Draw the trapezoid decomposition of free space and the corresponding roadmap.

- Show an example showing that BFS in the roadmap corresponding to a trapezoid decomposition does not give optimal paths.
- We saw that the size of the VG can be quadratic. What type of scenes would have small/large VG?
- Describe a naive algorithm for building a VG and give its running time.
- Consider a rectangular robot. Draw a small set of obstacles such that their Cobstacles overlap.
- Consider a rectangular robot. Draw a scene of obstacles such that free physical space is not disconnected, but the the free C-space is disconnected.
- Consider a disk robot of radios r in 2D. Show the extended obstacle corresponding to a: triangle, rectangles, convex polygon, non-convex polygon.
robot

obstacle
extended obstacle

robot

obstacle
extended obstacle

```
robot
```


obstacle
extended obstacle
robot

obstacle
extended obstacle

Consider arbitrary two points inside this polygon, and draw the shortest path between them. What can you claim about the shortest path inside a polygon?

Consider a point s as below.
Draw the region of the polygon that contains all points p such that the shortest path from s to p consists of the straight line segment sp.

Consider a point s as below.
Draw the region of the polygon that contains all points p such that the shortest path from s to p consists of the straight line segment sa plus the straight line segment ap.

Consider a point s as below.
Draw the shortest path map of s.

