#### Computational Geometry [csci 3250]

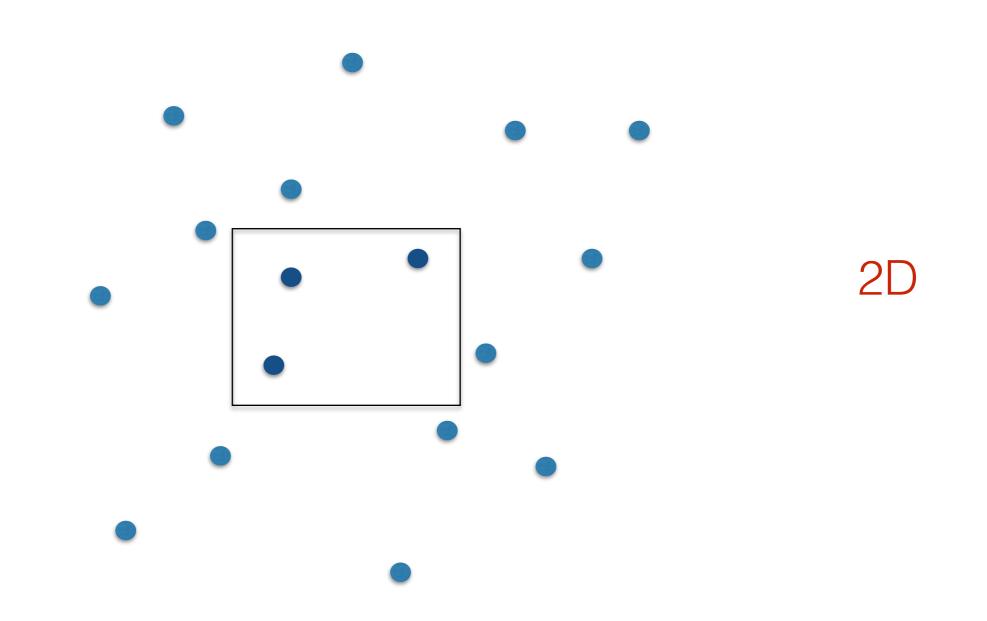
Laura Toma

Bowdoin College



## Range searching

Given a set of points, preprocess them into a data structure to support fast range queries.



# 1D

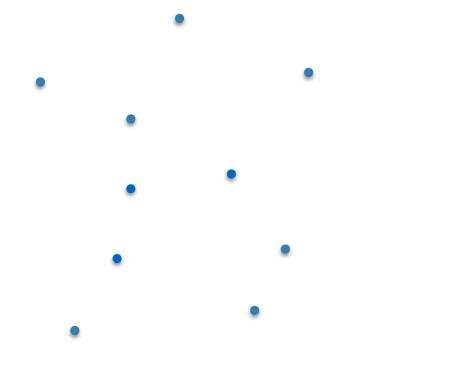
- BBST
  - Build: O(n lg n)
  - Space: O(n)
  - Range queries: O(lg n +k)

#### 2D

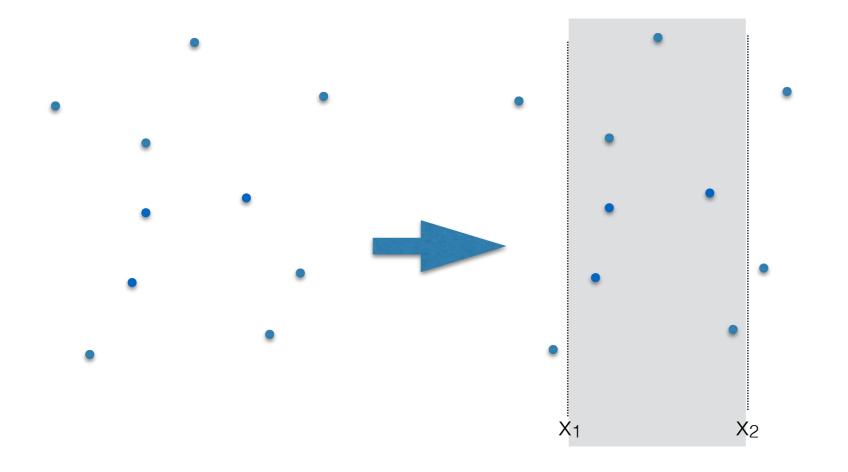
kd-trees
Build: O(n lg n)
Space: O(n)
Range queries: O(√n + k)
Range queries: O(lg n + k)
Range queries: O(lg n + k)

Different trade-offs!

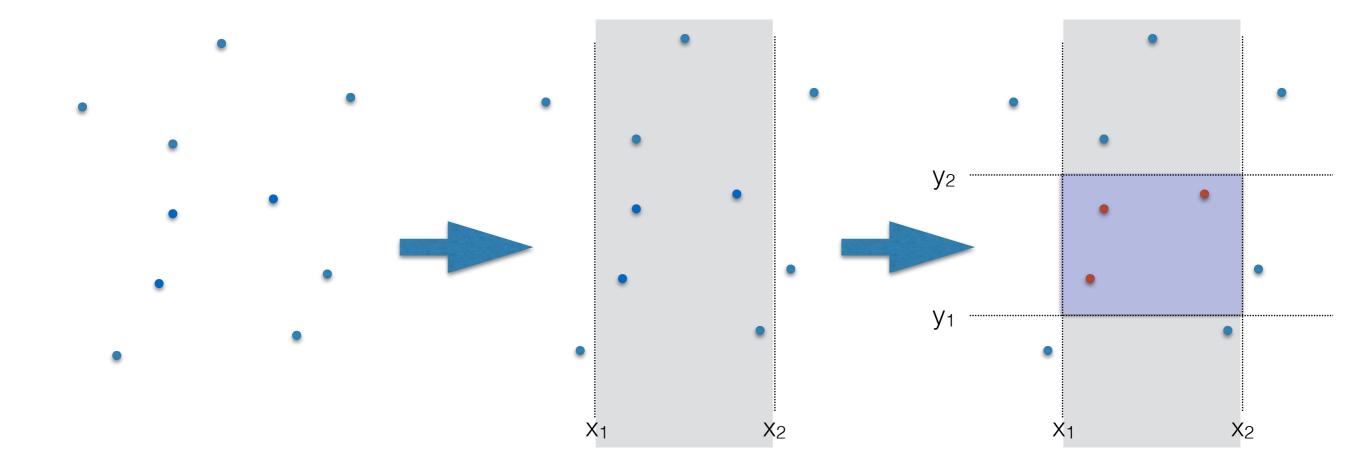
- Denote query  $[x_1, x_2] \times [y_1, y_2]$
- Idea
  - Find all points with x-coordinates in the correct range [x1, x2]
  - Of all these points, find all points with y-coord in the correct range  $[y_1, y_2]$



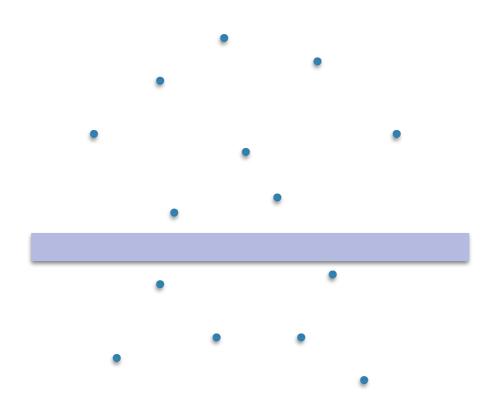
- Denote query  $[x_1, x_2] \times [y_1, y_2]$
- Idea
  - Find all points with x-coordinates in the correct range [x1, x2]
  - Of all these points, find all points with y-coord in the correct range [y1, y2]



- Denote query  $[x_1, x_2] \times [y_1, y_2]$
- Idea
  - Find all points with x-coordinates in the correct range [x<sub>1</sub>, x<sub>2</sub>]
  - Of all these points, find all points with y-coord in the correct range  $[y_1, y_2]$

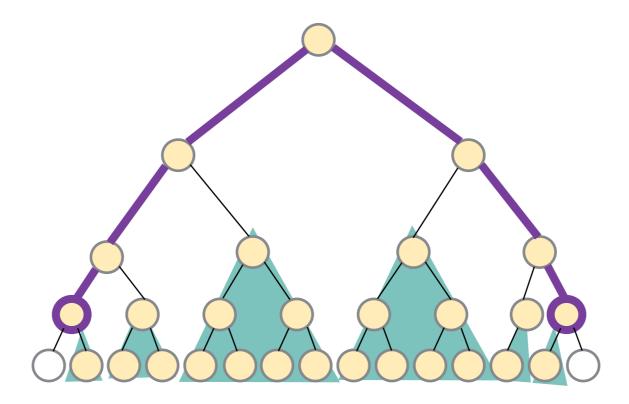


- Store points in a BBST by x-coord
- Range queries:
  - Use BBST to find all points with the x-coordinates in  $[x_1, x_2]$ : O( lg n + n')
  - Of all these points, find all points with y-coord in  $[y_1, y_2]$ : O(n')

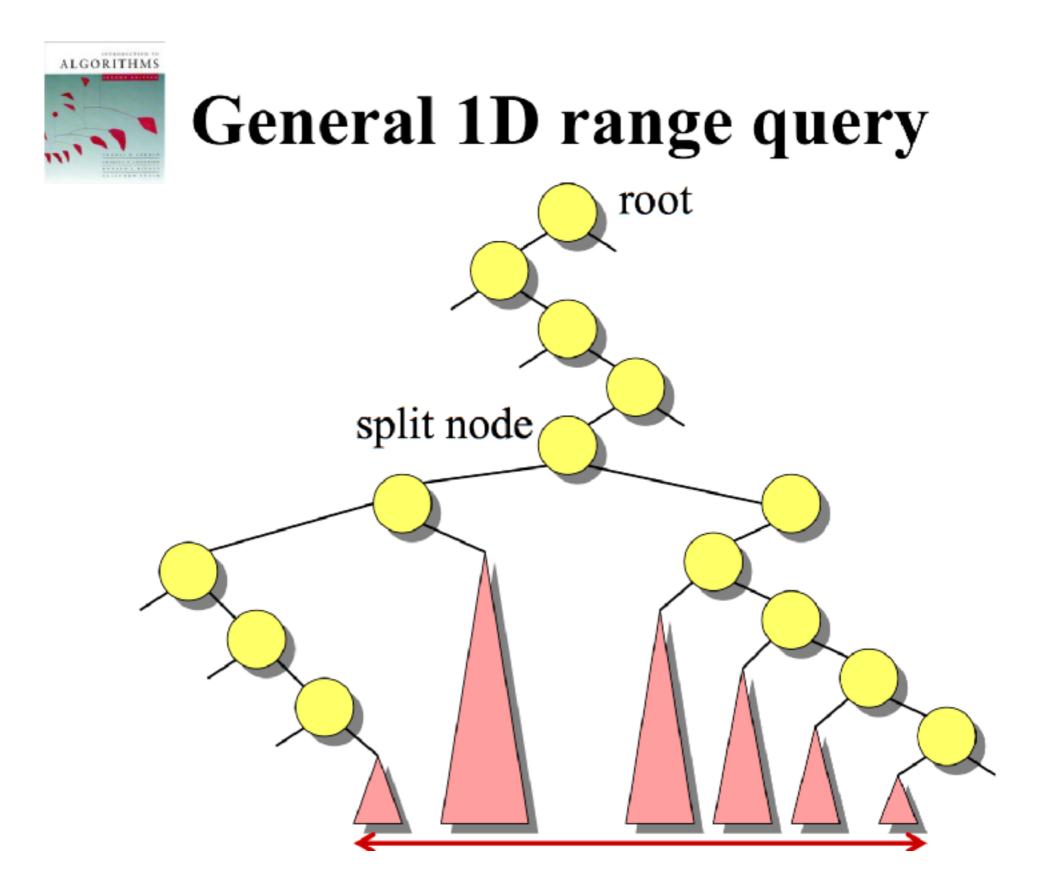


Works, but slow. n' = O(n)

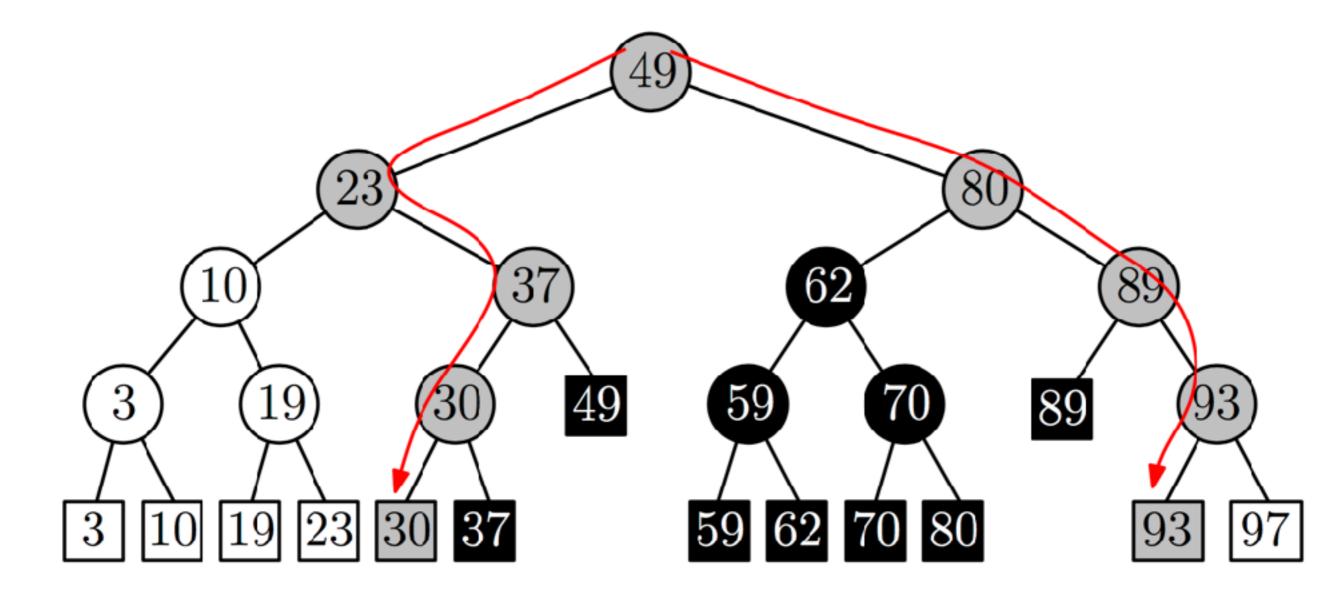
- Store points in a BBST by x-coord
- Range queries:
  - Use BBST to find all points with the x-coordinates in [x1, x2]
  - Of all these points, find all points with y-coord in  $[y_1, y_2]$



They are sitting in O(Ig n) subtrees

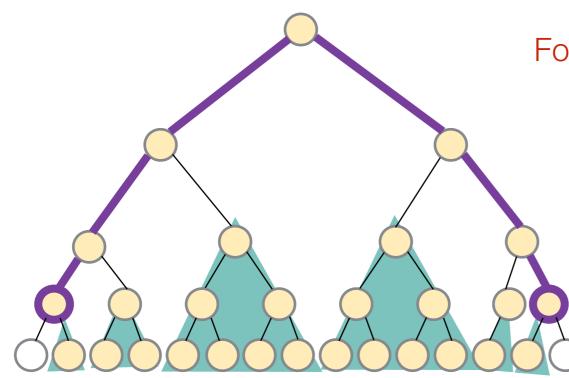


A 1-dimensional range query with [25, 90]



screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

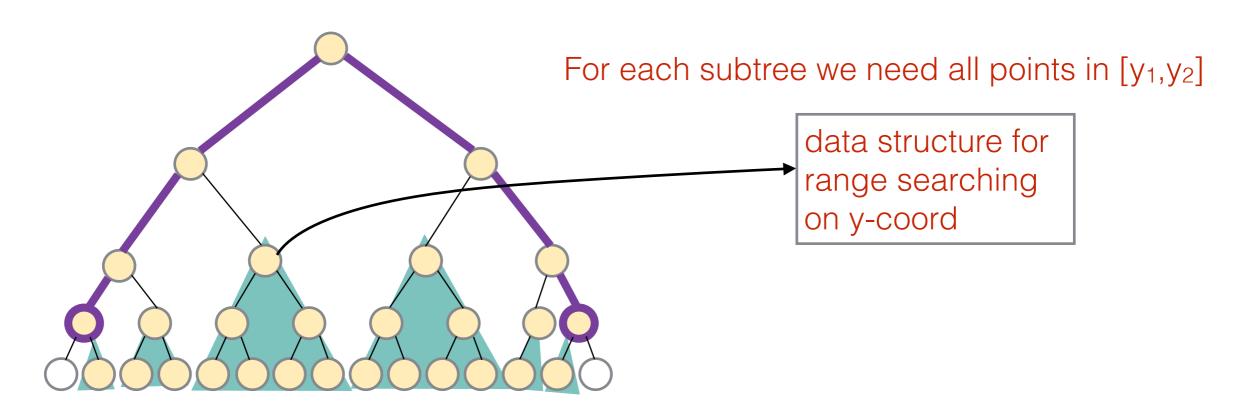
- Store points in a BBST by x-coord
- Range queries:
  - Use BBST to find all points with the x-coordinates in [x1, x2]
  - Of all these points, find all points with y-coord in  $[y_1, y_2]$



For each subtree we need all points in [y1,y2]

They are sitting in O(Ig n) subtrees

- Store points in a BBST by x-coord
- Range queries:
  - Use BBST to find all points with the x-coordinates in  $[x_1, x_2]$
  - Of all these points, find all points with y-coord in  $[y_1, y_2]$

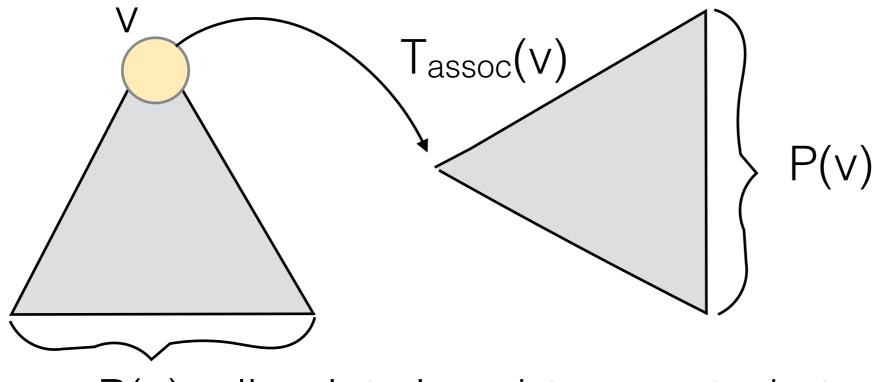


What is a good data structure for range search on y?

P: set of points

RangeTree(P) is

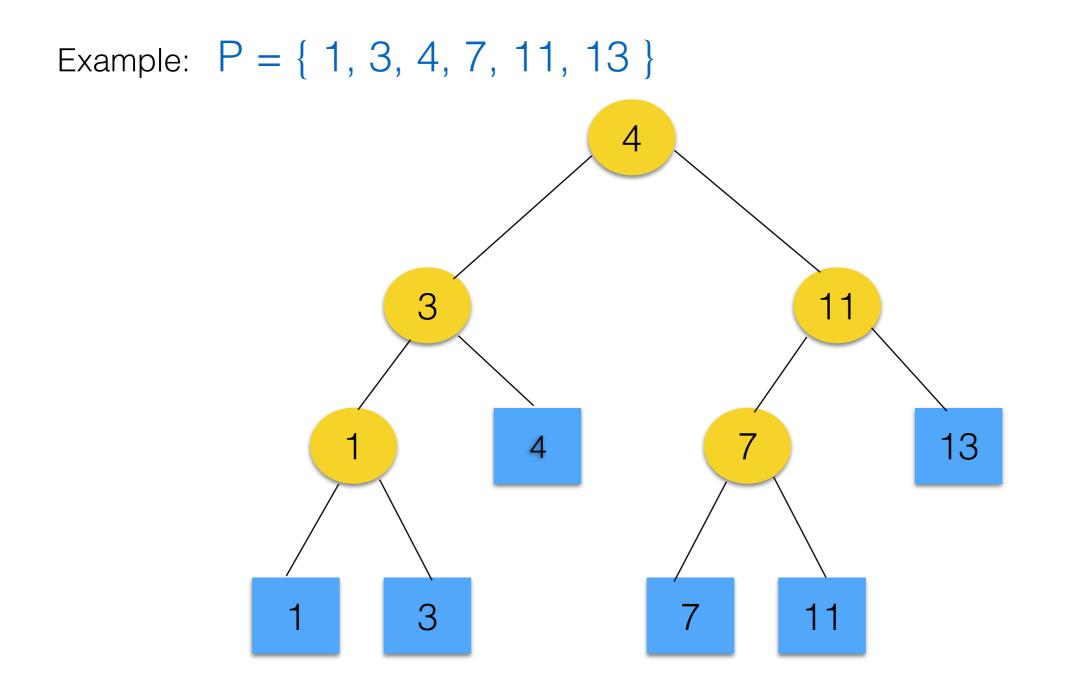
- A BBST T of P on x-coord
- Any node v in T stores a BBST  $T_{assoc}$  of P(v), by y-coord



P(v): all points in subtree rooted at v

- We'll use a variant of BBSTs that store all data in leaves
  - It makes the details simpler

• We'll use a variant of BBSTs that store all data in leaves



- Show the BBST with all data in leaves for P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
- Write pseudocode for the algorithm to build BBST(P)

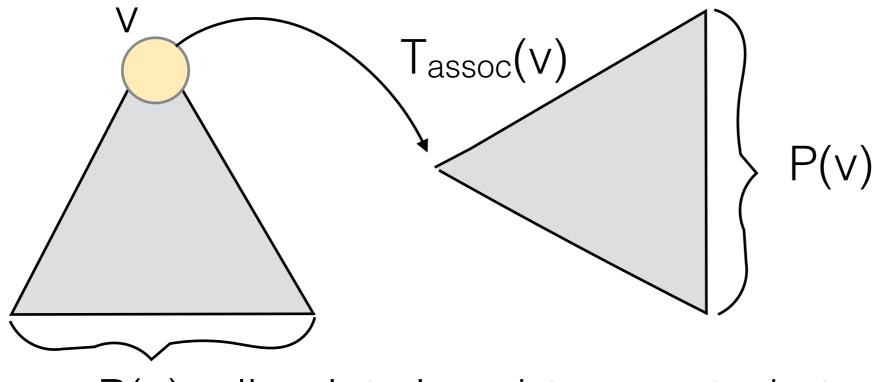
//create and return a BBST of P with all data in leaves BuildBBST (P)

- Analysis?
- What if P is sorted?

P: set of points

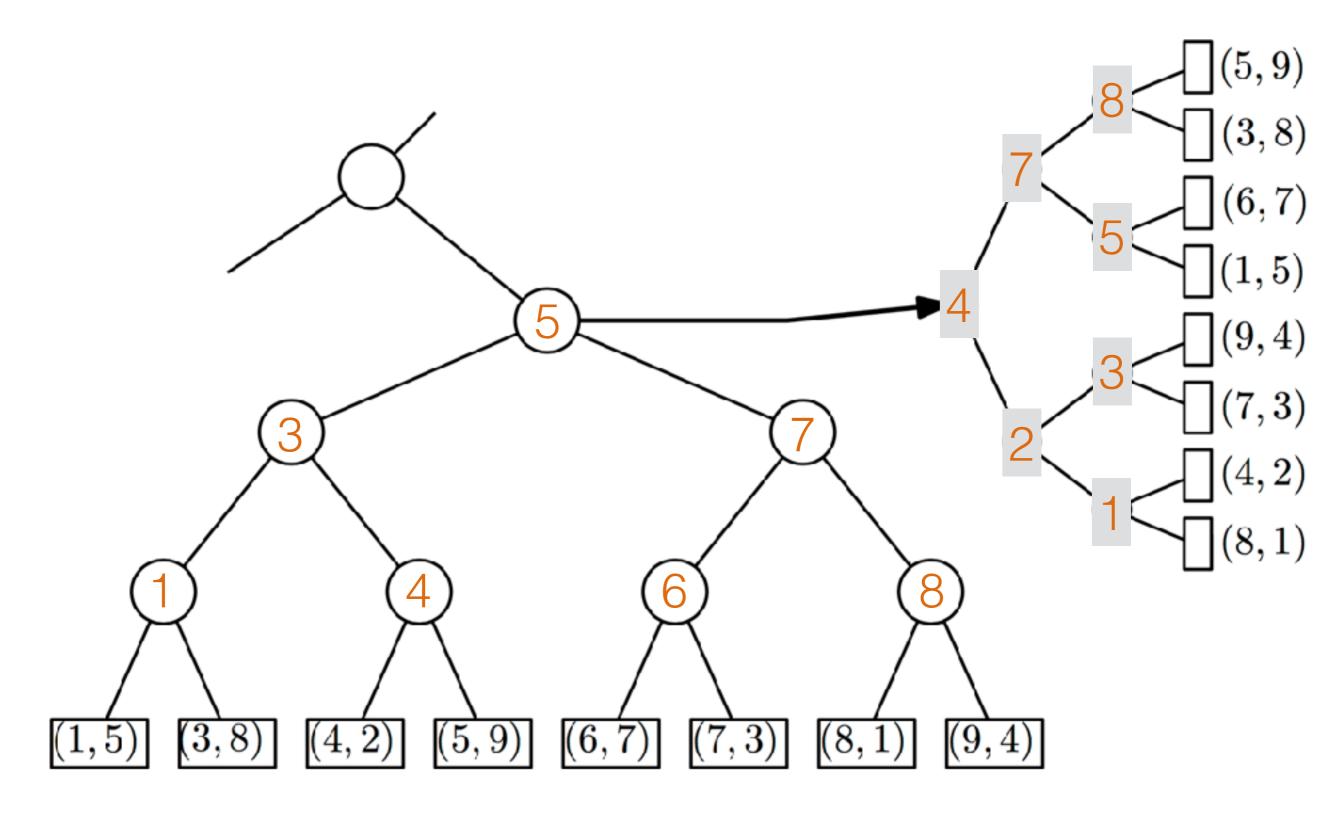
RangeTree(P) is

- A BBST T of P on x-coord
- Any node v in T stores a BBST  $T_{assoc}$  of P(v), by y-coord



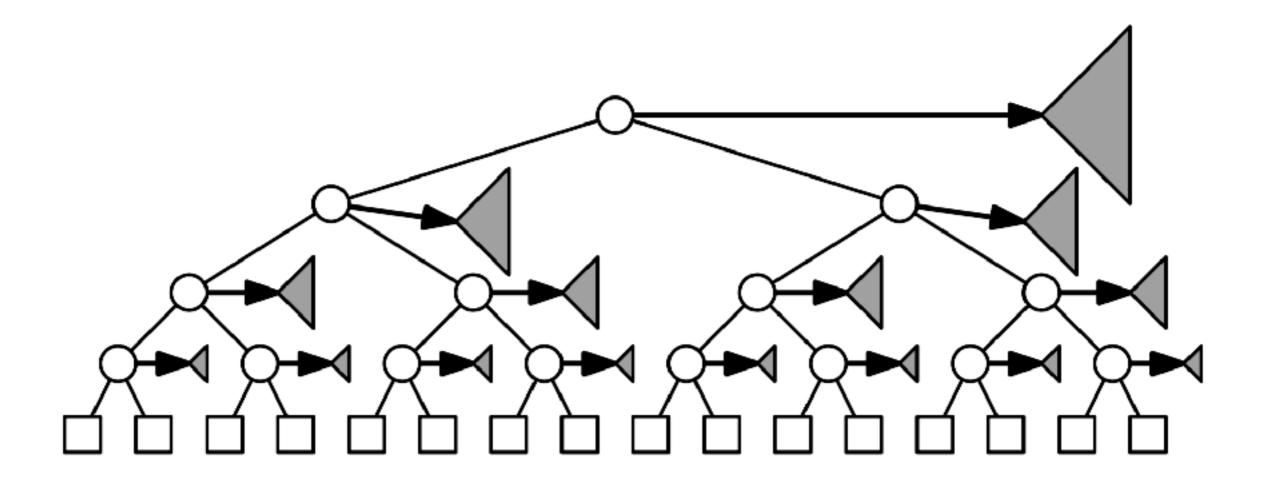
P(v): all points in subtree rooted at v

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)



screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

Every internal node stores a whole tree in an *associated structure*, on *y*-coordinate



Building a 2D Range Tree

#### Building a 2D Range Tree

#### Let $P = \{p_1, p_2, \dots p_n\}$ . Assume P sorted by x-coord.

#### Algorithm Build2DRT(P)

1. if P contains only one point:

create a leaf v storing this point, create its  $T_{\mbox{\scriptsize assoc}}$  and return v

2. else

- 1. Construct the associated structure: build a BBST  $T_{\text{assoc}}$  on the set of y-coordinates of P
- 2. Partition P into 2 sets w.r.t. the median coordinate  $x_{middle}$ :

 $P_{left} = \{p \text{ in } P. p_x \leq x_{middle}\}, P_{right} = \dots$ 

- 3.  $v_{left} = Build2DRT(P_{left})$
- 4.  $v_{right} = Build2DRT(P_{right})$
- 5. Create a node v storing  $x_{middle}$ , make  $v_{left}$  its left child, make  $v_{right}$  its right child, make  $T_{assoc}$  its associate structure
- 6. return v

Class work

Let P = {(1,4), (5,8), (4,1), (7,3), (3, 2), (2, 6), (8,7)}.
 Show the range tree of P.

#### Questions

- How to build it and how fast?
- How much space does it take?
- How do you answer range queries and how fast?

## Building a 2D Range Tree

- Let T(n) be the time of **Build2DRT(P)**, where P has n points
- Constructing a BBST on an unsorted set of keys takes O( n lg n)
- Then

 $T(n) = 2T(n/2) + O(n \lg n)$ 

• This solves to O(  $n \lg^2 n$ )

### Building a 2D Range Tree

• Common trick: pre-sort P and pass it as argument

 $//P_x$  is set of points sorted by x-coord  $//P_y$  is set of points sorted by y-coord Build2DRT(P<sub>x</sub>, P<sub>y</sub>)

• Maintain the sorted sets through recursion

P<sub>1</sub> sorted-by-x, P<sub>1</sub> sorted-by-y P<sub>2</sub> sorted-by-x, P<sub>2</sub> sorted-by-y

- Fact: If keys are in order, a BBST can be built in O(n)
- We have

T(n) = 2T(n/2) + O(n) which solves to  $O(n \lg n)$ 

• How much space does a range tree use?

• How much space does a range tree use?

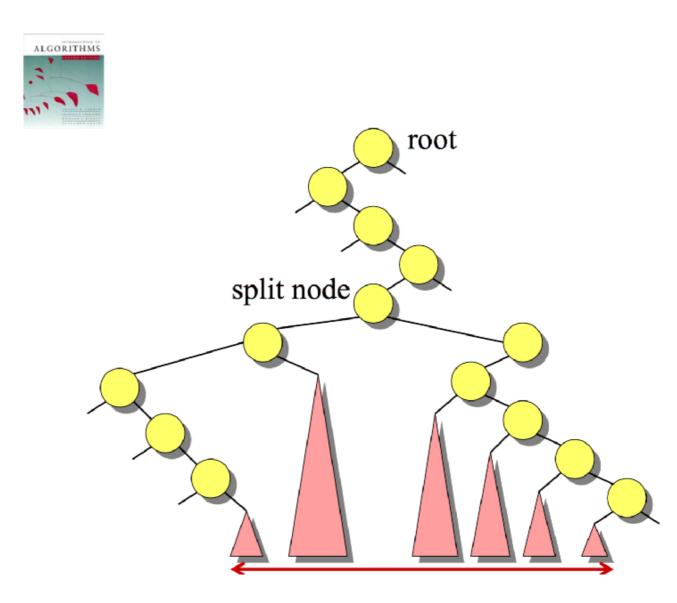
Two arguments can be made:

 At each level in the tree, each point is stored exactly once (in the associated structure of precisely one node). So every level stores all points and uses O(n) space => O( n lg n)

or

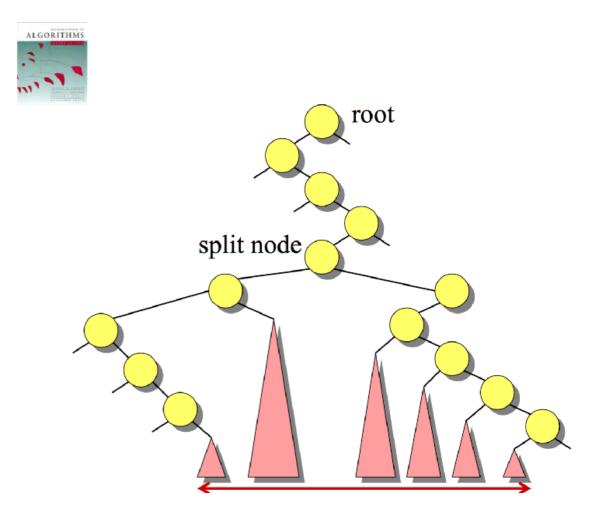
 Each point p is stored in the associated structures of all nodes on the path from root to p. So one point is stored O(Ig n) times => O( n Ig n)

• How to answer range queries with a range tree, and how fast?



## Range queries with the 2D Range Tree

- Find the split node x<sub>split</sub> (where the search paths for x<sub>1</sub> and x<sub>2</sub> split)
- Follow path root to x<sub>1</sub>: for each node v to the **right** of the path, query its associated structure T<sub>assoc</sub>(v) with [y<sub>1</sub>,y<sub>2</sub>]
- Follow path root to x<sub>2</sub>: for each node v to the **left** of the path, query its associated structure T<sub>assoc</sub>(v) with [y<sub>1</sub>,y<sub>2</sub>]



## Range queries with the 2D Range Tree

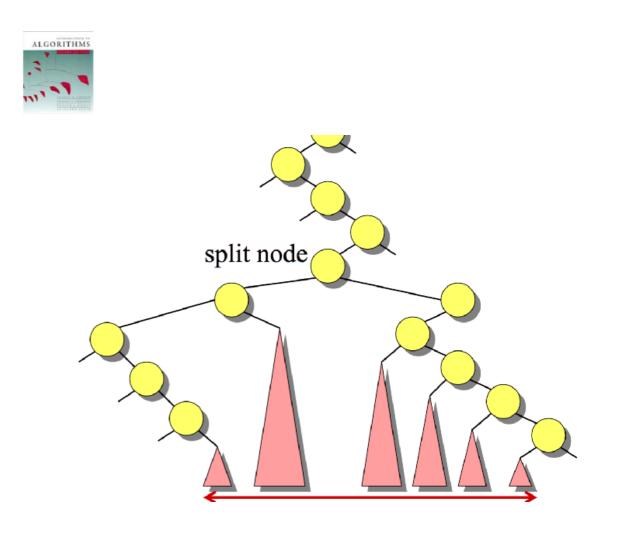
How long does a range query take?

- There are O( Ig n) subtrees in between the paths
- We query each one of them using its associated structure

• Querying  $T_{assoc}$  takes O( Ig  $n_v + k'$ )

• Overall it takes

SUM {O(  $\lg n_v + k'$ ) } = O( $\lg^2 n + k$ )



 $n_v$ : number of points in  $T_{assoc}$  k': number of points in  $T_{assoc}$  that are in [y1,y2]

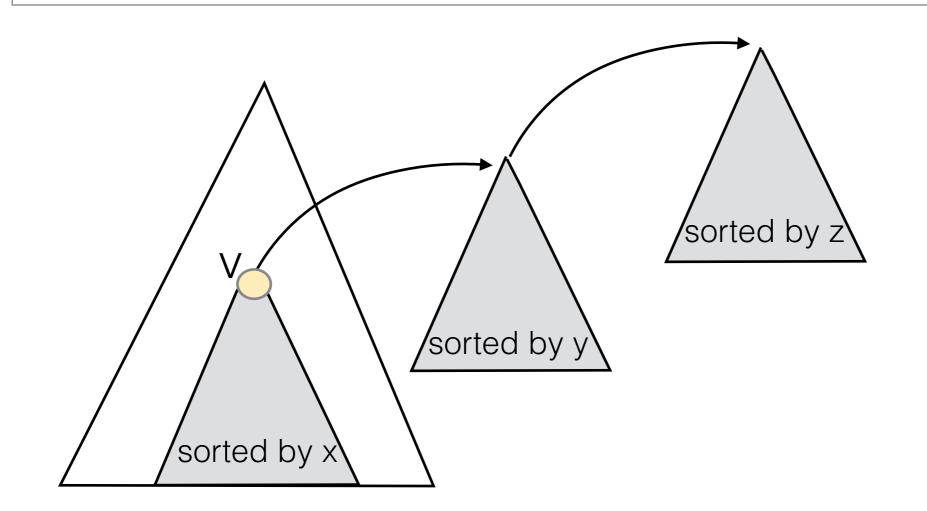
## Comparison

2D

| n          | logn | $\log^2 n$ | $\sqrt{n}$ |
|------------|------|------------|------------|
| 16         | 4    | 16         | 4          |
| 64         | 6    | 36         | 8          |
| 256        | 8    | 64         | 16         |
| 1024       | 10   | 100        | 32         |
| 4096       | 12   | 144        | 64         |
| 16384      | 14   | 196        | 128        |
| 65536      | 16   | 256        | 256        |
| 1 <b>M</b> | 20   | 400        | 1K         |
| 16M        | 24   | 576        | 4K         |

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

- P: set of points in 3D
- 3DRangeTree(P)
  - Construct a BBST on x-coord
  - Each node v will have an associated structure that's a 2D range tree for P(v) on the remaining coords



Size:

 An associated structure for n points uses O(n lg n) space. Each point is stored in all associated structures of all its ancestors => O ( n lg<sup>2</sup> n)

Let's try this recursively

- Let  $S_3(n)$  be the size of a 3D Range Tree of n points
- Find a recurrence for  $S_3(n)$ 
  - Think about how you build it : you build an associated structure for P that's a 2D range tree; then you build recursively a 3D range tree for the left and right half of the points
  - $S_3(n) = 2S_3(n/2) + S_2(n)$
  - This solves to O(n lg<sup>2</sup> n)

Build time:

- Think recursively
- Let  $B_3(n)$  be the time to build a 3D Range Tree of n points
- Find a recurrence for B<sub>3</sub>(n)
  - Think about how you build it : you build an associated structure for P that's a 2D range tree; then you build recursively a 3D range tree for the left and right half of the points
  - $B_3(n) = 2B_3(n/2) + B_2(n)$
  - This solves to O(n lg<sup>2</sup> n)

Query:

- Query BBST on x-coord to find O(Ig n) nodes
- Then perform a 2D range query in each node

Time?

- Let Q<sub>3</sub>(n) be the time to answer a 3D range query
- Find a recurrence for  $Q_3(n)$ 
  - $Q_3(n) = O(\lg n) + O(\lg n) \times Q_2(n)$
  - This solves to  $O(\lg^3 n + k)$

Comparison RangeTree and kdtree

#### 4D

| n      | logn | $\log^4 n$ | n <sup>3/4</sup> |
|--------|------|------------|------------------|
| 1024   | 10   | 10,000     | 181              |
| 65,536 | 16   | 65,536     | 4096             |
| 1M     | 20   | 160,000    | 32,768           |
| 1G     | 30   | 810,000    | 5,931,641        |
| 1T     | 40   | 2,560,000  | 1G               |

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)