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In the past weeks, I have received several requests to address the merits of 
the Anna D. Broido and Aaron Clauset (BC) preprint [1] and their fruitless search 
for scale-free networks in nature. The preprint’s central claim is deceptively 
simple: It starts from the textbook definition of a scale-free network as a 
network with a power law in the degree distribution [2]. It then proceeds to 
fit a power law to 927 networks, reporting that only 4% are scale-free. The 
author’s conclusion that ‘scale-free networks are rare,’ is turned into the title of 
the preprint, helping it to get maximal attention. It worked—Quanta magazine 
accepted its conclusions without reservations. After the Atlantic carried the 
article, the un-refereed preprint received a degree of media exposure that the 
original discovery of scale-free networks never enjoyed.

While I saw the conceptual problems with the manuscript, I was convinced 
that the paper must be technically proficient. Yet, once I did dig into it, it was 
a real ride. If you have the patience to get to the end of this commentary, you 
will see where it fails at the conceptual level. But, we will learn that it also fails, 
repeatedly, at the technical level. 

The Conceptual Problem 

Let me start by summarizing an enormous body of work on scale-free 
networks as briefly as possible, essential to understand the moment when the 
BC paper arrives on the scene.

Empirical Discovery. The scale-free property was observed in 1999, 
independently in the WWW [3] and the internet at the autonomous systems 
level [4]. The empirical observation was simple: the degree distribution of 
these networks is well approximated with a power law,

 P(k)~k-γ                                   (1)

Back then this was an unexpected finding, given that the prevailing model was 
the random network model of Erdős and Rényi [5] which predicted a Poisson 
degree distribution, easily differentiable from a power law (Figure 1). We named 
these networks scale-free, inspired by the scale-free nature of power laws 
observed in the vicinity of phase transitions. 

Mechanistic Model. In 1999 Réka Albert and I proposed a mechanism to 
explain the origin of the observed power law [2], finding that it is rooted in 
growth and preferential attachment.  A simple model based on these two 
mechanisms, known today as the BA or the scale-free model, generated a 
network whose degree distribution follows (1), with degree exponent γ=3.  The 
scale-free model is a mechanistic model, meaning that it is not a model of the 
Internet, or the WWW or the cell—it only aims to explain the mechanism behind 
the scale-free nature of a network. Real networks are far more complicated, 
indicated by the fact that their degree exponent γ varies from 2 to 8. Growth 
and preferential attachment alone cannot explain that variation.

Real Networks. Months after the 1999 paper several key discoveries helped 
the community understand the origins of the different exponents. The rate-
equation based continuum theory, developed by Mendes, Dorogovtsev, 
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Clauset's fruitless search for scale-free networks

Figure 1. How hard is to distinguish random from 
scale-free networks? To show how different are 
the predictions of the two modeling paradigms, the 
scale-free and that or the random network models, 
I show the degree distribution of four systems: 
Internet at the router level; Protein-protein interaction 
network of yeast; Email network; Citation network, 
together with the expected best Poisson distribution 
fit. It takes no sophisticated statistical tools to notice 
that the Poisson does not fit.
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Redner, Krapivsky, and many others [6], helped incorporate into the scale-
free model many effects that naturally occur in real networks, like the 
disappearance of nodes, the addition of new links between previously existing 
nodes, link deletion, aging, and so on. These papers have shown analytically 
that the presence of the additional effects alter the degree distribution in two 
ways. First, they change the degree exponent— successfully explaining the 
diverse exponents observed in real networks. Equally important, they induce 
corrections to the degree distribution, making P(k) deviate in predictable ways 
from a pure power law. Some of the most common corrections include [7]:

• Small degree saturation: In any system where two nodes that are already 
in the network can choose to connect to each other (internal links), the 
analytical form of the degree distribution becomes P(k)=C(k+A)-ᵞ, leading 
to a small degree saturation. In social networks and the WWW, most links 
are such internal links.  A similar small-degree saturation can also be 
induced by initial attractiveness, well documented in citation networks [8].

• High degree cutoffs: If preferential attachment is sublinear, the degree 
distribution follows a stretched exponential, or a power law with an 
exponential cutoff.  Similar high degree cutoffs also appear under node 
removal. 

• Fitness: Nodes have different abilities to complete for the links, a diversity 
that can be modelled by giving each of them a unique and different fitness 
η. In the presence of fitness, the precise form of P(k) depends on the 
fitness distribution ρ(η). For example, a uniform fitness distribution induces 
a logarithmic correction in P(k) and other forms of ρ(η) can lead to rather 
exotic forms for P(k). 

In real networks many of the elementary processes discussed above appear 
together, and so do many others. In other words, by 2001 it was pretty clear 
that there is no one-size-fits all formula for the degree distribution of networks 
driven by the scale-free mechanism. A pure power law only emerges in simple 
idealized models, driven by only growth and preferential attachment, and 
free of any additional effects. The theory was predicting that in real networks, 
if the scale-free mechanism is present, the power law tends to coexist with 
some corrective function, expecting power laws with exponential cutoffs, 
stretched exponentials, logarithmic corrections to the power law, and so on. 
These corrections are so important, that I devoted a full chapter in the Network 
Science [9] textbook to them. We also learned that there are multiple ways of 
analyzing the presence of the scale-free property, as I explain in Box 1. The 
conclusion is simple, well understood in the literature: if we wish to obtain an 
accurate fit to the degree distribution of a real network, we first must build a 
generative model that analytically predicts the functional form of P(k).

So it is time to go back to Ref [1] and its key claim that “Scale-free networks 
are rare.” How exactly did it arrive to this conclusion? By insisting to fit a pure 
power law to every network, and ignoring what the theory predicts for any of 
them. As it is difficult to find real systems that are free of additional effects, it 
makes no sense to fit indiscriminately a power law to all of them. One must fit 
the distribution that the theory predicts, which is predictably different for each 
system.

Interestingly, the theory predicts that in many real networks driven by growth 
and preferential attachment, the degree distribution should follow a power 
law with an exponential cutoff. If you look at Table II of Ref [1], BC find that 
51% of the networks they explored favor this distribution. In other words, the 
measurements of BC validate the theory, contradicting the authors' central 
claim.

 

Given the complexity of real systems, how 
can we detect the scale-free property of a 
real network? We can do better than blindly 
fitting of a power law to it. The procedure we 
choose depends on what question we wish to 
address:

1. If our goal is to obtain an accurate fit of the 
degree distribution, then we must build a 
continuum model of the network we wish 
to fit. This has been done successfully in 
several well-studied systems, finding that 
in each case the scale-free mechanism, 
captured by growth and preferential 
attachment, are necessary to describe 
their topology. 

2. If our goal is to obtain direct evidence of 
the scale-free mechanism, we can do that 
without doing the hard work in point 1, but 
only if we have dynamical data (i.e. the 
time when each node or link was added). 
In that case we can measure both growth 
and preferential attachment directly [10].

3. Finally, if we want to see  the 
consequences of the scale-free property, 
we can bypass both 1 and 2 and measure 
the variance of the degree distribution. 
This helps us ask, why does the scale-
free property matter in the first place? I 
discuss this in Box 2.

Box 1: How do we analyze real 
networks?
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The Technical Problems 

Getting this far, you may ask yourself, if it is so difficult to fit the degree 
distribution, why do thousands of papers claim that a large number of real 
networks, from the Internet to protein interaction and social networks, are 
scale-free? The answer is simple—despite the many processes shaping their 
topology, for many real networks the fat tailed nature is so obvious that it’s hard 
to miss (see Figure 1). Indeed, Clauset’s most cited work found that many of the 
large networks that the community does consider scale-free, like the Internet, 
protein interaction network, citation network, co-authorship networks, do pass 
statistical significance without even considering the necessary corrections (see 
Table 6.1 in Ref [12]).

So the puzzling technical question is this: Why do the authors fail to find the 
scale-free networks, that everyone else in the literature does, including Clauset 
himself in his earlier work? This is where the first technical surprise comes: 
they fail to see the scale-free property because they invent a new criterion 
of weak and strong scale-free networks. And the real surprise? Even the 
exact model of scale-free networks, following a pure power law, fails their 
test. As incredible as this sounds, all the evidence is in Appendix E, on the very 
last page. So let’s dig into it.

You would think that the nomenclature of ‘weak’ and ‘strong’ scale-free 
networks BC uses has to do with statistical significance. Indeed, one could 
plausibly call some of the large and well mapped real networks ‘strong scale-
free’, implying that for them the statistical significance is exceptional. And one 
could coin the term “weak scale-free network” for a network for which a power 
law has lower statistical significance. But that is not what BC do. Instead, they 
take each network, and generate from the original multiple synthetic networks. 
This way their set of 927 real networks turns into 23,999 synthetic networks. 
Then they toss out 81% of them, deeming them ‘unlikely to be scale-free’ (pg 
3, BC). They proceed with the remaining 4,477 synthetic networks, which is the 
corpus they study. 

For example, an unweighted directed network like the WWW turns into three 
different degree sequences: the incoming, the outgoing, and the total degree. 
Instead of asking which of these synthetic networks may be well fitted with 
a power law, they ask, what fraction of these synthetic networks passes the 
power law criteria. Then they propose the following naming convention, taken 
from their paper:

• Super-Weak: For at least 50% of graphs, none of the alternative 
distributions are favored over the power law.

• Weakest: For at least 50% of graphs, the power- law hypothesis cannot be 
rejected (p ≥ 0.1).

• Weak: The requirements of the Weakest set, and there are at least 50 
nodes in the distribution’s tail (ntail > 50).

• Strong: The requirements of the Weak set, and that both 2 < αˆ < 3, and 
for at least 50% of graphs none of the alternative distributions are favored 
over the power-law.

• Strongest: The requirements of the Strong set for at least 90% of graphs, 
rather than 50%, and for at least 95% of graphs none of the alternative 
distributions are favored over the power-law.

To help understand what this is, let us take the citation graph, a well studied 
scale-free network. It is a directed network, whose incoming degrees (the 
number of citations a paper gets) is known since the 1960s to be well fitted with 
a power law [13]. However, the outgoing degrees follow a different distribution, 
as those degrees capture how many different papers a given publication cites, 

Box 2: Why do scale-free  
networks matter?
Why did the scale-free property get so much 
attention in the past two decades? The main 
reason is that the scale-free property does 
matter.  Indeed, several groundbreaking 
discoveries by Cohen, Havlin, Pastor-
Satorras, Vespignani and others [11], showed 
that networks with high ‹k²› have a series 
of unusual properties, like robustness to 
failures, fragility to attacks, anomalous spread 
of viruses, anomalous synchronization, and 
so on. For scale-free networks with a pure 
power law degree distribution ‹k²› diverges 
for γ<3, so they display all these intriguing 
properties. Yet, you do not need a pure power 
law to witness the impact of the high ‹k²›, as 
systems driven by the scale-free mechanism 
tend to have anomalously high  ‹k²›. You can 
easily test that by comparing the variance of 
a real network with that of a random network 
of similar size (see Figure 2)—if it is higher, the 
intriguing properties of the scale-free models 
will manifest themselves in your network, 
whether or not the degree distribution follows 
a pure power law. 

Figure 2. High degree variations in real networks  
For a random network with Poisson degree distribu-
tion the standard deviation of the degrees follows 
σ = ‹k›½ shown as a green dashed line on the figure. 
The symbols show σ   for nine reference networks. 
For each network σ is larger than the value expected 
for a random network with the same ‹k›. The only 
exception is the power grid, which is not scale-free. 
While the phone call network is scale-free, it has a 
large γ, hence it is well approximated by a random 
network.



4

and that number is determined by journal policy, having artificial cutoffs. So, of 
the three graph they generate from a well-studied scale-free network, only one 
can pass their criteria, the one defined by the incoming degrees. But that is not 
enough to make it even super-weak scale-free in the language of BC.

In some cases, their methodology generates as many as 900 synthetic 
networks from a single real system. If at least 50% of these synthetic networks 
pass the power law test they would call it super-weak. They require 90% 
to pass to place a network in the strongest category. Now, the truth is that 
typically only one of these networks matters: the one that captures the 
purpose or the function of the original system. But they offer an equal vote 
to each fictional synthetic network, letting them decide whether the original 
system is scale-free or not (Box 3).

The classification BC choose to use has no precedent in network science, 
and has no relevance to the role of the network they study. They offer no 
explanation of the need for these made-up criteria, nor do they explan how 
they choose the 50% and 90% percentages. They are arbitrary. 

But let's focus on what really matters. And those are controls. That is, whatever 
criteria we choose, we must test it on networks whose degree distribution is 
well understood. So if we feed into our methodology a scale-free network, 
like the one produced by the scale-free model with a pure power law degree 
distribution, free of any corrections, the method should predict that that 
network is in the strongest category. Indeed, if the gold standard fails the 
strongest class, who would pass? In other words, the scale-free model should 
not be super-weak, weakest, or weak. It should be in the strongest class, 
correct? After all, we have a formal exact proof of the power law nature of the 
scale-free model [14].

BC are truly aware of this crucial criteria, hence they do assure the reader on 
pg 5 that their method passes this obvious but essential test:

“Two mechanisms produce scale-free networks (a directed version of 
preferential attachment [42] and a directed vertex copy model [43]), 
and one does not (simple Erdős-Rényi random graphs). Applied to 
synthetic networks generated by these mechanisms, our methodology 
correctly placed the synthetic data sets into scale-free categories 
suitable for their generating parameters, i.e., preferential attachment 
and vertex-copy data sets were categorized as scale-free networks, 
while Erdős-Rényi random graphs were not (see Appendix E).”

 
So it’s all good. Yet, curious, I did look into Appendix E, which, I assumed that 
would simply offer the evidence. And it did. But not the evidence we would all 
expect based on the text above. Here is word by word what we find there:

“When we consider the plausibility of the power-law fit, we see fewer 
networks. 62% of the preferential attachment graphs fall into the 
Weakest and Weak categories,”

They also report for the Erdős-Rényi network, that

“51% and 50% of these networks fall into the Weakest and Weak 
categories, respectively.”  

In other words, according to the criteria the authors invented, 38% of the time 
the scale-free model is not even ‘weak scale-free.’ In contrast, 51% of the 
time the ER model is classified as ‘weak scale-free’!

You may ask, how hard is to distinguish an Erdős-Rényi model from a scale-free 

Box 3: All we need is love

If you have difficulty understanding the need 
for the super-weak, weakest, weak, strong 
and strongest classification, you are not alone. 
It took me several days to get it. So let me 
explain it in simple terms.

Assume that we want to find the word Love 
in the following string: "Love". You could of 
course simply match the string and call it 
mission accomplished. That, however, would 
not offer statistical significance for your match.

BC insist that we must use a rigorous algorithm 
to decide if there is Love in Love. And they 
propose one, that works like this: Take the 
original string of letters, and break it into all 
possible sub-strings: 

{L,o,v,e,Lo,Lv,Le,ov,oe,ve,Lov,Loe,ove,Love}. 

They call the match super-strong if at least 
90% of these sub-strings matches Love. In this 
case we do have Love in the list, but it is only 
one of the 14 possible sub-strings, so Love is 
not super strong.  

They call the match super-weak if at least 50% 
of the strings matches the search string. Love 
is obviously not super-weak either.

At the end Clauset's algorithm arrives to the 
inevitable conclusion: There is no Love in 
Love.

The rest of us: Love is all you need. 
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one?  In their test BC used networks of 5,000 nodes. In Figure 3 we can 
see how different are the degree distribution of a scale-free network and an 
Erdős-Rényi network at this size. It needs no sophisticated statistical test to 
capture the difference.

But wait, it gets even more interesting. If we read further (pg 7, BC), this is 
what we find about their gold standard, the scale-free model (they refer to it 
as ‘preferential attachment graph’):

“When we consider the plausibility of the power-law fit, we see fewer 
networks. 62% of the preferential attachment graphs fall into the 
Weakest and Weak categories, 60% in the Strong category, and 0 in 
the Strongest category. “ 

That is, not a single realization of the scale-free model is deemed strongly 
scale-free. According to the criteria they invented, not even the scale-free 
model is scale-free any longer.

At the end the preprint's main result, prominently featured in the press, rests 
on a simple claim: the authors fail to find the numerous scale-free networks in 
nature. If we actually read the paper, we find that they refuse to see them: Table 
II in Ref [1] shows that a high fraction of networks have degree distributions in 
agreement with the predictions of the continuum theory describing scale-free 
networks. The true failure is their methodology:  it fails to detect that the gold 
standard is scale-free. Now, if you invent an arbitrary criterion that not even the 
mathematically proven models can pass, what exactly do you expect to get? 

What really puzzles me, after all this, is that 4% of real networks did pass their 
criteria, finding them to be strongly scale-free. Which are those networks that 
are more scale-free than the scale-free model? They must be walking on water.

It is crucial for network science to constantly test the solidity of its pillars, like 
the scale-free nature of real networks, and the mechanisms responsible for it. 
We must continue therefore to constantly rule out competing hypotheses, a 
process that is essential for science to advance. Cutting corners will not get us 
there, however. 

So before accepting the attention-grabbing claims of the BC paper, you must 
peek under its hood. And if you take the time to do that, you will find that 
the study is oblivious to 18 years of knowledge accumulated in network 
science. You will also find a fictional criterion of scale-free networks. Most 
important, you will find that their central criterion fails the most elementary 
tests. And those are only the big problems - if you are willing to devote time 
to it, you will discover additional technical lapses - but this piece must have 
an end. What you will not find, is a careful and unbiased statistical study that 
upends a paradigm.

Box 4: Falling Like a Stone

The situation encountered by BC might be 
familiar to anyone who has taken a mechanics 
class. The textbook tells us that according to 
Newton’s theory of gravity dopped objects 
will accelerate with g. Yet, if I drop a rock and 
a feather from my 11th floor window of the 
Network Science Institute, and measure their 
acceleration, I would quickly conclude that 
Newton’s theory is flawed. First, I would only 
observe a short period of acceleration, at a 
rate that will be smaller than g. Second, after 
this initial period, both the rock and the feather 
will fall with constant speed. Both observations 
violate Newton’s theory. If, however, I jump to 
the conclusion that gravity is wrong, I will flunk 
my mechanics class. A correct answer, that 
will get me a pass, is to acknowledge that the 
trajectory of the falling object is affected by 
both gravity and friction.  Once I add friction 
to my equation, I will be able to fit the full 
trajectory of both the feather and the rock 

 Figure 3. Differentiating model systems  
Curious about the reason the method adopted 
by BC cannot distinguish the Erdős-Rényi and 
the scale-free model, we generated the degree 
distribution of both models for N=5,000 nodes, the 
same size BC use for their test. We have imple-
mented the scale-free model described in Appen-
dix E of Ref [1], a version of the original scale-free 
model (their choice is problematic, btw, but let us 
not dwell on that now). In the plot we  show three 
different realizations for each network, allowing us 
to see the fluctuations between different realisa-
tions, which are small at this size. The differences 
between the two models are impossible to miss: 
The largest nodes in any of the Erdős-Rényi net-
works have degree less then 20, while the scale-
free model generate hubs with hundreds of links. 
Even a poorly constructed statistical test could tell 
the difference. Yet,  38% of the time the method 
used by BC does not identify the scale-free model 
to be even ‘weak scale-free,’  while 51% of the time 
it classifies the ER model to be ‘weak scale-free.’
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