
Computational Geometry
[csci 3250]

Laura Toma

Bowdoin College

Range searching
with

Range Trees

Given a set of points, preprocess them into a data structure to support fast
range queries.

Range searching

2D

• kd-trees
• Build: O(n lg n)
• Space: O(n)
• Range queries: O(n + k)

2D

1D
• BBST

• Build: O(n lg n)
• Space: O(n)
• Range queries: O(lg n +k)

• Range trees
• Build: O(n lg n)
• Space: O(n lg n)
• Range queries: O(lg n + k)

Different trade-offs!

• Denote query [x1, x2] x [y1, y2]
• Idea

• Find all points with x-coordinates in the correct range [x1, x2]
• Of all these points, find all points with y-coord in the correct range [y1, y2]

Towards 2D Range Trees

• Denote query [x1, x2] x [y1, y2]
• Idea

• Find all points with x-coordinates in the correct range [x1, x2]
• Of all these points, find all points with y-coord in the correct range [y1, y2]

x1 x2

Towards 2D Range Trees

• Denote query [x1, x2] x [y1, y2]
• Idea

• Find all points with x-coordinates in the correct range [x1, x2]
• Of all these points, find all points with y-coord in the correct range [y1, y2]

x1 x2

y2

y1

x1 x2

Towards 2D Range Trees

Towards 2D Range Trees

• Store points in a BBST by x-coord
• Range queries:

• Use BBST to find all points with the x-coordinates in [x1, x2]:
• Of all these points, find all points with y-coord in [y1, y2]:

Works, but slow. n’ = O(n)

O(lg n + n’)
O(n’)

Towards 2D Range Trees

They are sitting in O(lg n) subtrees

• Store points in a BBST by x-coord
• Range queries:

• Use BBST to find all points with the x-coordinates in [x1, x2]
• Of all these points, find all points with y-coord in [y1, y2]

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

Towards 2D Range Trees

They are sitting in O(lg n) subtrees

For each subtree we need all points in [y1,y2]

• Store points in a BBST by x-coord
• Range queries:

• Use BBST to find all points with the x-coordinates in [x1, x2]
• Of all these points, find all points with y-coord in [y1, y2]

Towards 2D Range Trees

For each subtree we need all points in [y1,y2]

data structure for
range searching
on y-coord

What is a good data structure for range search on y?

• Store points in a BBST by x-coord
• Range queries:

• Use BBST to find all points with the x-coordinates in [x1, x2]
• Of all these points, find all points with y-coord in [y1, y2]

The 2D Range Tree

P: set of points
RangeTree(P) is

• A BBST T of P on x-coord
• Any node v in T stores a BBST Tassoc of P(v), by y-coord

v

P(v): all points in subtree rooted at v

Tassoc(v)

P(v)

The 2D Range Tree

• We’ll use a variant of BBSTs that store all data in leaves
• It makes the details simpler

The 2D Range Tree

1 3 7 11

13

4

1

3 11

74

Example: P = { 1, 3, 4, 7, 11, 13 }

• We’ll use a variant of BBSTs that store all data in leaves

Class work

• Show the BBST with all data in leaves for P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

• Write pseudocode for the algorithm to build BBST(P)

//create and return a BBST of P with all data in leaves

BuildBBST (P)

• Analysis?

• What if P is sorted?

The 2D Range Tree

P: set of points
RangeTree(P) is

• A BBST T of P on x-coord
• Any node v in T stores a BBST Tassoc of P(v), by y-coord

v

P(v): all points in subtree rooted at v

Tassoc(v)

P(v)

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

3

5

1 4

7

6 8

2

7

4

1

3

5

8

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

Building a 2D Range Tree

Let P = {p1,p2,…pn}. Assume P sorted by x-coord.
Algorithm Build2DRT(P)

1. if P contains only one point:

create a leaf v storing this point, create its Tassoc and return v

2. else

1. Construct the associated structure: build a BBST Tassoc on the set of y-
coordinates of P

2. Partition P into 2 sets w.r.t. the median coordinate xmiddle:

 Pleft = {p in P. px <= xmiddle}, Pright= …
3. vleft = Build2DRT(Pleft)

4. vright = Build2DRT(Pright)

5. Create a node v storing xmiddle, make vleft its left child, make vright its
right child, make Tassoc its associate structure

6. return v

Building a 2D Range Tree

Class work

• Let P = {(1,4), (5,8), (4,1), (7,3), (3, 2), (2, 6), (8,7)}.
Show the range tree of P.

The 2D Range Tree

Questions
• How to build it and how fast?
• How much space does it take?
• How do you answer range queries and how fast?

• Let T(n) be the time of Build2DRT(P) , where P has n points
• Constructing a BBST on an unsorted set of keys takes O(n lg n)
• Then

T(n) = 2T(n/2) + O(n lg n)
• This solves to O(n lg2 n)

Building a 2D Range Tree

• Common trick: pre-sort P and pass it as argument
//Px is set of points sorted by x-coord

//Py is set of points sorted by y-coord

Build2DRT(Px, Py)

• Maintain the sorted sets through recursion
 P1 sorted-by-x, P1 sorted-by-y

 P2 sorted-by-x, P2 sorted-by-y

• Fact: If keys are in order, a BBST can be built in O(n)
• We have

 T(n) = 2T(n/2) + O(n) which solves to O(n lg n)

Building a 2D Range Tree

The 2D Range Tree

• How much space does a range tree use?

The 2D Range Tree

• How much space does a range tree use?

Two arguments can be made:
• At each level in the tree, each point is stored exactly once (in the

associated structure of precisely one node). So every level stores all points
and uses O(n) space => O(n lg n)

or

• Each point p is stored in the associated structures of all nodes on the path
from root to p. So one point is stored O(lg n) times => O(n lg n)

The 2D Range Tree

• How to answer range queries with a range tree, and how fast?

Range queries with the 2D Range Tree

• Find the split node xsplit (where the
search paths for x1 and x2 split)

• Follow path root to x1: for each node v
to the right of the path, query its
associated structure Tassoc(v) with
[y1,y2]

• Follow path root to x2: for each node v
to the left of the path, query its
associated structure Tassoc(v) with
[y1,y2]

How long does this take?

Range queries with the 2D Range Tree

How long does a range query take?

• There are O(lg n) subtrees in between
the paths

• We query each one of them using its
associated structure

• Querying Tassoc takes O(lg nv + k’)

• Overall it takes
 SUM {O(lg nv + k’) } = O(lg2n+k)

nv: number of points in Tassoc

k’: number of points in Tassoc that are in [y1,y2]

Comparison

2D

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

3D Range Trees

P: set of points in 3D
• 3DRangeTree(P)

• Construct a BBST on x-coord
• Each node v will have an associated structure that’s a 2D range tree for P(v)

on the remaining coords

sorted by y

sorted by z
v

sorted by x

3D Range Trees

Size:
• An associated structure for n points uses O(n lg n) space. Each point is

stored in all associated structures of all its ancestors => O (n lg2 n)

 Let’s try this recursively
• Let S3(n) be the size of a 3D Range Tree of n points
• Find a recurrence for S3(n)

• Think about how you build it : you build an associated structure for P that’s
a 2D range tree; then you build recursively a 3D range tree for the left and
right half of the points

• S3(n) = 2S3(n/2) + S2(n)
• This solves to O(n lg2 n)

3D Range Trees

Build time:
• Think recursively
• Let B3(n) be the time to build a 3D Range Tree of n points
• Find a recurrence for B3(n)

• Think about how you build it : you build an associated structure for P that’s
a 2D range tree; then you build recursively a 3D range tree for the left and
right half of the points

• B3(n) = 2B3(n/2) + B2(n)
• This solves to O(n lg2 n)

3D Range Trees

Query:
• Query BBST on x-coord to find O(lg n) nodes
• Then perform a 2D range query in each node

Time?
• Let Q3(n) be the time to answer a 3D range query
• Find a recurrence for Q3(n)

• Q3(n) = O(lg n) + O(lg n) x Q2(n)
• This solves to O(lg3 n + k)

Comparison RangeTree and kdtree

4D

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)

