Girvan-Newman algorithm for community detection

M.T. Irfan

Main idea:

- Calculate the betweenness of each edge.
- Successively delete the edge(s) with the highest betweenness (and recalculate betweenness).

How to calculate the betweenness of an edge:

(Step 1) For each node A do the following:

1. Do BFS starting with A.
2. Calculate the \# of shortest paths (S.P.) from A to every other node.

- \# of S.P. from A to $X=$ Sum of the \# of S.P. from A to each neighbor of X in the previous level of BFS.

3. Calculate the quantity of water flow through each edge.

- A sends 1 gal. to every other node X . Water from A to X gets evenly split across all S.P. from A to X .
(Step 2) Betweenness of an edge $=$ sum of all water flow through that edge (i.e., over all the BFS starting with each node).

Input network

After BFS and \#S.P. calculation, starting with A
(Note: showing all edges; it's not a BFS tree!)

Sanity check: Flow on
$A B+A C+A D=1+$ $23 / 6+13 / 6=7$ gal. because there are 7 other nodes.

Why $5 / 3$ gal. from C to E ? E demands 1 gallon for itself plus $1 / 3+1 / 3$ to send downstream. $1+1 / 3+1 / 3=5 / 3$

Why $1 / 3$ gal. on EG and $2 / 3$ on FG? G has three S.P. from A: two S.P. through F and one through E. A sends 1 gallon to G. It's evenly split across the three S.P. to G.

Water flow calculation

Why 7/6 gal. from D to F? F
demands 1 gallon for itself plus $2 / 3$
$+2 / 3$ to send downstream. This 1 $+2 / 3+2 / 3=7 / 3$ gallons of water is split evenly across the two S.P. from A to F : through CF and DF.

Final note: This is just Step 1. For each edge, we still need to sum up the water flow over each and every BFS starting with every node.

