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In this tutorial, we’ll assume that you know the basics of game theory, such as the definitions of 
pure-strategy and mixed-strategy Nash equilibrium. We’ll use the following example throughout. 
 
Hawk-Dove game: This game has two players and each player has two actions—Dove and 
Hawk. According to the following payoff matrix, there are two pure-strategy Nash equilibria, 
namely (Dove, Hawk) and (Hawk, Dove). Recall that every pure-strategy Nash equilibrium is 
also a mixed-strategy Nash equilibrium. In this game, there is another mixed-strategy Nash 
equilibrium, namely p = 1/3 and q = 1/3. 
 
 
 
 
 
 
Nash’s Theorem (Nash, 1950). Any game with a finite number of players and a finite number of 
actions has a mixed-strategy Nash equilibrium. 
 
Before explaining Nash’s proof, we’ll review some game-theoretic terms. Consider any game 
with n players (Alice, Bob, Cindy, …, n-th player) and m actions (1, 2, …, m). 
 
Joint strategy or mixed-strategy profile 
A mixed-strategy profile is an n-tuple consisting of the following n mixed strategies: 

• Alice’s mixed strategy, which is her probability distribution over actions 1, 2, …, m (in 
other words, her probability of playing 1, probability of playing 2, …, probability of 
playing m, where the sum of these probabilities is 1). 

• Bob’s probabilities of playing 1, 2, 3, … 
• Cindy’s probabilities of playing 1, 2, 3, … 
• … and the n-th player’s probabilities of playing 1, 2, 3, … 

 
Joint action or action profile 
An action profile is an n-tuple consisting of one (pure) action for each player; e.g., Alice’s 
action, Bob’s action, etc. put together in a tuple. 
 
Example (Hawk-Dove)  
The 2-tuple ((0.1,0.9), (0.6,0.4)) is a mixed-strategy profile, where Player 1 plays Dove with 
probability 0.1 and Player 2 plays Dove with probability 0.6. (It is not a Nash equilibrium but is 
still a valid mixed-strategy profile). Oftentimes, in 2-action games, we omit the probability of the 
second action because it’s obvious from the first. 
 
The 2-tuple (Hawk, Dove) is an action profile, where Player 1 plays Hawk and Player 2 Dove.  

 Dove (q) Hawk (1-q) 
Dove (p) 3, 3 1, 5 
Hawk (1-p) 5, 1 0, 0 

Column player 

Row player 
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Expected payoff 
Given a mixed strategy for each player– which consists of a probability distribution over the 
player’s actions, 
 
Alice’s expected payoff = ∑ 	!"#$	"#&'()	*+(,'-! Alice's payoff for that action profile × Probability of 
realizing that action profile according to the given mixed-strategy profile. 
 
Here, the probability of realizing that action profile according to the given mixed-strategy profile 
is a multiplication over each player’s probability of playing their respective actions in that action 
profile. Each player’s probability for their respective action is appearing only once in the 
multiplication (i.e., there’s no squared term or complicated things like that). Therefore, Alice’s 
expected payoff is multilinear, i.e., linear in each player’s probability separately. Such functions 
are guaranteed to be continuous, which roughly means that if you plot that function, you’ll not 
see any disconnected parts. 
 
Example (Hawk-Dove) 
Player 1’s E[Dove] = q × 3 + (1 − q) × 1 = 1 + 2q.  
Player 1’s E[Hawk] = 5q. 
Player 1’s expected payoff = p (1 + 2q) + (1 − p) 5q = p + 5q – 3pq. This is plotted in Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 

 
 
Example (Hawk-Dove) 
For any p and q (i.e., a mixed-strategy profile), Player 1’s expected payoff is plotted in Fig. 1.  
 
Best response (BR) 
BR is a correspondence (AKA multivalued function) mapping a mixed-strategy profile x to one 
or more mixed-strategy profiles. For example, Alice may have multiple best responses to a 
mixed-strategy profile x where Bob plays 2 and Cindy plays 4 and so on. BR(x) is the set of 
mixed-strategy profiles where each player maximizes their payoff in response to x.  
 
 

Player 1’s expected payoff 

Figure 1: Player 1’s expected payoff in the Hawk-Dove game is multilinear in p and q and is 
continuous. There are no holes or sudden jumps and therefore no disconnected parts. 
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Examples (Hawk-Dove)  
• p = 0 is Player 1’s best response to q = 1 (i.e., playing Hawk is Player 1’s best response 

when Player 2 plays Dove). Therefore, if x is the mixed-strategy profile (p = 1, q = 1), 
then BR(x) will be { (p = 0, q = 0) }.  

• Similarly, for x = (p = 0, q = 1), BR(x) = { (p = 0, q = 1) }. 
• Any p (e.g., p = 0, p = 1/2, p = 1/4, p = 1, etc.) is Player 1’s BR to q = 1/3, because when 

Player 2 plays Dove with probability 1/3, Player 1 becomes indifferent between its two 
actions. Therefore, BR(x) will be an infinite set when q = 1/3 in x. 

 
Nash equilibrium (NE) 
A mixed-strategy profile is a NE if it represents simultaneous best responses of all the players. 
Let xAlice denote Alice’s mixed strategy (her probabilities of playing 1, 2, etc.). A mixed-strategy 
profile (xAlice, xBob, xCindy, …) is a NE iff (xAlice, xBob, xCindy, …) ∈ BR(xAlice, xBob, xCindy, …), 
which basically says that (xAlice, xBob, xCindy, …) is a fixed point of the BR correspondence. In 
other words, if you feed (xAlice, xBob, xCindy, …) into the BR correspondence, one of the joint 
strategies it will spit out is exactly the same (xAlice, xBob, xCindy, …). Any such fixed point like 
(xAlice, xBob, xCindy, …) is a NE. 
 
Examples (Hawk-Dove)  

• Player 1 playing Hawk and Player 2 playing Dove (p = 0, q = 1) is a NE, because it’s a 
fixed point of the BR correspondence. In other words, for x = (p = 0, q = 1), BR(x) = { (p 
= 0, q = 1) }. 

• (p = 1/3, q = 1/3) is another NE of the game, because it’s also a fixed point of the BR 
correspondence. To see this, p = 1/3 is one of the infinitely many best responses of Player 
1 to Player 2’s q = 1/3 and vice versa. In other words, (1/3, 1/3) ∈ BR(1/3, 1/3). Note that 
(0.1, 0.9) is also in BR(1/3, 1/3), because p = 0.1 (or any other probability for that matter) 
is one of Player 1’s best responses to Player 2’s q = 1/3. Similarly, q = 0.9 is one of 
Player 2’s best responses to Player 1’s p = 1/3. However, (0.1, 0.9) is NOT a NE, because 
(0.1, 0.9) ∉ BR(0.1, 0.9). In fact, BR(0.1, 0.9) = {(p = 0, q = 1)}. In other words, (0.1, 
0.9) is not a NE, because it’s not a fixed point of the BR correspondence. 

 
Proof of Nash’s Theorem 
The proof strategy is to show that the BR correspondence has a fixed point. Nash did it by using 
Kakutani’s fixed-point theorem. 
 
Kakutani’s fixed-point theorem 
A correspondence f: X à X has a fixed point (i.e., x ∈ f(x) for some x ∈ X) if all of the 
following conditions hold. 

(1) X is a non-empty, closed, bounded, and convex set. 
(2) f(x) is non-empty for any x. 
(3) f(x) is convex for any x. 
(4) The set { (x, y) | y ∈ f(x) } is closed. 

 
Next is Nash’s proof that the BR correspondence satisfies Kakutani’s fixed-point theorem. The 
BR correspondence maps a mixed-strategy profile x to potentially multiple joint strategies, each 
of which constitutes of the best responses of the players to x. Let X be the set of all (i.e., infinite 
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number of) joint strategies. Mimicking Kakutani’s theorem, we can say that BR: X à X. The 
following four points prove that BR has a fixed point (i.e., the game has NE). 
 
(1) X is a non-empty, closed, bounded, and convex set. First, let’s visualize X. If there are two 
players and each has two actions (e.g., Hawk-Dove game) then X is a square in a 2D plane as 
shown in Fig. 2. One dimension represents Player 1’s probability p of playing action 1 and the 
other dimension represents Player 2’s probability q of playing action 1. 
 
If there are three players and each has two actions, then X will be a cube in three dimensions. It’s 
hard to visualize examples with four or more players. However, it’s easy to check the followings. 
 

• The set X of joint strategies is non-empty.  
• X is a closed set, because X contains its boundary, AKA its limiting points in technical 

terms (and that’s the definition of a “closed set”). See the black (square-shaped) boundary 
of X in the Hawk-Dove visualization in Fig. 2. 

o Note: the opposite of any closed set is an open set. Example: [0, 1) is an open set, 
because it doesn’t contain its boundary 1, even though it contains 0.99999999999. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
• X is a bounded set, because any probability p has a lower bound of 0 and upper bound of 

1 (i.e., 0 <= p <= 1. (The definition of a “bounded set” is that the set can be bounded 
from “all sides.”) 

o Note: Closed and bounded are not the same. The airy space strictly inside a soccer 
ball is bounded but not closed. It’s bounded all around by the covering, but it’s 
not closed since it doesn’t contain the covering. On the other hand, the set of all 
integer numbers is closed but unbounded. It’s closed because it contains its 
boundary integer numbers—whatever they are. It’s unbounded because there’s no 
way we can specify its upper and lower bounds. 

• Last, X is convex, because if we take any two points x1, x2 ∈ X and connect x1 and x2 by 
a line, then each point on that line is also in X (and that’s the definition of “convexity”). 
Verify this using Fig. 2. 

 

Figure 2: 2D mixed-strategy profile space of the Hawk-Dove game. 
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(2) BR(x) is non-empty for any mixed-strategy profile x. This is because every player has a 
best response to the other players’ strategies—whatever those strategies are. 
 
 
 
 
 
 
 
 
 

 
(3) BR(x) is convex for any mixed-strategy profile x. To see this, let x1 and x2 be any two joint 
strategies in BR(x). In other words, x1 and x2 are two points in X (see Fig. 3 for visualization), 
with the additional property that in x1 and x2 everyone plays his/her best response to x. We’ll 
show that if we connect x1 and x2 by a line, then every point on that line is also a best response to 
x (and that’s the definition of convexity). Let x3 = 𝜆	x1 + (1 − 𝜆) x2 be a point on that line, for 
some 𝜆 between 0 and 1, both inclusive (this is a common way of representing all possible points 
on the line segment between x1 and x2).  
 
By the definition of expected payoffs (page 1), every player gets the same payoff in x3 as in 
either x1 or x2. E.g., Alice’s expected payoff in x3 = 𝜆	 ×	her expected payoff in x1 + (1 − 𝜆) 	× 
her expected payoff in x2 = (𝜆 + 1 − 𝜆) 	× her expected payoff in either x1 or x2. 
 
(4) The set { (x, y) | y ∈ BR(x) } is closed. Remember that the expected payoff of a player is 
multilinear (and therefore continuous) in the mixed-strategies of the players. This implies that if 
we plot the best responses of any player, the (x, y) plot will not have any “holes” in it. See Fig. 4 
for an illustration of what’s possible and Fig. 5 for what’s impossible. Such (x, y) plot—AKA 
graph—is closed, because it contains its limiting points (and that’s the definition of “closed”). In 
other words, if you trace any sequence of points on the graph, you’ll never have to come to a 
screeching halt. In contrast, if you look at the horizontal red (thick) line segment at q = 1 in    
Fig. 5 (the impossible case), it does not contain its limiting point due to the hole.  
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Figure 3: Two best responses x1 and x2 to x in the mixed-strategy profile space X of a 
fictitious 2-player, binary action game. The mixed-strategy profile x is not shown here. 
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Figure 4: Player 2’s best response to Player 1’s mixed strategy p is shown in red (thick line). 
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The above four points complete the proof that the BR correspondence has a fixed point. In other 
words, any finite game has a Nash equilibrium. 
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Figure 5: A best response correspondence (shown in red/thick line) with a hole (white dot) in 
it is impossible. 


