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Abstract We explore the art gallery problem for the special case that the domain
(gallery) P is an m-polyomino, a polyform whose cells are m unit squares. We study
the combinatorics of guarding polyominoes in terms of the parameter m, in contrast
with the traditional parameter n, the number of vertices of P . In particular, we show
that �m+1

3 � point guards are always sufficient and sometimes necessary to cover an
m-polyomino, possibly with holes. When m ≤ 3n

4 −4, the sufficiency condition yields
a strictly lower guard number than �n

4 �, given by the art gallery theorem for orthogo-
nal polygons.

Keywords Art gallery theorem · Polyomino · Visibility coverage · Guard number

1 Introduction

Victor Klee (1973) posed the problem of determining the minimum number of point
guards sufficient to cover the interior of an art gallery modeled as a simple poly-
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Fig. 1 A polyomino with 29
pixels. The shaded region is a
hole

Fig. 2 The three models of visibility. From left to right: r-visibility model, all-or-nothing, model and
unrestricted model

gon P with n vertices. The solution, first given by Vasek Chvátal, is that �n
3 � guards

are sometimes necessary and always sufficient to cover a polygon possessing n ver-
tices [15]. This original problem has since grown into a significant area of study
in computational geometry and computer science. Art gallery problems are of the-
oretical interest but also play a central role in visibility problems arising in appli-
cations in robotics, digital model capture, sensor networks, motion planning, vision,
and computer-aided design [18, 19].

We explore the art gallery problem when the given gallery P is an m-polyomino, a
polyform whose cells are integral unit squares. (In other words, an m-polyomino P is
the union of m (closed) integral unit squares such that the interior of P is connected.)
We refer to the unit squares as pixels. An example with m = 29 is shown in Fig. 1.
We often write (m) for an m-polyomino. For example, (7) refers to any 7-polyomino.
A polyomino P is simple if it has no holes, i.e., the interior of the complement of
P is connected. The dual graph of an m-polyomino P has a node for each pixel of
P and an edge joining two nodes that correspond to edge-adjacent pixels. We will
frequently use the same name (such as v or p) for a node in this dual graph and the
pixel in the polyomino that it represents.

A point a ∈ P covers (or sees) a point b ∈ P if the line segment ab is a subset
of P . (Since P is closed, possibly ab contains points on the boundary, ∂P .)

We let g(P ) denote the guard number of P : g(P ) is the minimum number of
guards, modeled as points, required to cover all of a given polyomino P . Then we
define G(m) to be the maximum value of g(P ) over all m-polyominoes P . Our main
combinatorial question is that of determining upper and lower bounds on G(m).

There are possible alternative models of visibility that one can study. One such
model is r-visibility, where two points can see each other if and only if the axis-
parallel rectangle defined by them is a subset of P . Another model, the all-or-nothing
model, considers a pixel p to be guarded only if a single guard a sees all points of p

(i.e., ab ⊂ P , for all b ∈ p). Figure 2 illustrates these models. It is easy to see that a
cover in the r-visibility model is a cover in the all-or-nothing model, which in turn is
a cover in the unrestricted model, and none of these implications hold in reverse in
general.
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Previous Work While �n
3 � guards are sufficient and sometimes necessary to cover a

simple polygon with n vertices, �n
4 � guards are sufficient and sometimes necessary to

cover an orthogonal polygon [8–10, 14]. It is NP-hard to find the minimum number
of guards for covering either a general simple polygon [12] or an orthogonal poly-
gon [17]. Even covering the vertices of an orthogonal polygon has been shown to be
NP-hard [11].

While no approximation algorithm with better than the naive factor �n
3 � is known

for placing the fewest guards at arbitrary points in a simple polygon, there are re-
sults for approximation of optimal guard placement in polygons by restricting the
set of candidate guards. For instance, if we restrict guards to lie only on vertices
of a polygon or grid points, logarithmic approximations are achievable based on set
cover [5–7].

In orthogonal polygons, Nilsson [13] gives an algorithm to compute O(OPT 2)

guards, based on the constant-factor approximation for guarding 1.5D terrains [2].
Worman and Keil [20] show that a minimum guard cover in the r-visibility model
for orthogonal polygons can be found in polynomial time. The algorithm runs in time
Õ(n17) and requires computing a maximum independent set in a perfect graph as a
subroutine.

Practical methods and heuristics for placing guards in general polygonal domains
have been investigated by Amit et al. [1].

2 Our Results1

We show that �m+1
3 � point guards are sometimes necessary and always sufficient

to cover an m-polyomino (possibly with holes). The necessity bound is in the unre-
stricted visibility model (and hence also holds in the all-or-nothing and the r-visibility
model). The sufficiency bound is constructive and yields a guard set that is in the
(most restrictive) r-visibility model. We demonstrate that these tight combinatorial
bounds carry over to rectanglominoes, a generalization of polyominoes in which the
cells are edge-aligned rectangles.

2.1 Necessary Condition

Figure 3 shows a polyomino analog of Chvátal’s comb, illustrating that, for m ≥ 2,
�m+1

3 � guards are sometimes necessary to cover an m-polyomino.

2.2 Sufficiency Condition

Given an m-polyomino P (possibly with holes) where m ≥ 2, we show that �m+1
3 �

guards are always sufficient to cover P . The proof of this sufficiency condition is

1In a related paper appearing in SoCG 2011, we also gave tight combinatorial bounds for guarding poly-
ominoes with pixel guards (guards that are themselves pixels of the polyomino), established that guarding
a simple polyomino with point or pixel guards is NP-hard, and presented various optimal algorithms for
special cases [3]. Additional results and improvements to these algorithms have since been obtained and
will appear together in a separate paper. Also see [16] regarding the combinatorics of guarding polyomi-
noes with pixel guards.
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Fig. 3 An example demonstrating that �m+1
3 � guards (depicted as filled dots) are sometimes necessary to

guard P , since no two of the open circles can be covered by one guard

Fig. 4 Special 5-polyominoes:
5′ (left) and 5′′ (right). (The
labels apply to all polyominoes
that are one of the above after
rotation and/or reflection.) Each
requires two guards

Fig. 5 Cases for covering polyominoes with up to 5 pixels

obtained by arguing that we can iteratively remove certain types of subpolyominoes
while leaving the remaining polyomino connected. The removal process will involve
creating a BFS tree of the dual graph of P , and then iteratively clipping off small
subtrees. First, we introduce a lemma to be employed later:

Lemma 1 For 1 ≤ m ≤ 4, any m-polyomino can be covered with one guard.
Any 5-polyomino that is not 5′ or 5′′ (see Fig. 4) can be covered with one guard.
For m = 6,7, any m-polyomino can be covered with two guards.
In all cases, the polyominoes are covered even in the r-visibility model.

Proof One could prove this simply by inspection of the finite (though large) number
of such polyominoes, but instead we give a proof based on locating the best places
for guards using a spanning tree in the dual graph.

We do not prove each time that all of our guards are at pixel corners and that
r-visibility suffices for the covering; this should be obvious from the constructions.

The crucial insight is that if a guard v is at the corner of some pixel p, then it
guards not only p, but also all neighbors of p, even in the r-visibility model.

Lemma 2 Any m-polyomino P , m = 1,2,3,4, can be covered with one guard.

Proof If P is a rectangle, then any pixel corner will do. Otherwise P has a reflex
corner. Placing a guard v at this corner means that v belongs to three pixels and
covers the fourth (if any) since it is adjacent to one of the three. See Fig. 5(a). �
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Lemma 3 Any 5-polyomino P that is not 5′ or 5′′ can be covered with one guard.

Proof Compute a BFS tree T of the dual graph of P , rooted at a node r of maximum
degree. If r has degree 4, then any other pixel is a neighbor of r , so a guard on one
corner of r will do (Fig. 5(b)). If r has degree 3, then exactly one neighbor c of r has
exactly one other neighbor (in T ), and placing a guard at a common point of r and c

will cover everything (Fig. 5(c)).
Now assume that r has degree 2, hence the dual of P is a path. If P is a rectangle,

then placing a guard at any pixel corner will do. If P has exactly one reflex corner,
then placing a guard on it will cover everything (Fig. 5(d)). If it has multiple reflex
corners, then let c be the middle node of this path. If the neighbors of c are not
on opposite sides of c, then the point common to the neighbors covers everything
(Fig. 5(e)). This finally leaves the case where c and its two neighbors form a rectangle,
but P has two reflex corners. This implies that P is 5′ or 5′′. �

Lemma 4 Every (6) and (7) can be covered with two guards.

Proof We first prove this for a 7-polyomino P . Compute a BFS tree T of the dual
graph of P , starting at a node r of maximum degree. If any child c of r has a subtree
Tc of size 3 or 4, then Tc and T − Tc form two connected subpolyominoes that can
be covered with one guard each, and we are done. If all children of r have subtrees
of size 2 or 1, then place two guards at two diagonally opposite corners of r ; these
guards are then in all children of r and hence cover all grandchildren as well, and
hence all of T .

So finally presume some child of r has a subtree of size 5 or 6. Then r can have at
most two children, so the dual of P is a path. But then P can easily be split into a (3)
and a (4) and hence be covered with two guards.

This proves the claim for a (7). For a 6-polyomino P , let q be a bottommost pixel,
i.e., a pixel with smallest y-coordinate, breaking ties arbitrarily. Attach an extra pixel
p below q to create a 7-polyomino P ′. Then cover P ′ with two guards. If either one
of them is in a bottom corner of p, then we can move it to the top corner of p without
decreasing coverage, since p is a leaf in the dual graph. Hence the two guards will
also cover P . �

Hence, Lemmas 2–4 establish the validity of Lemma 1. �

In the proof of the subsequent theorem, a BFS tree structure with an important
construction property is utilized. Let T be a BFS tree of the dual graph of a polyomino
P , rooted at a node r that has degree at most 2. Add the neighbors of r to the queue,
with r as parent. As long as the queue is not empty, remove the next node v from it.
Then, add all unvisited neighbors w of v to a queue in the following fashion: Assume
that v has parent p1. Then the neighbor w that is on the opposite side of v from p1 is
added last to the queue (if it exists and was not already visited). In other words, the
BFS will always give preference to “making a turn” when exploring the dual graph.
Because of this, we have the following observation, which will be crucial later.
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Fig. 6 If the polyomino shown
has a BFS tree rooted at p2, v′
cannot exist since otherwise c1
would have been made a child of
v′, not v

Lemma 5 Let v be a pixel that has a grandparent in this BFS tree T . If v has two
children c1, c2 in T that are on opposite sides of v, then v has no sibling.

Proof Let p1 and p2 be the parent and grandparent of v, respectively. Then p2 must
be adjacent to p1, but it cannot be adjacent to either c1 or c2, since this would violate
the BFS property. Since c1 and c2 are on opposite sides of v, this implies that p2 and
v are on opposite sides of p1. Using our BFS convention, v is added last to the queue
when exploring from p1. If p1 had any other child v′, then v′ would be adjacent to
c1 or c2, and would have been added to the queue before v. So c1 or c2 would have
been made a child of v′, not v. Therefore, v has no siblings (see Fig. 6). �

Theorem 1 For an m-polyomino P0 (possibly with holes) there are polyominoes
P1,P2, . . . ,Pf with the following properties:

(a) Pi is a connected subpolyomino of Pi−1 (1 ≤ i ≤ f ).
(b) Subpolyomino Si , the difference between Pi−1 and Pi is in the set Good Poly-

ominoes, GP = {(3), (4), ((5)\{5′,5′′}), (6), (7)}.
(c) Pf has 0, 1, or 2 pixels.

Proof Let T be a BFS tree of the dual graph of P0 obtained as explained above. Every
node in T has at most 3 children. If the height of T is less than 2, then T has at most
3 nodes since T is rooted at a node of degree at most 2. If T has exactly 3 nodes, then
set Sf = T (i.e., let Sf be the subpolyomino whose dual graph is T ), set Pf = ∅ and
we are done. If |T | < 3, set Pf = T and again we are done.

Suppose now that the height of T is at least 2, and let q be a lowest leaf of T . If q

has siblings, then let Tp1 be the subtree rooted at the parent p1 of q . See Fig. 7(a). Tp1

then has 3 or 4 nodes. Set S1 = Tp1 , satisfying (b). Hence, P1 = P0 − S1 is T − Tp1 ;
this is connected (so satisfies (a)) since Tp1 is a rooted subtree of T . By induction we
can split P1 as desired.

If none of the lowest leaves of T has siblings, let q be a lowest leaf and p1,p2
be its parent and grandparent, respectively. Let Tp2 be the subtree rooted at p2. See
Fig. 7(b). Tp2 has between 3 and 7 nodes. The minimum of 3 occurs when p2 has no
other children and the maximum of 7 occurs when p2 has 3 children, each of whom
has one child (since no leaf has siblings). If Tp2 is not 5′ or 5′′, then set S1 = Tp2 . As
before, S1 ∈ GP , satisfying (b) and since T − Tp2 is connected, (a) holds as well and
we are done by induction.

If Tp2 is 5′ or 5′′, then p2 must be the middle pixel, and we do one of the follow-
ing:
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Fig. 7 Finding a subtree that forms a Good Polyomino

(i) If p2 has no parent, then the whole polyomino P0 is a 5′ or 5′′, and hence can
be split into a (3) and a (2).

(ii) If p2 has a grandparent, then p2 has no sibling since it is the middle node of
a 5′ or 5′′ and hence has children on opposite sides (Lemma 5). Therefore, the
subtree Tp3 rooted at the parent p3 of p2 is a (6). See Fig. 7(c). Set S1 = Tp3 and
iterate as before.

(iii) Finally, presume p2 has a parent p3, but no grandparent. So p3 is the root and
has degree ≤ 2. Let T ′ be the (6) formed by Tp2 together with p3; set S1 = T ′
as before, then P1 = P0 − S1 is again a connected polyomino and we are done
by induction. �

Corollary 1 For m ≥ 2, �m+1
3 � guards are sometimes necessary and always suf-

ficient to cover a connected m-polyomino P (possibly with holes), even in the r-
visibility model.

Proof Theorem 1 shows that we can partition P into subpolyominoes S1, . . . , Sf

and Pf such that each Si is covered by � |Si |
3 � guards, and Pf has 0, 1 or 2 pixels.

We use 1 = �|Pf |+2
3 � guard for Pf if it is non-empty. These guards cover the poly-

omino even in the r-visibility model by Lemma 1. Hence, the number of guards is
∑f

i=1� |Si |
3 � + � |Pf |+2

3 � ≤ m+2
3 . Since the number of guards is an integer, this gives

an �m+2
3 � sufficiency condition, but we can make a slight improvement to �m+1

3 �.
If m = 2 + 3k or m = 3 + 3k with k ∈ N, then �m+1

3 � and �m+2
3 � are equivalent.

So assume m = 1 + 3k.
Suppose first that some Sj is not a (3) or a (6), and hence uses actually only

� |Sj |−1
3 � guards. Redoing the above equation then shows that the number of guards

is at most m+1
3 (and as before, therefore not more than �m+1

3 � since it is an integer.)
On the other hand, if each Si is a (3) or a (6), and m = 1 + 3k, then Pf consists
of exactly one pixel. Hence, Sf ∪ Pf is a (4) or a (7), and can be covered with
� 1

3 (|Sf | + |Pf | − 1)� guards. Again redoing the equation shows that the number of
guards is at most �m+1

3 �.
The construction in Sect. 2.1 establishes the matching lower bound. �

Note that our proof is constructive and gives an algorithm to find a set of �m+1
3 �

guards. The time complexity of this algorithm is dominated by the time to find the
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Fig. 8 The rectanglomino (left)
requires 3 guards, while its
associated polyomino (right)
requires only 2 guards

decomposition of P into good subpolyominoes. To see that this can be done in over-
all linear time, observe that there is no need to recompute the BFS tree every time:
the remainder of the BFS tree is a BFS tree for the remaining polyomino. Thus we
compute the BFS tree only once, and enumerate the nodes in it in backward level or-
der. For each node q , in this order, we then find a good subpolyomino in the vicinity
of q: it is either at q’s parent, grandparent, or the great-grandparent, or at one of their
children or grandchildren. Thus we only need to check a constant number of subtrees,
all within constant distance of q . So finding a good subpolyomino takes constant time
per removed subpolyomino.

2.3 Generalization to Rectanglominoes

We observe that the combinatorial results described above extend to a generalization
of polyominoes, which we will call rectanglominoes: connected unions of m edge
aligned rectangular pixels. If pixels pi and pj , with heights hi and hj and lengths
li and lj , respectively, are horizontally adjacent in a rectanglomino R, then hi = hj .
Similarly, if pi and pj are vertically adjacent, then li = lj . Any rectanglomino R has
an associated polyomino PR that is obtained by setting all pixel heights and lengths of
R to unit length. It is possible that PR will self-overlap, but the combinatorial results
obtained for polyominoes apply to self-overlapping polyominoes as well. Clearly, the
dual graphs of R and PR are equivalent since the number of pixels in R and PR is the
same and pixel adjacencies are preserved.

Despite having identical dual graphs, a rectanglomino and its associated poly-
omino do not always have the same guard number. Consider the example in Fig. 8
where the rectanglomino on the left requires three guards while the associated poly-
omino on the right needs only two.

However, the two numbers are the same in the r-visibility model:

Lemma 6 A rectanglomino R can be covered with k guards in the r-visibility model
if and only if its associated polyomino PR (possibly self-overlapping) can be covered
with k guards in the r-visibility model.

Proof We only show one direction; the other one is similar. Assume we have a cover
of PR . Map each point pr in PR to a point r in R in the natural way: if pr is at a
corner, then it is mapped to the corresponding corner, and if it is not on a corner, then
it is mapped to the linear interpolation between the corners of the pixel that contain
it. Using this mapping on the set of guards of PR gives a set of points in R, and we
must now argue that this is a cover of R.
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Since adjacent rectangles in a rectanglomino are edge-aligned, this transformation
maps a rectangle in PR to a rectangle in R. Hence, if point pR in PR is guarded in the
r-visibility model by guard vR , then the rectangle R spanned by them is inside PR .
Applying the transformation yields a rectangle inside R containing the images of pR

and vR ; hence, any point in R is covered by some of the chosen guards. �

As a consequence, all of our upper bounds on the guard number (Corollary 1)
immediately transfer to rectanglominoes, since our covers were valid even in the
r-visibility model. Of course, the lower bounds transfer as well, since a polyomino is
a special kind of rectanglomino. Hence, we have:

Corollary 2 �m+1
3 � guards are sometimes necessary and always sufficient to cover

a connected m-rectanglomino (possibly with holes), even in the r-visibility model.

3 Conclusion

We have explored a variation of the art gallery problem set in a polyomino domain, in
which the input parameter, m, denotes the number of pixels found in the polyomino
as opposed to the usual parameter, n, the number of vertices of the polygon. It was
shown that �m+1

3 � guards are sometimes necessary and always sufficient to cover a
polyomino on m pixels. These tight combinatorial bounds also extend to rectanglomi-
noes.

It should be emphasized that these conditions apply to polyominoes with or with-
out holes. For general polygons, �n+h

3 � point guards are sometimes necessary and
always sufficient where h is the number of holes [4]. When m ≤ 3n

4 − 4 we have
�m+1

3 � < �n
4 �, yielding a strictly lower sufficiency bound than obtained by the art

gallery theorem for orthogonal polygons.
It remains open as to whether there is any approximation algorithm for guarding

simple polyominoes.
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