An Introduction To Range Searching

Jan Vahrenhold

Department of Computer Science
Westfälische Wilhelms-Universität Münster, Germany.
Overview

1. Introduction: Problem Statement, Lower Bounds
2. Range Searching in 1 and 1.5 Dimensions
3. Range Searching in 2 Dimensions
4. Summary and Outlook
Problem Setting

Given: Collection S of n points in d dimensions ($S \subset \mathbb{R}^d$).

Wanted: Algorithm for *efficiently* reporting all k points in S falling into a given axis-parallel query range $D \subset \mathbb{R}^d$.

Applications: Geographic Information Systems; Databases having relations in which the keys can be totally ordered.
Given: Collection S of n points in d dimensions ($S \subset \mathbb{R}^d$).

Wanted: Algorithm for efficiently reporting all k points in S falling into a given axis-parallel query range $D \subset \mathbb{R}^d$.

Applications: Geographic Information Systems; Databases having relations in which the keys can be totally ordered.
Problem Setting

Given: Collection S of n points in d dimensions ($S \subset \mathbb{R}^d$).

Wanted: Algorithm for efficiently reporting all k points in S falling into a given axis-parallel query range $D \subset \mathbb{R}^d$.

Applications: Geographic Information Systems; Databases having relations in which the keys can be totally ordered.
Problem Setting

Given: Collection S of n points in d dimensions ($S \subset \mathbb{R}^d$).

Wanted: Algorithm for *efficiently* reporting all k points in S falling into a given axis-parallel *query range* $D \subset \mathbb{R}^d$.
Given: Collection S of n points in d dimensions ($S \subset \mathbb{R}^d$).

Wanted: Algorithm for efficiently reporting all k points in S falling into a given axis-parallel query range $D \subset \mathbb{R}^d$.
Problem Setting

Given: Collection S of n points in d dimensions ($S \subset \mathbb{R}^d$).

Wanted: Algorithm for *efficiently* reporting all k points in S falling into a given axis-parallel query range $D \subset \mathbb{R}^d$.

Applications: Geographic Information Systems; Databases having relations in which the keys can be totally ordered.
Problem Setting

Given: Collection S of n points in d dimensions ($S \subset \mathbb{R}^d$).

Wanted: Algorithm for efficiently reporting all k points in S falling into a given axis-parallel query range $D \subset \mathbb{R}^d$.

Applications: Geographic Information Systems; Databases having relations in which the keys can be totally ordered.
Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.

Scan though the array and test for each p_i whether $p_i \in D$.

![Diagram of points in a 2D space]
Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.

Scan though the array and test for each p_i whether $p_i \in D$.

Need to scan the whole array, regardless of how many points are reported. Complexity: $O(n)$ time and space.
A First Approach

- Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.

Need to scan the whole array, regardless of how many points are reported. Complexity: $O(n)$ time and space.
Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.

Scan though the array and test for each p_i whether $p_i \in D$.

Need to scan the whole array, regardless of how many points are reported. Complexity: $O(n)$ time and space.
A First Approach

- Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.

![Diagram showing points in a grid and a range query rectangle]
Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.

Scan though the array and test for each p_i whether $p_i \in D$.

Need to scan the whole array, regardless of how many points are reported. Complexity: $\mathcal{O}(n)$ time and space.
Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.

Scan though the array and test for each p_i whether $p_i \in D$.

Need to scan the whole array, regardless of how many points are reported. Complexity: $O(n)$ time and space.
A First Approach

- Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.

Need to scan the whole array, regardless of how many points are reported. Complexity: $O(n)$ time and space.

Jan Vahrenhold

Range Searching
A First Approach

- Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.

![Diagram showing points and bounding box]
A First Approach

- Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.
- Scan through the array and test for each p_i whether $p_i \in D$.

```
p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
```

Need to scan the whole array, regardless of how many points are reported. Complexity: $O(n)$ time and space.
A First Approach

- Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.

![Diagram showing points p_0 through p_{10} with a range D]
- Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.

\[\begin{array}{cccccccccc}
p_0 & p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7 & p_8 & p_9 & p_{10} \\
\end{array} \]
A First Approach

- Assume that \(S = \{p_0, \ldots, p_{n-1}\} \) is stored in an array.
- Scan though the array and test for each \(p_i \) whether \(p_i \in D \).

```
p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
```

Need to scan the whole array, regardless of how many points are reported.
Complexity: \(O(n) \) time and space.
Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.

Scan though the array and test for each p_i whether $p_i \in D$.

Need to scan the whole array, regardless of how many points are reported. Complexity: $O(n)$ time and space.
A First Approach

- Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.

Need to scan the whole array, regardless of how many points are reported. Complexity: $\Theta(n)$ time and space.
A First Approach

- Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.

Need to scan the whole array, regardless of how many points are reported. Complexity: $\Theta(n)$ time and space.
A First Approach

- Assume that $S = \{p_0, \ldots, p_{n-1}\}$ is stored in an array.
- Scan though the array and test for each p_i whether $p_i \in D$.

Need to scan the whole array, regardless of how many points are reported. Complexity: $\Theta(n)$ time and space.
Change the model to also include \(k \) (the number of points reported) as a parameter.

- Algorithm on previous slide has complexity \(\mathcal{O}(n + k) = \mathcal{O}(n) \).

Time complexity: \(\text{preprocessing time} \Leftrightarrow \text{query time} \)

Can disregard preprocessing time for many applications (one-time operation).

Query time composed of two components:

- \(\text{Search time} \): Time to locate the first element to be reported.
- \(\text{Retrieval time} \): Time to fetch and report all \(k \) elements to be reported.

Space requirement (lower bound for preprocessing time).
Lower Bounds [Bentley & Maurer, 1980]

- Parameters: \(n \) points, \(k \) points reported, \(d \) dimensions.
- **Space requirement**: \(\Omega(n) \).
- **Retrieval time**: \(\Omega(k) \).
- **Search time**: Using binary decision tree (\(\rightarrow \) sorting lower bound).

Legend

- Lower bound construction:

\[
D = [b_1; \ldots; b_d] [c_1; \ldots; c_d], \text{ with } b_i \in [a; a], c_i \in [1; a^d].
\]

- Query ranges not-empty, each produces a different answer.

- Overall: \(a^2d = (n=2^d)^2 \) different answers.

- Depth of decision tree: \(\log (n=2^d) = d \log n \).

- Lower bound not tight for all \(d \).

Jan Vahrenhold

Range Searching
Lower Bounds [Bentley & Maurer, 1980]

- Parameters: n points, k points reported, d dimensions.
- **Space requirement**: $\Omega(n)$.
- **Retrieval time**: $\Omega(k)$.
- **Search time**: Using binary decision tree (\rightarrow sorting lower bound).
- **Lower bound construction**:
 - $(n =) 2ad$ points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \setminus \{0\}$.
Lower Bounds [Bentley & Maurer, 1980]

- Parameters: \(n \) points, \(k \) points reported, \(d \) dimensions.
- **Space requirement**: \(\Omega(n) \).
- **Retrieval time**: \(\Omega(k) \).
- **Search time**: Using binary decision tree (\(\rightarrow \) sorting lower bound).
- **Lower bound construction**:
 - \((n =) 2ad \) points, each with exactly one unique non-zero integer coordinate taken from \([-a, a] \setminus \{0\} \).
Lower Bounds [Bentley & Maurer, 1980]

- Parameters: \(n \) points, \(k \) points reported, \(d \) dimensions.
- Space requirement: \(\Omega(n) \).
- Retrieval time: \(\Omega(k) \).
- Search time: Using binary decision tree (\(\rightarrow \) sorting lower bound).
- Lower bound construction:

 - \((n =) 2ad\) points, each with exactly one unique non-zero integer coordinate taken from \([-a, a] \setminus \{0\}\).
 - \(D = [b_1, \ldots, b_d] \times [c_1, \ldots, c_d]\), with \(b_i \in [-a, -1], c_i \in [1, a], 1 \leq i \leq d\).
Parameters: \(n \) points, \(k \) points reported, \(d \) dimensions.

Space requirement: \(\Omega(n) \).

Retrieval time: \(\Omega(k) \).

Search time: Using binary decision tree (\(\rightarrow \) sorting lower bound).

Lower bound construction:

- \((n =) 2ad \) points, each with exactly one unique non-zero integer coordinate taken from \([-a, a] \setminus \{0\}\).
- \(D = [b_1, \ldots, b_d] \times [c_1, \ldots, c_d] \), with \(b_i \in [-a, -1] \), \(c_i \in [1, a] \), \(1 \leq i \leq d \).
Lower Bounds [Bentley & Maurer, 1980]

- Parameters: n points, k points reported, d dimensions.
- **Space requirement**: $\Omega(n)$.
- **Retrieval time**: $\Omega(k)$.
- **Search time**: Using binary decision tree (→ sorting lower bound).
- **Lower bound construction**:
 - $(n =) 2ad$ points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \setminus \{0\}$.
 - $D = [b_1, \ldots, b_d] \times [c_1, \ldots, c_d]$, with $b_i \in [-a, -1]$, $c_i \in [1, a]$, $1 \leq i \leq d$.

![Diagram of a binary decision tree with points and coordinates](image-url)
Lower Bounds [Bentley & Maurer, 1980]

- Parameters: \(n \) points, \(k \) points reported, \(d \) dimensions.

- **Space requirement**: \(\Omega(n) \).

- **Retrieval time**: \(\Omega(k) \).

- **Search time**: Using binary decision tree (→ sorting lower bound).

- **Lower bound construction**:

 - \((n =) 2ad \) points, each with exactly one unique non-zero integer coordinate taken from \([-a, a] \setminus \{0\}\).

 - \(D = [b_1, \ldots, b_d] \times [c_1, \ldots, c_d] \), with \(b_i \in [-a, -1], \ c_i \in [1, a], \ 1 \leq i \leq d. \)

 - Query ranges not-empty, each produces a different answer.

\[\text{(b_1, b_2)} \quad (c_1, c_2)\]
Lower Bounds [Bentley & Maurer, 1980]

- **Parameters:** \(n \) points, \(k \) points reported, \(d \) dimensions.
- **Space requirement:** \(\Omega(n) \).
- **Retrieval time:** \(\Omega(k) \).
- **Search time:** Using binary decision tree (→ sorting lower bound).

Lower bound construction:

- \((n =) 2ad\) points, each with exactly one unique non-zero integer coordinate taken from \([-a, a] \setminus \{0\}\).
- \(D = [b_1, \ldots, b_d] \times [c_1, \ldots, c_d]\), with \(b_i \in [-a, -1], c_i \in [1, a], 1 \leq i \leq d\).
- Query ranges not-empty, each produces a different answer.
- Overall: \(a^{2d} = (n/(2d))^{2d}\) different answers.
Lower Bounds [Bentley & Maurer, 1980]

- Parameters: n points, k points reported, d dimensions.
- **Space requirement:** $\Omega(n)$.
- **Retrieval time:** $\Omega(k)$.
- **Search time:** Using binary decision tree (→ sorting lower bound).
- **Lower bound construction:**
 - $(n =) 2^{ad}$ points, each with exactly one unique non-zero integer coordinate taken from $[-a, a] \setminus \{0\}$.
 - $D = [b_1, \ldots, b_d] \times [c_1, \ldots, c_d]$, with $b_i \in [-a, -1]$, $c_i \in [1, a]$, $1 \leq i \leq d$.
 - Query ranges not-empty, each produces a different answer.
 - Overall: $a^{2d} = (n/(2d))^{2d}$ different answers.
 - Depth of decision tree: $\Omega \left(\log \left(n/(2d) \right)^{2d} \right) = \Omega(d \cdot \log n)$.
 - Lower bound not tight for all d.

Jan Vahrenhold
Range Searching
5
Overview

1. Introduction: Problem Statement, Lower Bounds
2. Range Searching in 1 and 1.5 Dimensions
3. Range Searching in 2 Dimensions
4. Summary and Outlook
One-Dimensional Range Searching

- Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.
One-Dimensional Range Searching

- Point set $S = \{p_0, \ldots, p_{n-1}\} \subseteq \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

![Diagram of point set and query range]

Query: Binary search for smallest p_i among x_1. \(O(\log_2 n)\) scan forward until first $p_i < x_2$ (or end of array). \(O(k + 1)\)
Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.

Query range $D = [x_1, x_2]$.

Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:

Sort the points, e.g., using heapsort in $O(n \log_2 n)$ time.
One-Dimensional Range Searching

- Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:
- Sort the points, e.g., using heapsort in $\mathcal{O}(n \log_2 n)$ time.

Diagram:

```
| p_0 | p_1 | p_2 | p_3 | p_4 | p_5 | p_6 | p_7 | p_8 | p_9 | p_10 |
```

Textual Description:

- Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:
- Sort the points, e.g., using heapsort in $\mathcal{O}(n \log_2 n)$ time.
One-Dimensional Range Searching

- Point set $S = \{p_0, \ldots, p_{n-1}\} \subseteq \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:
- Sort the points, e.g., using heapsort in $O(n \log_2 n)$ time.

```
p_0 p_1 p_2 p_3 p_4 p_5 p_6 p_7 p_8 p_9 p_{10}
```
Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.

Query range $D = [x_1, x_2]$.

Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:
- Sort the points, e.g., using heapsort in $O(n \log_2 n)$ time.
One-Dimensional Range Searching

- Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:
- Sort the points, e.g., using *heapsort* in $O(n \log_2 n)$ time.

```
p_0 p_1 p_2 p_3 p_4 p_5 p_6 p_7 p_8 p_9 p_{10}
```

Query: Binary search for smallest $p_i \geq x_1 \ldots$
One-Dimensional Range Searching

- Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:
- Sort the points, e.g., using heapsort in $O(n \log_2 n)$ time.

Query: Binary search for smallest $p_i \geq x_1$. . .
One-Dimensional Range Searching

- Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:
- Sort the points, e.g., using heapsort in $O(n \log_2 n)$ time.

Query: Binary search for smallest $p_i \geq x_1$ \ldots $O(\log_2 n)$
One-Dimensional Range Searching

- Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:
- Sort the points, e.g., using heapsort in $O(n \log_2 n)$ time.

Query: Binary search for smallest $p_i \geq x_1$...

\[\mathcal{O}(\log_2 n) \]

\[\ldots \text{scan forward until first } p_i < x_2 \text{ (or end of array).} \]
Point set \(S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R} \), stored in an array.

Query range \(D = [x_1, x_2] \).

Scanning is sub-optimal; lower bound: \(\Omega(1 \cdot \log_2 n + k) \).

Preprocessing:
- Sort the points, e.g., using *heapsort* in \(O(n \log_2 n) \) time.

Query: Binary search for smallest \(p_i \geq x_1 \ldots \) \(O(\log_2 n) \)

\(\ldots \) scan forward until first \(p_i < x_2 \) (or end of array).
One-Dimensional Range Searching

- Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:
- Sort the points, e.g., using *heapsort* in $O(n \log_2 n)$ time.

![Diagram of sorted points]

Query: Binary search for smallest $p_i \geq x_1$...

$O(\log_2 n)$

... scan forward until first $p_i < x_2$ (or end of array).
One-Dimensional Range Searching

- Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:
- Sort the points, e.g., using *heapsort* in $O(n \log_2 n)$ time.

Query: Binary search for smallest $p_i \geq x_1 \ldots \mathcal{O}(\log_2 n)$

... scan forward until first $p_i < x_2$ (or end of array).
One-Dimensional Range Searching

- Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:
- Sort the points, e.g., using heapsort in $O(n \log_2 n)$ time.

Query: Binary search for smallest $p_i \geq x_1$...

...scan forward until first $p_i < x_2$ (or end of array).
One-Dimensional Range Searching

- Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:
- Sort the points, e.g., using heapsort in $\mathcal{O}(n \log_2 n)$ time.

Query: Binary search for smallest $p_i \geq x_1$... $\mathcal{O}(\log_2 n)$

... scan forward until first $p_i < x_2$ (or end of array).
One-Dimensional Range Searching

- Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}$, stored in an array.
- Query range $D = [x_1, x_2]$.
- Scanning is sub-optimal; lower bound: $\Omega(1 \cdot \log_2 n + k)$.

Preprocessing:
- Sort the points, e.g., using *heapsort* in $O(n \log_2 n)$ time.

Query: Binary search for smallest $p_i \geq x_1$...

\[\ldots \text{scan forward until first } p_i < x_2 \text{ (or end of array).} \]

\[O(k + 1) \]
There is no total order on points in two dimensions so sorting according to which guarantees ($\log_2 n + k$) query time for range searching.
There is no total order on points in two dimensions so sorting according to which guarantees $(2 \log_2 n + k)$ query time for range searching.
There is no total order on points in two dimensions so sorting according to which guarantees $O(\log_2 n + k)$ query time for range searching.
There is no total order on points in two dimensions so sorting according to which guarantees (\(2\log_2 n + k\)) query time for range searching.
There is no total order on points in two dimensions sorting according to which guarantees $\Theta(2 \cdot \log_2 n + k)$ query time for range searching.
Recap: One-Dimensional Range Searching

- Key ingredient: *binary search* (bisection).
- Replace (sorted) array by binary search tree.

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
```
Key ingredient: \textit{binary search} (bisection).

Replace (sorted) array by binary search tree.

Time Complexity:
- Preprocessing time: $O(n \log n)$
- Query time: $O(\log n + k)$

Space Complexity: $O(n)$.

Insertions/Deletions possible.

Jan Vahrenhold
Recap: One-Dimensional Range Searching

- Key ingredient: **binary search** (bisection).
- Replace (sorted) array by binary search tree.

![Binary Search Tree Example](image)

- **Time Complexity:**
 - Processing time: $O(n \log n)$
 - Query time: $O(\log n + k)$

- **Space Complexity:** $O(n)$. Insertions/Deletions possible.
Recap: One-Dimensional Range Searching

- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.

```
1 3 5 7 9 11 13 15
2 6 10 14
4 12
8
```

Time Complexity:
- Preprocessing time: $O(n \log n)$
- Query time: $O(\log n + k)$

Space Complexity: $O(n)$.

Insertions/deletions possible.
Recap: One-Dimensional Range Searching

- Key ingredient: **binary search** (bisection).
- Replace (sorted) array by binary search tree.

![Binary Search Tree Example]

- **Time Complexity:**
 - **Preprocessing time:** $O(n \log n)$
 - **Query time:** $O(\log n + k)$

- **Space Complexity:** $O(n)$

Inserts/Deletes possible.
Recap: One-Dimensional Range Searching

- Key ingredient: binary search (bisection).
- Replace (sorted) array by binary search tree.

Time Complexity:
- Preprocessing time: $O(n \log n)$
- Query time: $O(\log n + k)$

Space Complexity: $O(n)$.
- Inserts/Deletes possible.
Key ingredient: binary search (bisection).

Replace (sorted) array by binary search tree.

Time Complexity:
- Preprocessing time: $O(n \log n)$
- Query time: $O(\log n + k)$

Space Complexity: $O(n)$.

Inserts/Deletes possible.
Three-sided (1.5-dim.) Range Searching

Given: Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}^2$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in S$ that, for given (x_1, x_2, y), fall into $[x_1, x_2] \times]-\infty, y]$.
Three-sided (1.5-dim.) Range Searching

Given: Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}^2$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in S$ that, for given (x_1, x_2, y), fall into $[x_1, x_2] \times [-\infty, y]$.

Look at two subproblems:

- Report all points in $[x_1, x_2] \times \mathbb{R}$
Three-sided (1.5-dim.) Range Searching

Given: Point set \(S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}^2 \), stored in an array.

Wanted: Method to efficiently retrieve all \(p \in S \) that, for given \((x_1, x_2, y)\), fall into \([x_1, x_2] \times \mathbb{R} \cap]-\infty, y].\)

Look at two subproblems:

- Report all points in \([x_1, x_2] \times \mathbb{R}\) using, e.g., a threaded **binary search tree**.
Three-sided (1.5-dim.) Range Searching

Given: Point set $S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}^2$, stored in an array.

Wanted: Method to efficiently retrieve all $p \in S$ that, for given (x_1, x_2, y), fall into $[x_1, x_2] \times]-\infty, y]$.

Look at two subproblems:

- Report all points in $[x_1, x_2] \times \mathbb{R}$ using, e.g., a threaded **binary search tree**.
- Report all points in $\mathbb{R} \times]-\infty, y]$
Three-sided (1.5-dim.) Range Searching

Given: Point set \(S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}^2 \), stored in an array.

Wanted: Method to efficiently retrieve all \(p \in S \) that, for given \((x_1, x_2, y) \), fall into \([x_1, x_2] \times]-\infty, y] \).

Look at two subproblems:

- Report all points in \([x_1, x_2] \times \mathbb{R}\) using, e.g., a threaded **binary search tree**.
- Report all points in \([\mathbb{R} \times]-\infty, y]\) using, e.g., a **heap**.
Three-sided (1.5-dim.) Range Searching

Given: Point set \(S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}^2 \), stored in an array.

Wanted: Method to efficiently retrieve all \(p \in S \) that, for given \((x_1, x_2, y)\), fall into \([x_1, x_2] \times \] \(-\infty, y]\).

Look at two subproblems:
- Report all points in \([x_1, x_2] \times \mathbb{R}\) using, e.g., a threaded binary search tree.
- Report all points in \(\mathbb{R} \times \] \(-\infty, y]\) using, e.g., a heap:
 - Almost complete binary tree.
Three-sided (1.5-dim.) Range Searching

Given: Point set \(S = \{p_0, \ldots, p_{n-1}\} \subset \mathbb{R}^2 \), stored in an array.

Wanted: Method to efficiently retrieve all \(p \in S \) that, for given \((x_1, x_2, y)\), fall into \([x_1, x_2] \times]-\infty, y]\).

Look at two subproblems:

- Report all points in \([x_1, x_2] \times \mathbb{R}\) using, e.g., a threaded **binary search tree**.
- Report all points in \(\mathbb{R} \times]-\infty, y]\) using, e.g., a **heap**:
 - Almost complete binary tree.
 - \(\text{key}(v) \leq \min\{\text{key}(\text{LSON}(v)), \text{key}(\text{RSON}(v))\}\).
Combining the best of both worlds (?)

Binary search tree with heap property:

- **Binary search tree unique w.r.t. inorder-traversal.**
Combining the best of both worlds?

Binary search tree with heap property:

- Binary search tree unique w.r.t. *inorder*-traversal.
- No (direct) way of incorporating heap property.
Combining the best of both worlds (?)

Binary search tree with heap property:

- Binary search tree unique w.r.t. *inorder*-traversal.
- No (direct) way of incorporating heap property.

Heap with search tree property:

- Heap not unique.
Combining the best of both worlds?

Binary search tree with heap property:

- Binary search tree unique w.r.t. *inorder*-traversal.
- No (direct) way of incorporating heap property.

Heap with search tree property:

- Heap not unique.
- More precisely: Children of a node may be switched.
Combining the best of both worlds (?)

Binary search tree with heap property:

- Binary search tree unique w.r.t. *inorder*-traversal.
- No (direct) way of incorporating heap property.

Heap with search tree property:

- Heap not unique.
- More precisely: Children of a node may be switched.

Priority Search Tree:

- Binary tree \mathcal{H} storing a two-dimensional point at each node s.t. the heap property w.r.t. the y-coordinates is fulfilled.
Combining the best of both worlds(?)

Binary search tree with heap property:

- Binary search tree unique w.r.t. *inorder*-traversal.
- No (direct) way of incorporating heap property.

Heap with search tree property:

- Heap not unique.
- More precisely: Children of a node may be switched.

Priority Search Tree:

- Binary tree \mathcal{H} storing a two-dimensional point at each node s.t. the heap property w.r.t. the y-coordinates is fulfilled.
- Additional requirement: $\forall v \in \mathcal{H} : \exists x_v \in \mathbb{R} :$

\[
l \leq x_v < r \quad \forall l \in \text{LSUBTREE}(v), \forall r \in \text{RSUBTREE}(v).
\]
Building a priority search tree

Use recursive definition [McCreight, 1985]:

- Build priority search tree $\mathcal{H}(S)$ for a given set S of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $S = \emptyset$, construct $\mathcal{H}(S)$ as an (empty) leaf.
Use recursive definition [McCreight, 1985]:

- Build priority search tree $\mathcal{H}(S)$ for a given set S of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $S = \emptyset$, construct $\mathcal{H}(S)$ as an (empty) leaf.
- Else let p_{min} be the point in S having the minimum y-coordinate.
Building a priority search tree

Use recursive definition [McCreight, 1985]:

- Build priority search tree $\mathcal{H}(S)$ for a given set S of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $S = \emptyset$, construct $\mathcal{H}(S)$ as an (empty) leaf.
- Else let p_{min} be the point in S having the minimum y-coordinate.
- Let x_{mid} be the median of the x-coordinates in $S \setminus \{p_{\text{min}}\}$.
- Partition $S \setminus \{p_{\text{min}}\}$:

 $S_{\text{left}} := \{ p \in S \setminus \{p_{\text{min}}\} \mid p.x \leq x_{\text{mid}} \}$

 $S_{\text{right}} := \{ p \in S \setminus \{p_{\text{min}}\} \mid p.x > x_{\text{mid}} \}$

Complexity: $O(n)$ space; $O(n \log n)$ time (why?).
Building a priority search tree

Use recursive definition [McCreight, 1985]:

- Build priority search tree \(\mathcal{H}(S) \) for a given set \(S \) of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If \(S = \emptyset \), construct \(\mathcal{H}(S) \) as an (empty) leaf.
- Else let \(p_{\text{min}} \) be the point in \(S \) having the minimum \(y \)-coordinate.
- Let \(x_{\text{mid}} \) be the median of the \(x \)-coordinates in \(S \setminus \{p_{\text{min}}\} \).
- Partition \(S \setminus \{p_{\text{min}}\} \):

 \[
 S_{\text{left}} := \{ p \in S \setminus \{p_{\text{min}}\} \mid p.x \leq x_{\text{mid}} \}
 \]

 \[
 S_{\text{right}} := \{ p \in S \setminus \{p_{\text{min}}\} \mid p.x > x_{\text{mid}} \}
 \]
- Construct search tree node \(v \) storing \(x_{\text{mid}} \) and set \(p(v) := p_{\text{min}} \).
Building a priority search tree

Use recursive definition [McCreight, 1985]:

- Build priority search tree $\mathcal{H}(S)$ for a given set S of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $S = \emptyset$, construct $\mathcal{H}(S)$ as an (empty) leaf.
- Else let p_{min} be the point in S having the minimum y-coordinate.
- Let x_{mid} be the median of the x-coordinates in $S \setminus \{p_{\text{min}}\}$.
- Partition $S \setminus \{p_{\text{min}}\}$:
 \[
 S_{\text{left}} := \{p \in S \setminus \{p_{\text{min}}\} \mid p.x \leq x_{\text{mid}}\}
 \]
 \[
 S_{\text{right}} := \{p \in S \setminus \{p_{\text{min}}\} \mid p.x > x_{\text{mid}}\}
 \]
- Construct search tree node v storing x_{mid} and set $p(v) := p_{\text{min}}$.
- Recursively compute v's children $\mathcal{H}(S_{\text{left}})$ and $\mathcal{H}(S_{\text{right}})$.

Complexity: $O(n)$ space; $O(n \log n)$ time (why?).
Building a priority search tree

Use recursive definition [McCreight, 1985]:

- Build priority search tree $H(S)$ for a given set S of points in the plane. Assume w.l.o.g. that all coordinates are pairwise distinct.
- If $S = \emptyset$, construct $H(S)$ as an (empty) leaf.
- Else let p_{min} be the point in S having the minimum y-coordinate.
- Let x_{mid} be the median of the x-coordinates in $S \setminus \{p_{\text{min}}\}$.
- Partition $S \setminus \{p_{\text{min}}\}$:

 $S_{\text{left}} := \{ p \in S \setminus \{p_{\text{min}}\} \mid p.x \leq x_{\text{mid}} \}$

 $S_{\text{right}} := \{ p \in S \setminus \{p_{\text{min}}\} \mid p.x > x_{\text{mid}} \}$

- Construct search tree node v storing x_{mid} and set $p(v) := p_{\text{min}}$.
- Recursively compute v's children $H(S_{\text{left}})$ and $H(S_{\text{right}})$.
- Complexity: $\mathcal{O}(n)$ space; $\mathcal{O}(n \log n)$ time (why?).
Querying a priority search tree

Query range \([x_1, x_2] \times [-\infty, y]\):

- Queries for \(x_1\) and \(x_2\) result in two search paths in \(\mathcal{H}\).
Querying a priority search tree

Query range \([x_1, x_2] \times [-\infty, y]\):

- Queries for \(x_1\) and \(x_2\) result in two search paths in \(H\).
Querying a priority search tree

Query range \([x_1, x_2] \times [-\infty, y]\):

- Queries for \(x_1\) and \(x_2\) result in two search paths in \(H\).
- Check all points on these paths.

\[
\begin{align*}
\text{SearchInSubtree} & (v; y) \\
\text{if} & v \text{ not a leaf and } p(v):y > y \text{ then} \\
& \text{Report } p(v); \\
& \text{SearchInSubtree} (\text{LSON}(v); y); \\
& \text{SearchInSubtree} (\text{RSON}(v); y);
\end{align*}
\]

Query time: \(O(1 + k_v)\).

Example for \(y = 5\).
Querying a priority search tree

Query range \([x_1, x_2] \times [-\infty, y]\):

- Queries for \(x_1\) and \(x_2\) result in two search paths in \(H\).
- Check all points on these paths.
- All subtrees “embraced” by these paths contain points in \([x_1, x_2] \times \mathbb{R}\).
Querying a priority search tree

Query range \([x_1, x_2] \times [-\infty, y]\):

- Queries for \(x_1\) and \(x_2\) result in two search paths in \(\mathcal{H}\).
- Check all points on these paths.
- All subtrees “embraced” by these paths contain points in \([x_1, x_2] \times \mathbb{R}\).
- Query these subtrees as follows:

\[
\text{SearchInSubtree}(v, y)
\]

\[
\text{if } v \text{ not a leaf and } p(v).y \leq y \text{ then}
\]

Report \(p(v)\);
SearchInSubtree(LSON(v), y);
SearchInSubtree(RSON(v), y);

Query time: \(O(1 + k_v)\).
Querying a priority search tree

Query range $[x_1, x_2] \times [-\infty, y]$:

- Queries for x_1 and x_2 result in two search paths in H.
- Check all points on these paths.
- All subtrees "embraced" by these paths contain points in $[x_1, x_2] \times \mathbb{R}$.
- Query these subtrees as follows:

$\text{SearchInSubtree}(v, y)$

\begin{align*}
\text{if} \ v \ \text{not a leaf} \ \text{and} \ p(v).y & \leq y \ \text{then} \\
& \text{Report } p(v); \\
& \text{SearchInSubtree}(\text{LSON}(v), y); \\
& \text{SearchInSubtree}(\text{RSON}(v), y);
\end{align*}

Query time: $O(1 + k_v)$.

Example for $y = 5$.

Jan Vahrenhold
Missing Components:
- A more detailed description of the query algorithm.
- Proof of correctness.

⇒ [de Berg et al., 2000]

Theorem 2.1
Priority search trees allow for answering three-sided range queries on points in \mathbb{R}^2 with time and space complexities as follows:

- Preprocessing time: $\Theta(n \log n)$
- Query time: $O(\log n + k)$
- Space requirement: $\Theta(n)$
Overview

1. Introduction: Problem Statement, Lower Bounds
2. Range Searching in 1 and 1.5 Dimensions
3. **Range Searching in 2 Dimensions**
4. Summary and Outlook
Extend the concept of binary search by \textit{bisection} to higher dimensions.

Instead of intervals, partition (hyper-)rectangles; do the partitioning \textit{alternating} parallel to the coordinate axes.

R_i is partitioned into R_j and $R_k \Rightarrow |R_j| \approx |R_k| \approx \frac{1}{2}|R_i|$.

Structure corresponding to partitioning: balanced binary tree ($k\text{D-tree}$ [Bentley, 1975]).

Node v corresponds to hyperrectangle $R(v)$, $R(root) = \mathbb{R}^d$; children correspond to sub-hyperrectangles.

Each node v is augmented to store:
- $S(v)$: points contained in $R(v)$ (implicitly).
- $\ell(v)$: representation of split axis.
- $p(v)$: median of $S(v)$ w.r.t. $\ell(v)$.
Example

Alternating partitioning along the coordinate axes.
void search(node v, rectangle D, list(point)& result)

double left, median, right;
if v.type == "vertical" then
 left = D.x1; right = D.x2;
 median = v.p.x;
else
 left = D.y1; right = D.y2;
 median = v.p.y;

if left ≤ median ≤ right and D.contains(v.p) then
 result.append(v.p);

if !isLeaf(v) then
 if left < median then
 search(leftSon(v), D, result);
 if median < right then
 search(rightSon(v), D, result);

return;
void search(node v, rectangle D, list(point)& result)

double left, median, right;
if v.type == "vertical" then
 left = D.x1; right = D.x2;
 median = v.p.x;
else
 left = D.y1; right = D.y2;
 median = v.p.y;
if left ≤ median ≤ right and D.contains(v.p) then
 result.append(v.p);
if !isLeaf(v) then
 if left < median then
 search(leftSon(v), D, result);
 if median < right then
 search(rightSon(v), D, result);
return;
void search(node v, rectangle D, list(point)& result)

double left, median, right;
if v.type == "vertical" then
 left = D.x1; right = D.x2;
 median = v.p.x;
else
 left = D.y1; right = D.y2;
 median = v.p.y;
if left ≤ median ≤ right and D.contains(v.p) then
 result.append(v.p);
if !isLeaf(v) then
 if left < median then
 search(leftSon(v), D, result);
 if median < right then
 search(rightSon(v), D, result);
return;
void search(node v, rectangle D, list(point)& result)

double left, median, right;
if v.type == "vertical" then
 left = D.x1; right = D.x2;
 median = v.p.x;
else
 left = D.y1; right = D.y2;
 median = v.p.y;
if left ≤ median ≤ right and D.contains(v.p) then
 result.append(v.p);
if !isLeaf(v) then
 if left < median then
 search(leftSon(v), D, result);
 if median < right then
 search(rightSon(v), D, result);
return;
void search(node v, rectangle D, list(point)& result)

double left, median, right;
if v.type == "vertical" then
 left = D.x1; right = D.x2;
 median = v.p.x;
else
 left = D.y1; right = D.y2;
 median = v.p.y;

if left ≤ median ≤ right and D.contains(v.p) then
 result.append(v.p);

if !isLeaf(v) then
 if left < median then
 search(leftSon(v), D, result);
 if median < right then
 search(rightSon(v), D, result);

return;
void search(node v, rectangle D, list(point)& result)

double left, median, right;
if v.type == "vertical" then
 left = D.x1; right = D.x2;
 median = v.p.x;
else
 left = D.y1; right = D.y2;
 median = v.p.y;
if left ≤ median ≤ right and D.contains(v.p) then
 result.append(v.p);
if !isLeaf(v) then
 if left < median then
 search(leftSon(v), D, result);
 if median < right then
 search(rightSon(v), D, result);
return;
void search(node v, rectangle D, list(point)& result)

double left, median, right;
if v.type == "vertical" then
 left = D.x1; right = D.x2;
 median = v.p.x;
else
 left = D.y1; right = D.y2;
 median = v.p.y;

if left \leq median \leq right and D.contains(v.p) then
 result.append(v.p);

if !isLeaf(v) then
 if left < median then
 search(leftSon(v), D, result);
 if median < right then
 search(rightSon(v), D, result);

return;
void search(node v, rectangle D, list(point)& result)

double left, median, right;
if v.type == "vertical" then
 left = D.x1; right = D.x2;
 median = v.p.x;
else
 left = D.y1; right = D.y2;
 median = v.p.y;

if left ≤ median ≤ right and D.contains(v.p) then
 result.append(v.p);
if !isLeaf(v) then
 if left < median then
 search(leftSon(v), D, result);
 if median < right then
 search(rightSon(v), D, result);
return;
void search(node v, rectangle D, list(point)& result)

double left, median, right;
if v.type == "vertical" then
 left = D.x1; right = D.x2;
 median = v.p.x;
else
 left = D.y1; right = D.y2;
 median = v.p.y;

if left \leq median \leq right and D.contains(v.p) then
 result.append(v.p);

if !isLeaf(v) then
 if left < median then
 search(leftSon(v), D, result);
 if median < right then
 search(rightSon(v), D, result);

return;
void search(node v, rectangle D, list(point)& result)

double left, median, right;
if v.type == "vertical" then
 left = D.x1; right = D.x2;
 median = v.p.x;
else
 left = D.y1; right = D.y2;
 median = v.p.y;

if left ≤ median ≤ right and D.contains(v.p) then
 result.append(v.p);

if !isLeaf(v) then
 if left < median then
 search(leftSon(v), D, result);
 if median < right then
 search(rightSon(v), D, result);

return;
Querying a 2D-tree

```c
void search(node v, rectangle D, list(point)& result)
{
    double left, median, right;
    if (v.type == "vertical")
        left = D.x1; right = D.x2;
        median = v.p.x;
    else
        left = D.y1; right = D.y2;
        median = v.p.y;

    if (left <= median <= right and D.contains(v.p))
        result.append(v.p);

    if (!isLeaf(v))
        if (left < median)
            search(leftSon(v), D, result);
        if (median < right)
            search(rightSon(v), D, result);

    return;
}
```
Space requirement:

- \(p \in R(v) \iff p = p(v) \lor p \in R(q) \) for any descendant \(q \) of \(v \).
- \(\mathcal{O}(1) \) space requirement per node, exactly one point stored at each node \(\Rightarrow \mathcal{O}(n) \) overall space requirement.
Space requirement:

- \(p \in R(v) \iff p = p(v) \lor p \in R(q) \) for any descendant \(q \) of \(v \).
- \(\mathcal{O}(1) \) space requirement per node, exactly one point stored at each node \(\Rightarrow \mathcal{O}(n) \) overall space requirement.

Construction time (preprocessing):

- Linear-time median finding per partitioning step, i.e., recurrence:

\[
T(n) = 2 \cdot T(\lceil n/2 \rceil) + \mathcal{O}(n) \in \mathcal{O}(n \cdot \log n)
\]
Complexity of a 2D-tree

Space requirement:

- \(p \in R(v) \iff p = p(v) \lor p \in R(q) \) for any descendant \(q \) of \(v \).
- \(\mathcal{O}(1) \) space requirement per node, exactly one point stored at each node \(\Rightarrow \mathcal{O}(n) \) overall space requirement.

Construction time (preprocessing):

- Linear-time median finding per partitioning step, i.e., recurrence:

\[
T(n) = 2 \cdot T([n/2]) + \mathcal{O}(n) \in \mathcal{O}(n \cdot \log n)
\]

- Alternative: Replace median-finding by pre-sorting (copies of) the point by their \(x \)- and \(y \)-coordinates, respectively.
 - Can find median w.r.t. \(x \)-coordinate in \(\mathcal{O}(1) \) time.
 - Can construct sorted \(y \)-arrays to be passed to the children in linear time.
Analysis of worst-case query time

- Query time proportional to number of nodes visited.

- v productive $\iff p(v) \in D$.

- Nodes visited: productive and unproductive nodes.

Definition 3.1
Let $R(v)$ be a rectangle and let $0 \leq i \leq 4$. D and $R(v)$ form a type-i situation \iff i sides of $R(v)$ intersect the interior of D.

- Type-4 situation always productive, all other situations may be unproductive.
Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].
Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].
Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].
- Use **self-replicating** type-2/type-3 situations [Lee & Wong, 1977].
Use **self-replicating** type-2/type-3 situations [Lee & Wong, 1977].
Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].
Use **self-replicating** type-2/type-3 situations [Lee & Wong, 1977].
Use self-replicating type-2/type-3 situations [Lee & Wong, 1977].

Recurrence for worst-case query time:

\[
T(h) = \frac{1}{A} + \frac{1}{B} + \frac{1}{C} + \frac{T(h-2)}{G} + \frac{T'(h-2)}{D} + \frac{1}{F} + \frac{T'(h-3)}{H}
\]
A closer look at situation “subtree rooted at node \(D \).”

Recurrence for this situation:

\[
T'(h) = \frac{1}{D} + \frac{1}{X} + \frac{1}{Y} + 2 \cdot T'(h-2)
\]

Children of \(X \) and \(Y \)
The following recurrence holds for $T'(h)$:

$$T'(h) = 2 \cdot T'(h - 2) + 3$$

with $T'(0) = 0$ and $T'(1) = 1$.

Similarly:

$$T'(2i) = 4^i$$
The following recurrence holds for $T'(h)$:

$$T'(h) = 2 \cdot T'(h - 2) + 3$$

with $T'(0) = 0$ and $T'(1) = 1$.

Solve recurrence for $T'(h)$, w.l.o.g. $h = 2 \cdot i$, $i \in \mathbb{N}$.

$$T'(2 \cdot i) = 3 + 2 \cdot T'(2(i - 1))$$

$$= 3 + 2 \cdot (3 + 2 \cdot T'(2(i - 2)))$$

$$= \sum_{j=0}^{i-1} 3 \cdot 2^j = 3 \cdot 2^i - 3$$
The following recurrence holds for $T'(h)$:

$$T'(h) = 2 \cdot T'(h - 2) + 3$$

with $T'(0) = 0$ and $T'(1) = 1$.

Solve recurrence for $T'(h)$, w.l.o.g. $h = 2 \cdot i$, $i \in \mathbb{N}$.

$$T'(2 \cdot i) = 3 + 2 \cdot T'(2(i - 1))$$

$$= 3 + 2 \cdot (3 + 2 \cdot T'(2(i - 2)))$$

$$= 3 \cdot 2^i - 3$$

Similarly: $T'(2 \cdot i + 1) = 4 \cdot 2^i - 3$.
The following recurrence holds for $T(h)$:

$$T(h) = T(h - 2) + T'(h - 2) + T'(h - 3) + 4$$

$$T'(h) = \begin{cases}
4 \cdot 2^i - 3 & \text{for } h = 2 \cdot i + 1 \\
3 \cdot 2^i - 3 & \text{for } h = 2 \cdot i
\end{cases}$$

with $T(0) = T'(0) = 0$ and $T(1) = T'(1) = 1$.

Jan Vahrenhold

Range Searching 24
The following recurrence holds for $T(h)$:

$$T(h) = T(h-2) + T'(h-2) + T'(h-3) + 4$$

$$T'(h) = \begin{cases}
4 \cdot 2^i - 3 & \text{for } h = 2 \cdot i + 1 \\
3 \cdot 2^i - 3 & \text{for } h = 2 \cdot i
\end{cases}$$

with $T(0) = T'(0) = 0$ and $T(1) = T'(1) = 1$.

Solve recurrence for $T(h)$, w.l.o.g. $h = 2 \cdot i$, $i \in \mathbb{N}$.
The following recurrence holds for $T(h)$:

$$T(h) = T(h - 2) + T'(h - 2) + T'(h - 3) + 4$$

$$T'(h) = \begin{cases}
4 \cdot 2^i - 3 & \text{for } h = 2 \cdot i + 1 \\
3 \cdot 2^i - 3 & \text{for } h = 2 \cdot i
\end{cases}$$

with $T(0) = T'(0) = 0$ and $T(1) = T'(1) = 1$.

Solve recurrence for $T(h)$, w.l.o.g. $h = 2 \cdot i$, $i \in \mathbb{N}$.

$$T(2 \cdot i) = 4 + T(2(i - 1)) + 3 \cdot 2^{i-1} - 3 + 4 \cdot 2^{i-2} - 3$$

$$= T(2(i - 1)) + 5 \cdot 2^{i-1} - 2$$

$$= 5 \cdot (2^{h/2} - 1) - h$$
The following recurrence holds for $T(h)$:

$$T(h) = T(h - 2) + T'(h - 2) + T'(h - 3) + 4$$

$$T'(h) = \begin{cases}
4 \cdot 2^i - 3 & \text{for } h = 2 \cdot i + 1 \\
3 \cdot 2^i - 3 & \text{for } h = 2 \cdot i
\end{cases}$$

with $T(0) = T'(0) = 0$ and $T(1) = T'(1) = 1$.

Solve recurrence for $T(h)$, w.l.o.g. $h = 2 \cdot i$, $i \in \mathbb{N}$.

$$T(2 \cdot i) = 4 + T(2(i - 1)) + 3 \cdot 2^{i-1} - 3 + 4 \cdot 2^{i-2} - 3$$

$$= T(2(i - 1)) + 5 \cdot 2^{i-1} - 2$$

$$= 5 \cdot (2^{h/2} - 1) - h$$

Similarly: $T(2 \cdot i + 1) = 7 \cdot \left(2^{\lfloor h/2 \rfloor} - 1\right) - h + 2$.
The following recurrence holds for \(T(h) \):

\[
T(h) = T(h - 2) + T'(h - 2) + T'(h - 3) + 4
\]

\[
T'(h) = \begin{cases}
4 \cdot 2^i - 3 & \text{for } h = 2 \cdot i + 1 \\
3 \cdot 2^i - 3 & \text{for } h = 2 \cdot i
\end{cases}
\]

with \(T(0) = T'(0) = 0 \) and \(T(1) = T'(1) = 1 \).

Solve recurrence for \(T(h) \), w.l.o.g. \(h = 2 \cdot i \), \(i \in \mathbb{N} \).

\[
T(2 \cdot i) = 4 + T(2(i - 1)) + 3 \cdot 2^{i-1} - 3 + 4 \cdot 2^{i-2} - 3
\]

\[
= T(2(i - 1)) + 5 \cdot 2^{i-1} - 2
\]

\[= 5 \cdot (2^{h/2} - 1) - h \]

Similarly: \(T(2 \cdot i + 1) = 7 \cdot (2^{[h/2]} - 1) - h + 2 \).

Overall (for \(n \leq 2^h - 1 \)): \(T(n) \in \mathcal{O}(2 \cdot n^{1/2}) \).
Summary

- Worst-case query time independent of the number of points reported.
- kD-tree very relevant in practice!
- Extension to higher dimensions (points in \mathbb{R}^d): Do partitioning in a round-robin manner of the coordinate axes $x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_d \rightarrow x_1 \rightarrow \ldots$

Theorem 3.2

Multidimensional search trees (kD-trees) allow for answering **four-sided range queries** on points in $\mathbb{R}^d, d \geq 2$ with time and space complexities as follows:

- Preprocessing time: $\Theta(d \cdot n \log n)$
- Query time: $\mathcal{O}(d \cdot n^{1-1/d} + k)$
- Space requirement: $\Theta(n)$
Overview

1. Introduction: Problem Statement, Lower Bounds
2. Range Searching in 1 and 1.5 Dimensions
3. Range Searching in 2 Dimensions
4. Summary and Outlook
Summary

Lower bounds:

- $\Omega (d \cdot \log_2 n + k)$ time, $\Omega (n)$ space.

Results:

1. One dimension: optimal $O (\log_2 n + k)$ algorithm, $\Theta (n)$ space.
2. 1.5 dimensions: optimal $O (\log_2 n + k)$ algorithm, $\Theta (n)$ space.
3. Two dimensions: sub-optimal $O (n + k)$ algorithm, $\Theta (n)$ space.
4. d dimensions: sub-optimal $O (n^{1 - 1/d} = d + k)$ algorithm, $\Theta (n)$ space.

Outlook:

Optimal query time possible if one is willing to spend superlinear space [Chazelle, 1990]. Beware: choosing the adequate model of computation is crucial.
Summary

Lower bounds:
- \(\Omega(d \cdot \log_2 n + k) \) time, \(\Omega(n) \) space.

Results:
- One dimension: optimal \(\mathcal{O}(\log_2 n + k) \) algorithm, \(\Theta(n) \) space.
- Two dimensions: sub-optimal \(\mathcal{O}(n^{1+1/d} + k) \) algorithm, \(\Theta(n) \) space.
- \(d \) dimensions: sub-optimal \(\mathcal{O}(n^{1+1/d} + k) \) algorithm, \(\Theta(n) \) space.

Outlook:
Optimal query time possible of one is willing to spend superlinear space [Chazelle, 1990]. Beware: choosing the adequate model of computation is crucial.
Summary

Lower bounds:
- $\Omega(d \cdot \log_2 n + k)$ time, $\Omega(n)$ space.

Results:
- One dimension: optimal $O(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- 1.5 dimensions: optimal $O(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
Summary

Lower bounds:
- $\Omega(d \cdot \log_2 n + k)$ time, $\Omega(n)$ space.

Results:
- One dimension: optimal $O(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- 1.5 dimensions: optimal $O(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- Two dimensions: sub-optimal $O(\sqrt{n} + k)$ algorithm, $\Theta(n)$ space.

Outlook:
Optimal query time possible if one is willing to spend superlinear space [Chazelle, 1990]. Be aware: choosing the adequate model of computation is crucial.
Summary

Lower bounds:

- $\Omega(d \cdot \log_2 n + k)$ time, $\Omega(n)$ space.

Results:

- One dimension: optimal $\mathcal{O}(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- 1.5 dimensions: optimal $\mathcal{O}(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- Two dimensions: sub-optimal $\mathcal{O}(\sqrt{n} + k)$ algorithm, $\Theta(n)$ space.
- d dimensions: sub-optimal $\mathcal{O}(n^{1-1/d} + k)$ algorithm, $\Theta(n)$ space.

Outlook:

Optimal query time possible if one is willing to spend superlinear space [Chazelle, 1990]. Beware: choosing the adequate model of computation is crucial.
Summary

Lower bounds:
- $\Omega(d \cdot \log_2 n + k)$ time, $\Omega(n)$ space.

Results:
- One dimension: optimal $O(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- 1.5 dimensions: optimal $O(\log_2 n + k)$ algorithm, $\Theta(n)$ space.
- Two dimensions: sub-optimal $O(\sqrt{n} + k)$ algorithm, $\Theta(n)$ space.
- d dimensions: sub-optimal $O(n^{1-1/d} + k)$ algorithm, $\Theta(n)$ space.

Outlook:
- Optimal query time possible of one is willing to spend superlinear space [Chazelle, 1990]. Beware: choosing the adequate model of computation is crucial.
Bibliography

