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Range searching  
with  

Range Trees



Given a set of points, preprocess them into a data structure to support fast 
range queries.

Range searching

2D



• kd-trees 
• Build:                  O(n lg n) 
• Space:                O(n) 
• Range queries:   O(  n + k)

2D

1D
• BBST 

• Build:                  O(n lg n) 
• Space:                O(n) 
• Range queries:   O(lg n +k)

• Range trees 
• Build:                O(n lg n) 
• Space:              O(n lg n) 
• Range queries: O(lg n + k)

Different trade-offs!



• Denote query [x1, x2] x [y1, y2] 
• Idea 

• Find all points with x-coordinates in the correct range [x1, x2] 
• Of all these points, find all points with y-coord in the correct range [y1, y2]

Towards 2D Range Trees



• Denote query [x1, x2] x [y1, y2] 
• Idea 

• Find all points with x-coordinates in the correct range [x1, x2] 
• Of all these points, find all points with y-coord in the correct range [y1, y2]

x1 x2

Towards 2D Range Trees



• Denote query [x1, x2] x [y1, y2] 
• Idea 

• Find all points with x-coordinates in the correct range [x1, x2] 
• Of all these points, find all points with y-coord in the correct range [y1, y2]

x1 x2

y2

y1

x1 x2

Towards 2D Range Trees



Towards 2D Range Trees

• Store points in a BBST by x-coord 
• Range queries:  

• Use BBST to find all points with the x-coordinates in [x1, x2]:      
• Of all these points, find all points with y-coord in [y1, y2]:

Works, but slow.  n’ = O(n)

O( lg n + n’)
O(n’)



Towards 2D Range Trees

They are sitting in O(lg n) subtrees

• Store points in a BBST by x-coord 
• Range queries:  

• Use BBST to find all points with the x-coordinates in [x1, x2]      
• Of all these points, find all points with y-coord in [y1, y2]
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Towards 2D Range Trees

They are sitting in O(lg n) subtrees

For each subtree we need all points in [y1,y2]

• Store points in a BBST by x-coord 
• Range queries:  

• Use BBST to find all points with the x-coordinates in [x1, x2]     
• Of all these points, find all points with y-coord in [y1, y2]



Towards 2D Range Trees

For each subtree we need all points in [y1,y2]

data structure for  
range searching  
on y-coord

What is a good data structure for range search on y?

• Store points in a BBST by x-coord 
• Range queries:  

• Use BBST to find all points with the x-coordinates in [x1, x2]     
• Of all these points, find all points with y-coord in [y1, y2]



The 2D Range Tree

P: set of points 
RangeTree(P) is  

• A BBST T of P on x-coord 
• Any node v in T stores a BBST Tassoc of P(v), by y-coord

v

P(v): all points in subtree rooted at v

Tassoc(v)

P(v)



The 2D Range Tree

• We’ll use a variant of BBSTs that store all data in leaves 
• It makes the details simpler



The 2D Range Tree
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Example:   P = { 1, 3, 4, 7, 11, 13 }

• We’ll use a variant of BBSTs that store all data in leaves



Class work 

• Show the BBST with all data in leaves for P = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 

• Write pseudocode for the algorithm to build BBST(P) 

//create and return a BBST of P with all data in leaves 

BuildBBST ( P )  

•  Analysis?  

•   What if P is sorted? 



The 2D Range Tree

P: set of points  
RangeTree(P) is  

• A BBST T of P on x-coord 
• Any node v in T stores a BBST Tassoc of P(v), by y-coord

v

P(v): all points in subtree rooted at v

Tassoc(v)

P(v)
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Building a 2D Range Tree



Let P = {p1,p2,…pn}. Assume P sorted by x-coord.
Algorithm Build2DRT(P)

1. if P contains only one point: 

create a leaf v storing this point, create its Tassoc and return v

2. else 

1. Construct the associated structure: build a BBST Tassoc on the set of y-
coordinates of P

2. Partition P into 2 sets w.r.t. the median coordinate xmiddle: 

  Pleft = {p in P. px <= xmiddle},   Pright= …
3. vleft = Build2DRT(Pleft)

4. vright = Build2DRT(Pright)

5. Create a node v storing xmiddle, make vleft its left child, make vright its 
right child, make Tassoc its associate structure

6. return v

Building a 2D Range Tree



Class work 

• Let  P = {(1,4), (5,8), (4,1), (7,3), (3, 2), (2, 6), (8,7)}.  
Show the range tree of P.  



The 2D Range Tree

Questions 
• How to build it and how fast?  
• How much space does it take?  
• How do you answer range queries and how fast?  



• Let T(n) be the time of Build2DRT(P) , where P has n points 
• Constructing a BBST on an unsorted set of keys takes O( n lg n) 
• Then 

T(n) = 2T(n/2) + O( n lg n)  
• This solves to O( n lg2 n) 

Building a 2D Range Tree



• Common trick:  pre-sort P and pass it as argument  
//Px is set of points sorted by x-coord 

//Py is set of points sorted by y-coord 

Build2DRT(Px, Py) 

• Maintain the sorted sets through recursion  
  P1 sorted-by-x, P1 sorted-by-y 

  P2 sorted-by-x,  P2 sorted-by-y 

• Fact: If keys are in order, a BBST can be built in O(n) 
• We have  

 T(n) = 2T(n/2) + O(n)  which solves to O(n lg n) 

Building a 2D Range Tree



The 2D Range Tree

• How much space does a range tree use?  



The 2D Range Tree

• How much space does a range tree use?  

Two arguments can be made:   
• At each level in the tree, each point is stored exactly once (in the 

associated structure of precisely one node). So every level stores all points 
and uses O(n) space  => O( n lg n)  

or  

• Each point p is stored in the associated structures of all nodes on the path 
from root to p.  So  one point is stored O(lg n) times => O( n lg n)



The 2D Range Tree

• How to answer range queries with a range tree, and how fast?  



Range queries with the 2D Range Tree

• Find the split node xsplit  (where the 
search paths for x1 and x2 split) 

• Follow path root to x1: for each node v 
to the right of the path, query its 
associated structure Tassoc(v) with 
[y1,y2] 

• Follow path root to x2: for each node v 
to the left of the path, query its 
associated structure Tassoc(v) with 
[y1,y2] 

How long does this take?



Range queries with the 2D Range Tree

How long does a range query take?  

• There are O( lg n) subtrees in between 
the paths 

• We query each one of them using its 
associated structure  

• Querying  Tassoc takes O( lg nv + k’) 

• Overall it takes   
    SUM {O( lg nv + k’) }  = O(lg2n+k) 

nv: number of points in Tassoc

k’: number of points in Tassoc that are in [y1,y2]





Comparison 

2D
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3D Range Trees

P:  set of points in 3D 
• 3DRangeTree(P) 

• Construct a BBST on x-coord 
• Each node v will have an associated structure that’s a 2D range tree for P(v) 

on the remaining coords

sorted by y

sorted by z
v

sorted by x



3D Range Trees

Size:  
• An associated structure for n points uses O(n lg n) space. Each point is 

stored in all associated structures of all its ancestors => O ( n lg2 n) 

   

    Let’s try this recursively  
• Let S3(n) be the size of a 3D Range Tree of n points  
• Find a recurrence for S3(n) 

• Think about how you build it : you build an associated structure for P that’s 
a 2D range tree; then you build recursively a 3D range tree for the left and 
right half of the points  

• S3(n) = 2S3(n/2) + S2(n) 
• This solves to O(n lg2 n)



3D Range Trees

Build time:  
• Think recursively 
• Let B3(n) be the time to build a 3D Range Tree of n points  
• Find a recurrence for B3(n) 

• Think about how you build it : you build an associated structure for P that’s 
a 2D range tree; then you build recursively a 3D range tree for the left and 
right half of the points  

• B3(n) = 2B3(n/2) + B2(n) 
• This solves to O(n lg2 n)



3D Range Trees

Query:  
• Query BBST on x-coord to find O(lg n) nodes 
• Then perform a 2D range query in each node 

Time?  
• Let Q3(n) be the time to answer a 3D range query  
• Find a recurrence for Q3(n) 

• Q3(n) = O(lg n) + O(lg n) x Q2(n) 
• This solves to O(lg3 n + k)



Comparison  RangeTree and  kdtree

4D
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