1 can

be done in O(n). Thus, if we consider each external vertex of G and verify the conditions

then the total time complexity of this procedure becomes O(n2). 2

Next we give an algorithm named FindApex, that takes a biconnected 2-outerplane

graph satisfying the conditions of theorem 3.2.1 as input and outputs the set Sa of can-

didate apices. The algorithm clearly outlines the steps in the proof of lemma 3.2.3. For

each external vertex u, the algorithm checks whether the fan Fu satisfies all the required

conditions: whether a vertex of the fan has at most one neighbor outside the fan, whether
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a vertex outside the fan has at most one neighbor in the fan and whether the fan is bi-

connected 1-outerplane. For a specific fan Fu, checking these three conditions requires

O(n) time, where n is the number of vertices of the graph. Since these three conditions

are checked for fans of all the external vertices of the graph, the total time complexity of

the algorithm is O(n2).

Algoirthm FindApex (G) returns a set of candidate apices

1 Sa = φ; /*Sa is the set of candidate apices.*/

2 For each external vertex u do

3 if each internal vertex shares a face with u then

4 flag = true

5 G′ = G− V (Fu)

6 for each vertex v ∈ V (G′) do

7 if v has 2 or more neighbors in Fu then

8 flag = false

9 end

10 end

11 for each vertex v ∈ V (Fu)− {u} do

12 if v has 2 or more neighbors in G′ then

13 flag = false

14 end

15 end

16 if flag = true and Fu is biconnected 1-outerplane then

17 Sa = Sa ∪ {u}

18 end

19 end

20 end

21 return Sa
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Drawing the fan

We can obtain a set Sa of candidate apices using the algorithm FindApex stated in

lemma 3.2.3. We can choose any apex from this set for the purpose of β-drawing of the

graph. In the next two lemmas we show how we can β-draw the fan Fu corresponding to

an apex u ∈ Sa. These two lemmas are due to Lenhart and Liotta [LL96]. Lemma 3.2.4

specifies a useful result on how to union two β-drawings so that the resulting drawing

maintains the proximity constraints. We change lemma 3.2.5 slightly from the original

lemma given in [LL96] to fit our purpose.

Lemma 3.2.4 [LL96] Let G1 and G2 be two planar embedded graphs whose intersection

consists of a single edge uv, where u and v lie on the external face of both G1 and G2. Let

Γ1 and Γ2 be embedding-preserving β-drawings of G1 and G2 respectively, for 1 < β < 2.

If Γ1 ∪ Γ2 lies in a convex region having Γ1 and Γ2 on opposite sides of the edge uv then

Γ1 ∪ Γ2 is a β-drawing of G1 ∪G2.

Lemma 3.2.5 [LL96] Let Fu be a biconnected outerplane fan with apex u. Fu can be

β-drawn inside a triangle ∆abc, for β ∈ (1, 2), ∠abc > π
2

and ∠bac < π
4
. Furthermore,

this drawing has the property that the fan edges form a convex chain such that for any

three vertices v1, v2 and v3 on the chain in clockwise order, ∠v1v2v3 > π
2
.

Proof. The statement can be proved constructively by induction on the number of

neighbors of u.

Base Case: u has exactly two neighbors u1 and u2

Suppose that the two neighbors of u are connected by the chain of nonneighbors of

u: u1,1, u1,2, . . . , u1,m. In this case Fu can be β-drawn by the following procedure (for

illustration please see fig. 3.3):

First, u is placed at the point a of ∆abc and u1 at the point b. Then a straight-line ux

is computed such that ∠u1ux ≤ ∠bac. The line ux intersects the curve Cu,u1,β at the point
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Figure 3.3: Base case of drawing a fan Fu, when u has only two neighbors– u1 and u2.

p and the curve Cu,u1,2 at the point q. u2 is placed on the straight-line ux in between the

points p and q. This is always possible, since Cu,u1,2 is interior to the curve Cu,u1,β. This

placement of u2 ensures that u2 is not in R[u, u1, β], since u2 is exterior to the β-boundary

curve Cu,u1,2 and u1 is not in R[u, u2, β], since u2 is placed interior to the curve Cu,u1,β.

Next the nonneighbors of u between u1 and u2 are placed. Let w be a point inside

∆abc such that ∠uu1w = π
2
. u1,1, u1,2, . . . , u1,m are placed on the curve Cu,u2,2 in between

u1w and Cu,u1,β. This is possible since u1w is tangent to the curve Cu,u1,β on the point u1

for β ∈ (1, 2). This placement has the following properties:

Firstly, being placed on a convex curve, u1,1, u1,2, . . . , u1,m form a convex chain.

Furthermore, ∠u1,mu2u < π
2
.
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Secondly, since u and u1,i are nonadjacent for 1 ≤ i ≤ m, there must be at least one

vertex in R[u, u1,i, β]. We find that u1,i, for 1 ≤ i ≤ m, is exterior to the curve Cu,u1,β. So

u1 is inside R[u, u1,i, β], for 1 ≤ i ≤ m.

Thirdly, since ∠u1u1,iu2 > π
2
, for 1 ≤ i ≤ m, we can conclude that for any pair of

non-consecutive vertices on the chain, there is an intermediate vertex of the chain in their

β-region.

Thus the statement is proved for the base case.

Induction: u has k > 2 neighbors

Suppose that a fan is β-drawable if the apex has less than k neighbors. Now, let the

apex u have k neighbors. We prove that Fu is β-drawable. Fu can be β-drawn by the

following procedure (for illustration please see fig. 3.4):

Figure 3.4: Induction step of drawing a fan Fu: u has more than two neighbors.
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Let x be a point on bc such that θ = ∠bax = ∠bac
k−1

. As in the base case, we can draw

the part of Fu consisting of u, its two neighbors u1, u2 and the chain of fan vertices from

u1 to u2 within the obtuse triangle ∆abx. Let the straight-line u1,mu2 intersect ac at the

point c′. Since ∠u1,mu2u < π
2
, ∠uu2c

′ > π
2
. As a result, by the induction hypothesis, the

remaining part of the fan can be drawn inside the obtuse triangle ∆au2c
′.

By lemma 3.2.4, joining the drawings of the above mentioned two parts of the fan Fu

we find a correct β-drawing of Fu as a whole. 2

Drawing the remaining graph

Once we find an apex u by lemma 3.2.3, we can β-draw the fan Fu that satisfies the

conditions in theorem 3.2.1 according to lemma 3.2.5. Suppose that the fan Fu has been

drawn inside an obtuse triangle ∆abc such that ∠abc > π
2

and ∠bac < π
4
. We now show

how we can draw the remaining part of the graph so that the graph G, as a whole, is

correctly β-drawn.

Regions for drawing Fu and G− V (Fu)

First of all, we want to find two regions R1 and R2 in the plane such that for any two

points x and y in R1, R[x, y, β] never overlaps R2 and vice versa for any two points in

R2. The intention is to place the drawing of Fu in R1 and the drawing of G− V (Fu) in

R2. Then edges will be added in between vertices of Fu and vertices of G−V (Fu) so that

the proximity constraints are not violated. Of course, there are other issues apart from

selection of such regions, which will be considered as well.

Let us compute two non-parallel and non-perpendicular straight lines L1 and L2 such

that the acute angle δ at the intersection point of the two straight lines satisfies π
4

< δ <

α(β). The two intersecting straight lines divide the plane into four regions. Among these

four regions two regions contain the acute angle δ and these two are the regions of our

interest: R1 and R2. The constraint δ < α(β) ensures that the proximity region of any
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Figure 3.5: (a) If δ > α, there exists points x and y in region R1 such that R[x, y, β] overlaps

with the region R2. (b) However, if δ < α, for any two points x and y in region R1, R[x, y, β]

never overlaps with the region R2.

two points of R1 is outside the region R2 and vice versa. We illustrate the idea in fig. 3.5.

The other constraint π
4

< δ will be explained very shortly.

Placement of the fan Fu

We place the triangle ∆abc, inside which Fu is drawn, on the plane as follows (please

see fig. 3.6 for illustration):

All the vertices of Fu are inside the region R2 and with respect to the convex chain

of fan vertices, u is positioned opposite to the region R1. Let uu1 be the first edge and

uuk be the last edge of Fu, for k ≥ 2. The line segments uu1 and uuk, when extended,

intersect the lines L1 and L2 at points p and q, respectively, on the boundary of the

region R1. Since the acute angle between the lines uu1 and uuk is less than π
4
, we need

to impose the constraint δ > π
4

so that the above mentioned intersections are always

possible. Furthermore, the intersections guarantee that if the remaining graph G−V (Fu)

is placed inside the portion of the region R1 in between the extended line segments ap and
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Figure 3.6: The regions for positioning the fan Fu and the remaining graph G− V (Fu).

aq (shaded region in fig. 3.6) then it will be possible to draw edges between the vertices

of Fu and the vertices of G− V (Fu) on the rays emanating from u. In fact, this property

is crucial for our proof.

Placement of the vertices of G− V (Fu)

The fan Fu being drawn in the region R2, the vertices of G− V (Fu) are drawn in the

region R1 as follows:

First, an arc xzy is computed in the region R1 with a as the center and x and y being

the intersection points with the extended line segments ap and aq respectively, such that

the length ax ≥ ap and the length ay ≥ aq. This is illustrated in fig. 3.7.

Suppose that ut1 is the first edge and utm is the last edge of the fan Fu and the chain of

fan vertices in clockwise order are: t1, t2, . . . , tm. Let us now compute the rays emanating

from the point u, passing through the chain of fan vertices t1, t2, . . . , tm and intersecting
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Figure 3.7: An arc xzy is computed in the region R1 taking a as the center and x and y the

intersection points with the extended line segments ap and aq respectively.

the arc xzy at the points w1, w2, . . . , wm respectively. Please see fig. 3.7 for illustration.

Vertices of G − V (Fu) can be divided into two types- type 1 and type 2. Next we

define these two types of vertices and also fix the positions of these vertices. These types

of vertices are illustrated by an example in fig. 3.8.

• Type 1: The vertices of G − V (Fu) that share an internal face with the vertices of

Fu

The type 1 vertices can further be subdivided into two subtypes:

– Type 1A: Some of the vertices of type 1 are adjacent to the vertices of Fu. We

name these type 1 vertices type 1A.

– Type 1B : The remaining type 1 vertices are nonadjacent to any vertex of Fu.
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Figure 3.8: Two types of vertices in G − V (Fu), where V (Fu) = {u, a, b, c, d, e, f, g}: type 1

vertices are those vertices that share an internal face with the vertices of Fu and type 2 vertices

are those vertices that do not share an internal face with the vertices of Fu. Here, h, i, j, k, l,

m and n are type 1 vertices and o, p, q, r, s and t are type 2 vertices.

We call these type 1 vertices type 1B.

Placement of type 1A vertices:

Note that by the property of the graph G, for each of the fan vertex ti, for 1 ≤

i ≤ m, there can be at most one neighbor in G − V (Fu). For 1 ≤ i ≤ m, if

∃v ∈ V (G − V (Fu)) such that v ↔ ti then place the vertex v on the arc xzy at

the point wi that has been computed previously. Please see fig. 3.7 for illustration.

Let the newly placed vertices be v1, v2, . . . , vl in clockwise order, where l ≤ m since

some of the m fan vertices might not have neighbors in G− V (Fu).

Placement of type 1B vertices:

As mentioned above, the type 1B are those type 1 vertices that are not adjacent to
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Figure 3.9: Placement of vertices of type 1B.
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any vertex of Fu, but share an internal face with a vertex of Fu. We can find these

vertices by clockwise traversal of the external face of G. For 1 ≤ i ≤ l − 1, the

vertices on the external face of G that share faces with the vertices of Fu and that

are in between nonadjacent vertices vi and vi+1, form the set of type 1B vertices.

We place these type 1B vertices on a convex curve maintaining the relative order

by induction as follows. We prove the correctness of the placement later on. Please

see fig. 3.9 for illustration.

– Base case

Suppose that there are exactly two type 1A vertices: vi and vi+1, where vi ↔ tj

and vi+1 ↔ tj′ and tj, tj′ ∈ V (Fu). Suppose that vi,1, vi,2, . . . , vi,r are type 1B

vertices from vi to vi+1 in clockwise order and tj,1, tj,2, . . . , tj,s are fan vertices

of Fu also in clockwise order from tj to tj′ .

Let gg′ and g1g1
′ be the tangents to the arc xzy at the points vi and vi+1

respectively. From the proof of lemma 3.2.5, ∠utjtj,1 < π
2
. So, ∠tj,1tjvi > π

2
.

Let us draw a straight line tjd such that ∠tj,1tjd ≥ π
2

and gg′ intersects the

line tjd at the point d′ “below” the point d′′ at which g1g1
′ intersects tjd.

Note that intersections in this way are always possible since ∠tj,1tjvi > π
2
.

Furthermore, the line tjd will intersect the arc xzy at a point in between vi

and vi+1, because of the convex placement of the fan vertices and ∠tj,1tjd ≥ π
2

and ∠tj,stj′vi+1 > π
2
.

Let w be a point on the arc xzy such that w, vi, vi+1 occur in clockwise order

and the straight line wviw
′ intersects the line tjd at the point d′′′ in between

d′ and d′′ such that ∠vid
′′′vi+1 > π

2
. Let hh′ be perpendicular to the line ww′

at the point vi. Let us draw an arc x1viy1 with center on the straight line hh′

and y1 being a point on the line tjd in between d′′′ and d′. Note that this is

always possible since wd′′′w′ is the tangent to the arc at the point v′. We place



CHAPTER 3. β-DRAWABILITY OF BICONNECTED 2-OUTERPLANE GRAPHS42

the type 1B vertices vi,1, vi,2, . . . , vi,r on the arc x1viy1 in between the points

vi and y1 maintaining their relative order. This placement guarantees that for

any three type 1 vertices s1, s2 and s3 in clockwise order around the external

face of G, π
2

< ∠s1s2s3 < π.

– Induction Step

Suppose that if there are less than k type 1A vertices, for some positive integer

k, then the type 1B vertices can be placed with the property that for any three

consecutive type 1 vertices v1, v2 and v3,
π
2

< ∠v1v2v3 < π.

Now assume that there are k ≥ 2 type 1A vertices with vi, vi+1 and vi+2 being

the last three type 1A vertices in clockwise traversal of the external face of G.

By the induction hypothesis we can place all the type 1B vertices occurring

before vi+1 in clockwise order maintaining the required constraint. We now

have to correctly place the type 1B vertices in between vi+1 and vi+2.

Let vi+1 ↔ tj′ and vi+2 ↔ tj′′ , where tj′ , tj′′ ∈ V (Fu) and tj′,1, tj′,2, . . . , tj′,s′

are the fan vertices of Fu from tj′ to tj′′ in clockwise order. Let h1h1
′ be

perpendicular to the line vi,rvi+1 at the point vi+1. Suppose that g2g2
′ be the

tangent to the arc xzy at the point vi+2. By lemma 3.2.5, ∠tj′,1tj′u < π
2
. Let

us compute a straight line tj′d1 such that ∠tj′,1tj′d1 ≥ π
2

and tj′d1 intersects

g1g1
′ at a point “below” its intersection points with g2g2

′ and with vi,rvi+1w1.

Note that this is always possible. Furthermore, using the same argument as in

the base case, it can be shown that the line tj′d1 intersects the arc xzy at a

point between vi+1 and vi+2.

Now, let us compute an arc with center on the line h1h1
′ and passing through

vi+1 and a point y2 on the line tj′d1 such that y2 is “above” the intersection

point of the lines tj′d1 and g1g1
′, “below” the intersection point of tj′d1 and

g2g2
′ and also “below” the intersection point of tj′d1 and vi,rvi+1w1. Here, the

words “above” and “below” indicate relative order of the intersection points



CHAPTER 3. β-DRAWABILITY OF BICONNECTED 2-OUTERPLANE GRAPHS43

on the line tj′d1 with respect to u.

We now prove that all the type 1 vertices have been placed on a convex

curve such that for any three type 1 vertices s1, s2 and s3 in clockwise or-

der, ∠s1s2s3 > π
2
. This property of the drawing will be used in proving the

correctness of the drawing. We have the following cases:

∗ Case I. s1 and s3 are of type 1A

In this case, s1 and s3 are placed on the arc xzy. If s2 is of type 1A,

then s2 is also placed on the arc xzy and as a result, ∠s1s2s3 > π
2
, since

∠s1us3 < π
3
. On the other hand, if s2 is of type 1B, then there can be two

subcases:

1. Disregarding s2, there is no type 1A vertex between s1 and s3.

In this subcase, s2 is a type 1B vertex in between two consecutive type

1A vertices s1 and s3. Using an argument similar to the base case,

∠s1s2s3 > π
2
.

2. Disregarding s2, there is a type 1A vertex in between s1 and s3.

Suppose that the vertex s2 is in between two type 1A vertices si and

sj. Here, si may be the same vertex as s1 and sj may be the same

vertex as s3, but not both; since if both are true then this turns out

to be the same subcase as above.

By the subcase above, ∠sis2sj > π
2
. By the drawing procedure,

whether s2 is of type 1A or type 1B, s2 has been placed “inside”

the straight line s1si, if s1 6= si and “inside” the straight line sjs2,

if s2 6= sj. Here the word “inside” is meant with respect to the apex

u. Thus, the vertex s2 has been placed “inside” the tangent to the arc

xzy at the point s1, if s1 6= si and “inside” the tangent to the arc xzy

at the point s2, if s2 6= sj (for illustration please see fig. 3.10). As a

result, ∠s1s2s3 > π − φ, where φ = ∠s1us3 < π
3
. So, ∠s1s2s3 > π

2
.
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Figure 3.10: The internal angle between three type 1 vertices

∗ Case II. s1 or s3 or both are of type 1B

We have to prove that ∠s1s2s3 > π
2
. We have the following subcases:

1. s1 is of type 1B and s3 is of type 1A

s1 is placed “above” the arc xzy and s3 is placed on this arc. Let us1

intersect the curve xzy at the point r. Thus using the same argument as

in case I, ∠rs2s3 > π
2
, which implies that ∠s1s2s3 > π

2
.

2. s1 is of type 1A and s3 is of type 1B

This subcase is symmetric to the previous subcase.

3. Both s1 and s3 are of type 1B

Let us1 intersect the curve xzy at the point r1 and us3 intersect the curve

xzy at the point r2. By the same argument as in case I, ∠r1s2r2 > π
2
,

which implies that ∠s1s2s3 > π
2
.

• Type 2: The vertices of G−V (Fu) that do not share an internal face with any vertex
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Figure 3.11: Placement of the vertices of type 2.

of Fu

This type of vertices can be found out by clockwise traversal of the external face of

G. Since all the internal vertices are contained in V (Fu), the type 2 vertices are the

external vertices of G such that for 1 ≤ i ≤ l − 1, during traversal they occur in

between vi and vi+1, where vi and vi+1 are adjacent type 1 vertices.

Placement of type 2 vertices:

Placement of the vertices of type 2 is illustrated in fig. 3.11. We place the type 2

vertices in a way described by Lenhart and Liotta [LL96] as follows:

Since all the internal vertices of G are in the fan Fu, none of the type 2 vertices can

be adjacent to more than two type 1 vertices, otherwise some of the type 1 vertices

become internal vertices of G. We have placed the type 1 vertices so that the chain

of edges formed by the type 1 vertices is convex.

Let e1 be an edge between two type 1 vertices w1 and w2 and a subset of the type 2

vertices shares an internal face with the vertex w1. By lemma 3.2.5, we can draw this

subset of vertices inside an obtuse triangle ∆w1w2p1 with ∠w1w2p1 > π
2
. Similarly if

e2 is the next edge with the type 1 vertices w2 and w3 as endpoints, then the subset

of type 2 vertices sharing an internal face with the vertex w2 can be drawn inside

an obtuse triangle ∆w2w3p2, with ∠w2w3p2 > π
2
. Here, we can choose the points p1
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and p2 such that ∠w1w2p1 > π
2

and ∠p1w2p2 > π
2
, since every external angle on the

chain of type 1 vertices is greater than π because of convexity.

We perform the placement of type 2 vertices recursively until all of them have been

placed.

Proof of proximity constraints

Let us investigate whether the proximity constraints are satisfied for any two vertices of

G. We have the following cases.

1. Proximity constraints for any two vertices of Fu

By lemma 3.2.5, the fan Fu is correctly β-drawn inside an obtuse triangle. Further-

more, by the selection of the regions for drawing Fu and G− V (Fu), the proximity

region of two adjacent vertices of Fu does not contain any vertex of G− V (Fu).

2. Proximity constraints for any two vertices of type 1

We have three subcases. These are as follows:

(a) Proximity constraints for any two vertices of type 1A

• β-region of two nonadjacent type 1A vertices contains at least another ver-

tex.

Let v1 and v2 be two nonadjacent type 1A vertices. As a result, on the

chain of type 1 vertices, there is another vertex r in between v1 and v2.

This intermediate vertex r is either a type 1A vertex or a type 1B vertex.

First, suppose that r is a type 1A vertex. The vertices of type 1A have

been placed on an arc centered at the apex u such that ∠v1uv2 < δ < π
2
.

As a result, for any three type 1A vertices v1, r and v2, where v1, r and

v2 occur in clockwise order on the external face of G, ∠v1rv2 > π
2
. So,

r ∈ R[v1, v2, 1], which implies that r ∈ R[v1, v2, β], for 1 < β < 2.
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Now consider the other case that r is a type 1B vertex. r is placed on a

curve such that v1, r and v2 are on a convex chain and π
2

< ∠v1rv2 < π.

Thus r ∈ R[v1, v2, 1].

Figure 3.12: R[v1, v2,∞] does not contain any vertex of type 1A or type 1B, where v1 and v2

are two adjacent vertices of type 1A.

• β-region of two adjacent type 1A vertices is empty.

Let v1 and v2 be two adjacent type 1A vertices. It suffices to prove that

R[v1, v2, 2] is void of vertices of Fu, of types 1A, 1B and 2.

Due to the choice of the regions R1 and R2, the β-region of any two type

1 vertices does not contain any vertex of Fu. Moreover, since the type

1A vertices have been placed on an arc xzy centered at the point u with

∠xuy < δ < π
2
, R[v1, v2,∞] does not contain any other type 1A vertex

(please see fig. 3.12). We now prove that R[v1, v2,∞] does not contain

any type 1B vertex. Let vi and vi+1 be two nonadjacent vertices of type

1A and vi,1, vi,2, . . . , vi,r be the type 1B vertices that occur in clockwise

traversal of the external face of G from vi to vi+1 in this order (please see

fig. 3.9). Since vi,1, vi,2, . . . , vi,r have been placed in between the straight

lines uvi and uvi+1 and “outside” 1 the arc xzy, all these type 1B vertices

1The term “outside” is mentioned with respect to the vertex u.
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are outside R[v1, v2,∞]. This is illustrated in fig. 3.12.

Figure 3.13: R[v1, v2, β] does not contain any vertex of type 2.

We now prove that R[v1, v2, β] does not contain any vertex of type 2.

This proof is illustrated in fig. 3.13. The vertices of type 2 have been

placed inside obtuse triangles according to lemma 3.2.5. So, the type 2 ver-

tices that have been placed inside the obtuse triangle ∆v1v2p2 are outside

R[v1, v2, β]. Furthermore, since ∠p1v1p2 > π
2

by the drawing procedure,

hence ∠p1v1v2 > π
2
. So, the type 2 vertices that have been placed inside

∆w1v1p1 are outside R[v1, v2,∞]. Thus, all the type 2 vertices occuring

before v1 in clockwise traversal around the external face of G are outside

R[v1, v2,∞]. By similar argument, the same can be shown for all the type

2 vertices occuring after v2 in clockwise traversal of the external face of G.

This concludes the proof that R[v1, v2, β] does not contain any vertex of

type 2.

(b) Proximity constraints for any two vertices of type 1B

• β-region of two nonadjacent type 1B vertices contains at least another ver-

tex.

Let v1 and v2 be two nonadjacent vertices of type 1B. So, there is an
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intermediate vertex vi of either type 1A or type 1B. As proved earlier,

∠v1viv2 > π
2
. Thus the statement follows.

• β-region of two adjacent type 1B vertices is empty.

Let v1 and v2 be two adjacent type 1B vertices. By the same argument

used in proving that the β-region of two adjacent type 1A vertices is empty,

we can show that R[v1, v2, β] is devoid of any vertex of Fu and of type 2.

Now it remains to be shown that R[v1, v2, β] does not contain vertices of

type 1A and type 1B, other than v1 and v2 themselves.

We have already shown that the vertices of type 1 form a convex polytope

with the property that for any three vertices of type 1 in clockwise order,

the internal angle is greater than π
2

and less than π. Thus, R[v1, v2,∞]

does not contain any vertex of type 1.

(c) Proximity constraints between a type 1A vertex and a type 1B vertex

Let v1 be a type 1A vertex and v2 be a type 1B vertex. Using similar arguments

as above, it can be shown that if v1 ↔ v2 then R[v1, v2, β] is empty, else

R[v1, v2, 1] contains the type 1 vertices in between v1 and v2.

3. Proximity constraints for any two vertices of type 2

• β-region of two nonadjacent type 2 vertices contains at least another vertex.

Please see fig. 3.11 for illustration of the proof. Suppose that e1 is an edge

between two type 1 vertices w1 and w2. The type 2 vertices that share internal

faces with the vertex w1 have been placed on an obtuse triangle ∆w1w2p1 such

that ∠w1w2p1 > π
2
. Similarly if e2 is the next edge with the type 1 vertices

w2 and w3 as endpoints, then the of type 2 vertices sharing an internal face

with the vertex w2 have been drawn inside an obtuse triangle ∆w2w3p2, with

∠w2w3p2 > π
2
. The points p1 and p2 have been chosen such that ∠p1w2p2 > π

2
.
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First, we prove that for any point x in ∆w1w2p1 and y in ∆w2w3p2, w2 ∈

R[x, y, β]. The statement is proved by the fact that ∠xw2y > π
2
, since ∠p1w2p2 >

π
2

and ∠w1w2w3 > π
2
. Next, using similar argument, we can also prove that for

any two obtuse triangles T1 and T2 based on two edges with type 1 vertices as

endpoints, a type 1 vertex w ∈ R[x, y, β], where x and y are inside the triangles

T1 and T2 respectively. Thus the statement follows for this case.

Next, we prove that for two nonadjacent type 2 vertices inside a single obtuse

triangle there exists another vertex in their β-region. This follows immediately

from lemma 3.2.5.

• β-region of two adjacent type 2 vertices is empty.

Here we use arguments similar to those presented above. First, the region for

drawing type 2 vertices has been chosen such that the β-region of any two type

2 vertices does not contain any vertex of Fu. Let v1 and v2 be two adjacent

type 2 vertices and v1 and v2 be drawn inside an obtuse triangle based on an

edge with two type 1 vertices w1 and w2 as endpoints, where w1 is the apex.

According to lemma 3.2.5, the β-region of v1 and v2 does not contain w1, w2

and any type 2 vertex inside the same triangle. Now it suffices to prove that

R[v1, v2, β] does not contain any type 1 or type 2 vertex outside the triangle in

which v1 and v2 are drawn. The illustration for this proof is shown in fig. 3.14

and we use the same notations as used in the description of drawing the type

2 vertices.

By definition, the edge v1v2 is a fan edge of Fw1 . Let v0 be the type 2 vertex

adjacent to w2. Since ∠v0w2p2 > ∠p1w2p2 > π
2
, any point inside the triangle

∆w2w3p2 is outside R[v0, w2,∞], which is indicated by the parallel line strip in

fig. 3.14. Since the fan edges of Fw1 form a convex chain having the property

that the internal angle of any three vertices on this chain is greater than π
2

and

less than π, for any fan edge v1v2 the β-region of v1 and v2 does not contain
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Figure 3.14: β-region of two adjacent type 2 vertices v1 and v2 is empty.

any point of ∆w2w3p2.

Now, let us consider the points of ∆w0w1p0. For any two points x and y inside

∆w1w2p1, R[x, y, 2] does not contain any point of ∆w0w1p0. This is because

∠p0w1p1 > π
2

and ∠w0w1w2 > π
2
. Thus an arc with center at x or at y and

with radius xy does not pass through triangle ∆w0w1p0 and the intersection of

these two arcs does not overlap with ∆w0w1p0.

Thus, R[v1, v2, β] does not contain any type 1 or type 2 vertex outside the

triangle in which v1 and v2 are drawn.

4. Proximity constraints for a vertex of Fu and another of type 1

• β-region of a vertex of Fu and another of type 1 that are nonadjacent contains

at least another vertex

For illustration of the proof please see fig. 3.9.

Let us first consider the case of a type 1A vertex nonadjacent to a vertex of Fu.

By definition, a type 1A vertex has a neighboring vertex in Fu. For example,

following the illustration in fig. 3.9, the type 1A vertex vi+1 is adjacent to

tj′ ∈ V (Fu). The type 1A vertex vi+1 is placed in such a way that for any
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vertex v 6= tj′ ∈ V (Fu), ∠vi+1tj′v > π
2
. Thus R[vi+1, v, 1] contains tj′ . Same is

the case for any type 1A vertex and a nonadjacent vertex of Fu.

Now let us consider the other case; that is the case of type 1B vertex. By

definition, a type 1B vertex has no neighbor in Fu. Let vi+1,1 be a type 1B vertex

which occurs in between two type 1A vertices vi+1 and vi+2 as shown in fig. 3.9.

Here, vi+1 is adjacent to tj′ ∈ V (Fu) and vi+2 is adjacent to tj′′ ∈ V (Fu). Since

vi+1,1 has been placed “above” the tangent g1g
′
1 to the arc xzy at the point

vi+1, ∠tj′vi+1vi+1,1 > π
2

and thus vi+1 ∈ R[tj′ , vi+1,1, 1]. Furthermore, vi+1,1 has

been placed to the “left” of the line tj′d1 which is perpendicular to the line

tj′tj′,1. Thus, for any vertex v ∈ V (Fu) to the “right” of tj′ , ∠vtj′vi+1,1 > π
2
.

On the other hand, the same is true for any vertex v ∈ V (Fu) to the “left” of

tj′ , since ∠vtj′vi+1 > π
2
.

Thus, the statement is proved.

• β-region of a vertex of Fu and another of type 1 that are adjacent is empty

For illustration of the proof please see fig. 3.15. By definition, only a vertex of

type 1A can be adjacent to a vertex of Fu.

From lemma 3.2.5 we find that each of the fan vertices of the fan Fu has been

placed on an arc with center at u. Furthermore, the fan vertices form a convex

chain of fan edges such that for any three fan vertices w1, w2 and w3 on the

chain in clockwise order, ∠w1w2w3 > π
2
. Furthermore, We have placed all the

type 1A vertices on an arc xzy centered at u.

Let v be a type 1A vertex such that v ↔ w2. We show that R[w2, v, 2] is

empty. By lemma 3.2.5, all the fan vertices to the right of w2 have been drawn

“inside” (w.r.t. u) the tangent hh′ to the β-boundary curve Cu,w2,2 at the

point w2. Furthermore, all the fan vertices to the left of w2 have also been

drawn “inside” (w.r.t. u) hh′. If we consider R[w2, v, 2], we find that hh′ is

also tangent to the circle centered at v and having radius vw2, since the β-
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Figure 3.15: Illustration for the proof that the β-region of a vertex of Fu and another of type

1 that are adjacent is empty.

boundary curve Cu,w2,2 coincides with R[u, w2, 2]. Thus for any vertex v 6= w2

and v ∈ V (Fu), v /∈ R[w2, v, 2]. Furthermore all the other vertices of type 1

and type 2 are also outside R[w2, v, 2]. Thus R[w2, v, 2] is empty, implying that

R[w2, v, β] is also empty.

5. Proximity constraints for a vertex of Fu and another of type 2

By definition, the type 2 vertices are not adjacent to any vertex of Fu. Thus it

suffices to prove that there is at least another vertex in R[s, t, 1], where t ∈ V (Fu)

and s is a type 2 vertex. The illustration for the proof is shown in fig. 3.16.
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Figure 3.16: Illustration for the proof that there is at least another vertex in the β-region of a

vertex of Fu and another of type 2.

Let us consider an edge e1 = w1w2 on the chain of type 1 vertices. In an obtuse

triangle based on w1w2 we have placed the corresponding type 2 vertices according

to lemma 3.2.5, as illustrated in fig. 3.11. Let s be a type 2 vertex placed inside

the mentioned triangle and t be any vertex of Fu. By lemma 3.2.5, ∠w1sw2 < π
2

and by the choice of regions R1 and R2, ∠w1tw2 < α < π
3
. Now if we consider the

quadrilateral tw1sw2, then we find that ∠tw1s + ∠sw2t > 7π
6

. As a result, either

∠tw1s or ∠sw2t is greater than π
2
, which implies that either w1 or w2 is in R[s, t, 1].

6. Proximity constraints for a vertex of type 1 and a vertex of type 2

Using the illustration of fig. 3.11 it has been shown that the type 2 vertices have
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been placed inside obtuse triangles recursively following lemma 3.2.5. It has also

been shown that if x and y are two points inside two distinct triangles then R[x, y, 1]

contains at least another point. Furthermore, by lemma 3.2.5, inside each obtuse

triangle the vertices have been correctly placed. Thus if a vertex of type 1 and a ver-

tex of type 2 are adjacent then their β-region is empty; and if they are nonadjacent

then their β-region contains at least another vertex.

3.3 Application

In this section we illustrate a practical application of the studies we have made so far.

The application we provide here is drawn from the domain of wireless sensor networks.

One of the most interesting aspects of a wireless sensor network is the contention between

two conflicting requirements: one is the conservation of battery power and the other is

the dissemination of information. The sensors need to disseminate their information to

other sensors and at the same time need to save their battery power. That is why energy

efficient topology construction is a very important consideration in the field of wireless

sensor networks.

We can model an energy efficient topology in a wireless sensor network by using

parameterized proximity graphs, because one of the underlying features in a proximity

graph is that the group of adjacent vertices tend to stay close together, whereas the group

of nonadjacent vertices tend to stay relatively farther away. In the case of a wireless

sensor network, the same principle works, that is sensors that are near to each other

should communicate with each other and sensors that are relatively farther away from

each other should not communicate with each other since it requires greater power. Next

we show how we can place sensors in a plane when a desired topology is given as input.

Suppose that we are given a biconnected 2-outerplane graph G describing the topology

of sensors in a wireless sensor network. For illustration please see fig. 3.17. We have to
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Figure 3.17: The biconnected 2-outerplane graph G describing the topology of sensors in

a wireless sensor network.

place the sensors in a plane such that the placement satisfies the proximity constraints

for a given value of β, where 1 < β < 2. This range of β value guarantees that if G is

β-drawable then there will be no edge-crossing in the β-drawing of G, which is practically

desirable. The first question we have is that is the graph G β-drawable for the given

value of β? We have proved that if G satisfies the conditions of theorem 3.2.1 then G is

β-drawable. Suppose that G satisfies the conditions of theorem 3.2.1. Next we have to

draw G maintaining the proximity constraints. The drawing of G shown in fig. 3.17 is

illustrated in fig. 3.18.

Since G satisfies the conditions of theorem 3.2.1, by lemma 3.2.3 we can find an

appropriate apex u ∈ V (G). According to the drawing algorithm given in section 3.2, we

can draw the fan Fu in an obtuse triangle. For the example given in fig. 3.17, the vertices
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Figure 3.18: Drawing of the biconnected 2-outerplane graph G shown in fig. 3.17.

of Fu are u, a, b, c, d, e, f , g, h and i. The drawing of Fu is placed inside the region R2

as described in section 3.2. Next the remaining graph is drawn in region R1 according to

the drawing algorithm of theorem 3.2.1 and all the edges between the vertices of the fan
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and the vertices of the remaining graph are drawn.

Finally, we can place the sensors in the real world according to the obtained drawing

of G and scaling the drawing to account for the desired maximum length of an edge.

3.4 Chapter Summary

In this chapter we have concentrated on the problem of β-drawability of a biconnected

2-outerplane graph. We have given a necessary condition and a set of sufficient conditions

for β-drawability of a biconnected 2-outerplane graph. We have proved the sufficient

conditions by construction. This proof method gives us an O(n2) drawing algorithm.

Although the drawing algorithm has a high time complexity, the focus of our work is on

answering the question of β-drawability of a biconnected 2-outerplane graph. In the next

chapter we are going to explore “forbidden” biconnected 2-outerplane graphs, which do

not admit a β-drawing. We are going to identify a subclass of biconnected 2-outerplane

graphs that are forbidden. We are also going to show that if a biconnected 2-outerplane

graph does not satisfy the sufficient conditions, then it is not necessarily β-drawable.



Chapter 4

Forbidden 2-Outerplane Graphs

Up to this point, we have found a set of sufficient conditions and proved that if a bi-

connected 2-outerplane graph G satisfies these conditions then G can be β-drawn, for

1 < β < 2. But what can we say about the biconnected 2-outerplane graphs that do not

satisfy these conditions? Are these graphs β-drawable? In this chapter we address this

question. We define a class of graphs as forbidden if no graph of this class is β-drawable

for a specified value of β.

Figure 4.1: Forbidden class of biconnected 2-outerplane graphs due to corollary 3.1.2 (marked

with “cross”) and β-drawable class of biconnected 2-outerplane graphs (marked with “tick”)

due to theorem 3.2.1. The remaining class, marked with “?” denotes the class of biconnected

2-outerplane graphs for which we seek an answer to the proximity drawability problem.
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4.1 Necessary Condition

In Chapter 3, we have specified a necessary condition for β-drawability of biconnected

2-outerplane graphs. This necessary condition is stated in corollary 3.1.2. The necessary

condition is that if G is a biconnected 2-outerplane graph having less than five external

vertices then G has no β-drawing, for 1 < β < 2. Thus we have identified a forbidden class

of biconnected 2-outerplane graphs, that is the class of biconnected 2-outerplane graphs

having less than five external vertices. On the other hand, by theorem 3.2.1 we get a

subclass of biconnected 2-outerplane graphs that is β-drawable for 1 < β < 2. Fig. 4.1

illustrates these findings.

4.2 Sufficient Condition

We now show that the biconnected 2-outerplane graphs violating the sufficient conditions

specified in theorem 3.2.1 are not always β-drawable for 1 < β < 2. In proving this claim

we use lemma 3.1.1, which says that a planar embedded graph, that has a complex 3-cycle

or a complex 4-cycle, is not β-drawable.

Theorem 4.2.1 If F is the class of biconnected 2-outerplane graphs that do not satisfy

at least one of the conditions specified in theorem 3.2.1, then every graph in the class F

is not necessarily β-drawable, for 1 < β < 2.

Proof. For each of the sufficient conditions, we have to find a member of F that does

not satisfy the condition and that is not β-drawable for 1 < β < 2.

Suppose that a biconnected 2-outerplane graph G ∈ F violates condition 1. So, G has

either 3 or 4 vertices in the external face. Thus by corollary 3.1.2, G is not β-drawable

for 1 < β < 2.

Let us consider the biconnected 2-outerplane graph shown in fig. 4.2. In this graph u

is the only external vertex for which we have all the internal vertices included in Fu. We
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Figure 4.2: A biconnected 2-outerplane graph that satisfies all the conditions of theorem 3.2.1

except condition 2(a).

find that this graph satisfies all the conditions but condition 2(a), i.e. the fan Fu is not

1-outerplane. This graph is not β-drawable for β ∈ (1, 2) as it contains a complex 4-cycle

with the vertex v inside the cycle.

Figure 4.3: A biconnected 2-outerplane graph that satisfies all the conditions of theorem 3.2.1

except condition 2(b), i.e. it does not have any external vertex k such that the fan Fk contains

all the internal vertices.

Let us consider the biconnected 2-outerplane graph shown in fig. 4.3. This graph

satisfies all of the mentioned conditions but condition 2(b), i.e. there is no external vertex

k such that Fk is a fan containing all the internal vertices. As can be readily seen, this
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graph is not β-drawable for β ∈ (1, 2), since it contains complex 4-cycles.

Figure 4.4: A biconnected 2-outerplane graph that satisfies all the conditions of theorem 3.2.1

except condition 2(c).

Let us now consider the biconnected 2-outerplane graphs shown in fig. 4.4(a) and

4.4(b). These two graphs satisfy all the conditions in the lemma except condition 2(c).

For the graph shown in fig. 4.4(a), u and v are the only two external vertices the fan

of which contains all the internal vertices (condition 2(b)). Considering Fu as the fan in

question, v is outside the fan and has two neighbors in the fan. Same is case if we consider

the fan Fv. We find that this graph is not β-drawable for β ∈ (1, 2), since the vertex x is

inside a 4-cycle. On the other hand, if we consider the graph in fig. 4.4(b) we find that u

is the only external vertex for which the fan Fu contains all the internal vertices. A vertex

x in the fan Fu has two neighbors outside the fan. This graph is also not β-drawable for

β ∈ (1, 2) as there are two complex 4-cycles.

Thus, it is proved that if a biconnected 2-outerplane graph does not satisfy the specified

conditions then the graph is not necessarily β-drawable for β ∈ (1, 2). 2

4.3 Chapter Summary

In this chapter we have identified a subclass of biconnected 2-outerplane graphs that

are forbidden. This class of forbidden graphs is just the direct result of the necessary
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condition for β-drawability of a biconnected 2-outerplane graph, that is given in the

previous chapter. We have also explored the graphs that do not belong to the forbidden

class and also do not belong to the β-drawable graph. We have shown that if a biconnected

2-outerplane graph does not satisfy the sufficient conditions, then it is not necessarily β-

drawable. In the next chapter we conclude this thesis with an overview of the results and

a brief discussion on the open problems related to this thesis.



Chapter 5

Conclusion

In this thesis we have studied the β-drawability problem for biconnected 2-outerplane

graphs. The results of the thesis are summarized as follows:

• We have specified a necessary condition for β-drawability of biconnected 2-outerplane

graphs, for 1 < β < 2.

• We have found sufficient conditions for β-drawability of biconnected 2-outerplane

graphs, for 1 < β < 2.

• For a biconnected 2-outerplane graph that satisfies the sufficient conditions, we have

given an O(n2) drawing algorithm for β-drawing the graph, for 1 < β < 2.

• The specified necessary condition implies a forbidden class of biconnected 2-outerplane

graphs which cannot be β-drawn, for 1 < β < 2. The sufficient conditions imply a

subclass of biconnected 2-outerplane graphs that are β-drawable for the same range

of β values. We have proved by showing counter-examples that if a biconnected

2-outerplane graph does not belong to the forbidden class and also not to the above

mentioned β-drawable class, then this graph is not necessarily β-drawable.

We conclude this thesis with the following open problems:
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• Complete characterization of biconnected 2-outerplane graphs is yet to be done. In

this problem, one has to provide necessary and sufficient conditions for β-drawability

of a biconnected 2-outerplane graph. Interestingly, complete characterizations of

trees and outerplanar graphs are still open problems as well [BDLL95, LL96].

• β-drawings of biconnected 2-outerplane graphs have been studied in this thesis and

those of trees and outerplanar graphs have been studied in [BDLL95, LL96]. How-

ever, all these studies concern little about the area requirement. Penna and Vocca

report that the existing algorithms, such as those in [BDLL95, LL96], require expo-

nential area [PV04, PV98]. So, β-drawings of trees, outerplanar graphs and bicon-

nected 2-outerplane graphs in polynomial area is an open problem. Interestingly,

nobody still has the answer to the simplest of these problems, i.e. polynomial area

β-drawings of trees for β = 1.

• Characterization of β-drawability of k-outerplane graphs, for any k ≥ 1, will be

a very interesting finding. This is because every planar embedded graph is a k-

outerplane graph, for some value of k ≥ 1. Thus if we are able to find an answer

the question of β-drawability problem for k-outerplane graphs, for any k ≥ 1 and

for some value of β, then given a planar embedded graph we can tell if that graph

can be β-drawn. However, this will be a greatly challenging problem, because even

for the simplest of graphs, such as trees, there are some values of β for which the

answer to the β-drawability problem is not known.
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