
Computational Geometry
[csci 3250]

Laura Toma

Bowdoin College

Polygon Triangulation

Polygon P

Triangulation of P: a partition of P into triangles using a set of diagonals.

Polygon Triangulation: Definition

A diagonal is a segment between 2 non-adjacent
vertices that lies entirely within the interior of the polygon.

Polygon P

Triangulation of P: a partition of P into triangles using a set of diagonals.

Polygon Triangulation: Definition

A diagonal is a segment between 2 non-adjacent
vertices that lies entirely within the interior of the polygon.

diagonal

NOT diagonal

Polygon P

Triangulation of P: a partition of P into triangles using a set of diagonals.

Polygon Triangulation: Definition

not unique

Given a polygon P, triangulate it.

(output a set of diagonals that partition the polygon into triangles).

Polygon Triangulation: The problem

Motivation: Art gallery

Fisk’s proof

1. Any simple polygon can be triangulated.

2. Any triangulated simple polygon can be 3-colored.

3. Placing the guards at all the vertices assigned to one color guarantees
the polygon is covered.

4. There must exist a color that’s used at most n/3 times. Pick that color
and place guards at the vertices of that color.

Does a triangulation always exist?

Polygon Triangulation

YES. The key to proving this is that any polygon n>3 has a diagonal.

• Theorem: Any simple polygon must have a convex vertex (angle <180).

• Theorem: Any simple polygon with n>3 vertices contains (at least) a diagonal.

• Theorem: Any polygon can be triangulated by adding diagonals.

• Theorem: Any triangulation of a polygon of n vertices has n-2 triangles and n-3
diagonals.

• Theorem: Any simple polygon has at least two ears.

Known Results

• A diagonal is a segment between 2 non-adjacent vertices that lies entirely
within the interior of the polygon.

• Come up with algorithms to:
• determine if two vertices of P form a diagonal

• find a diagonal of P

• triangulating a polygon by recursively finding diagonals.

Naive triangulation by recursively finding diagonals

• Algorithm 1: Triangulation by finding diagonals
• Idea: Check all pairs of vertices to find one which is a diagonal; repeat.
• Analysis:

• checking all vertices: O(n2) candidates for diagonals, checking
each takes O(n), overall O(n3)

• recurse, worst case on a problem of size n-1
• overall O(n4)

• Algorithm 2: Triangulation by smartly finding diagonals
• Idea: Find a diagonal, output it, recurse.
• A diagonal can be found in O(n) time (using the proof that a diagonal

exists)
• O(n2)

Naive triangulation by recursively finding diagonals

• A ear with tip vi is a set of 3 consecutive vertices vi-1, vi, vi+1 if vi-1vi+1 is a diagonal.
• Put differently, vi is an ear tip if the vertex right before it and the vertex right after it

are visible to each other

• Theorem: Any simple polygon has at least two ears.

Algorithm 3: Triangulation by finding ears

• Idea: Find an ear, output the diagonal, delete the ear tip, repeat.

• Analysis:
• checking whether a vertex is ear tip or not: O(n)
• checking all vertices: O(n2)
• overall O(n3)

Algorithm 3: Triangulation by finding ears

• Idea: Avoid recomputing ear status for all vertices every time
• When you remove a ear tip from the polygon, which vertices might

change their ear status?

Algorithm 4: Triangulation by finding ears in O(n2)

History of Polygon Triangulation

• Early algorithms: O(n4), O(n3), O(n2)
• Several O(n lg n) algorithms known
• …
• Many papers with improved bounds
• …
• 1991: Bernard Chazelle (Princeton) gave an O(n) algorithm

• https://www.cs.princeton.edu/~chazelle/pubs/polygon-triang.pdf
• Ridiculously complicated, not practical
• O(1) people actually understand it (and I’m not one of them)

• No algorithm is known that is practical enough to run faster than the O(n lg n) algorithms
• OPEN problem

• A practical algorithm that’s theoretically better than O(n lg n).

practical

not practical

• Ingredients

• Consider the special case of triangulating monotone/unimonotone polygons

• Convert an arbitrary polygon into monotone/unimonotone polygons

An O(n lg n) Polygon Triangulation Algorithm

Monotone chains

A polygonal chain is x-monotone if any line perpendicular to x-axis intersects
it in one point (one connected component).

Monotone chains

A polygonal chain is x-monotone if any line perpendicular to x-axis intersects
it in one point (one connected component).

one point one connected
component

Monotone chains

Not x-monotone

Monotone chains

• Claim: Let u and v be the points on the chain with min/max x-coordinate.
The vertices on the boundary of an x-monotone chain, going from u to v,
are in x-order.

x-monotone

u

v

a

c

b

Monotone chains

not x-monotonex-monotone

As you travel along this chain, your x-
coordinate is staying the same or increasing

Monotone chains

A polygonal chain is y-monotone if any line perpendicular to y-axis intersects
it in one point (one connected component).

y-monotone not y-monotone

Monotone chains

A polygonal chain is L-monotone if any line perpendicular to line L intersects
it in one point (one connected component).

L-monotone not L-monotone

L

Monotone polygons

A polygon is x-monotone if its boundary can be split into two x-monotone chains.

Monotone polygons

xmin xmaxThe vertices on each chain are sorted w.r.t. x-axis.

A polygon is x-monotone if its boundary can be split into two x-monotone chains.

Monotone polygons

x-monotone y-monotone

Monotone Mountains

A polygon is an x-monotone mountain if it is monotone and one of the two chains
is a single segment.

Monotone Mountains

xmin xmax

A polygon is an x-monotone mountain if it is monotone and one of the two chains
is a single segment.

Both endpoints have to be convex.

Monotone mountains are easy to triangulate!

Class work: Let’s come up with an algorithm (and analyze it).

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Yes!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

NO!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Yes!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Yes!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

No!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Monotone mountains are easy to triangulate!

Analysis: O(n) time

From monotone mountains to monotone polygons

Same idea: pick the next vertex in x-order. It can be on upper or
lower chain.
O(n) time

Towards an O(n lg n) Polygon Triangulation Algorithm

Partition into
monotone polygons

Triangulate
monotone polygons

polygon P ?

Partition into
unimonotone polygons

Triangulate
unimonotone polygons

?

triangulated P

triangulated Ppolygon P

?

?
? ?

? ?
OR

How can we partition a polygon into (uni)monotone pieces?

Intuition

x-monotone not x-monotone

What makes a polygon not monotone?

Intuition

x-monotone not x-monotone

What makes a polygon not monotone?

Intuition

x-monotone not x-monotone

What makes a polygon not monotone?

Cusp: a reflex vertex v such that the vertices before and after
are both smaller or both larger than v (in terms of x-coords).

Intuition

• Theorem: If a polygon has no cusps, then it’s monotone.
• Proof: Intuitively clear, but proof a little tedious.

x-monotone not x-monotone

Cusp: a reflex vertex v such that the vertices before and after
are both smaller or both larger than v (in terms of x-coords).

We’ll get rid of cusps using a trapezoidation of P.

Trapezoid partitions

Shoot vertical rays
• If polygon is above vertex, shoot vertical ray up until reaches boundary
• If f polygon is below vertex, shoot down
• If polygon is above and below vertex, shoot both up and down

Trapezoid partitions

Shoot vertical rays
• If polygon is above vertex, shoot vertical ray up until reaches boundary
• If f polygon is below vertex, shoot down
• If polygon is above and below vertex, shoot both up and down

• Each polygon in the partition is a trapezoid, because:
• It has one or two rays as sides.
• If it has two, they must both hit the same edge above, and the same edge below.

• How many ?
• At most one ray through each vertex => O(n) threads => O(n) trapezoids

Trapezoid partitions: Properties

Trapezoid partitions

• Each trapezoid has precisely two vertices of the polygon, one on the left and
one on the right. They can be on the top, bottom or middle of the trapezoid.

Trapezoid partitions

• Each trapezoid has precisely two vertices of the polygon, one on the left and
one on the right. They can be on the top, bottom or middle of the trapezoid.

Trapezoid partitions

• Each trapezoid has precisely two vertices of the polygon, one on the left and
one on the right. They can be on the top, bottom or middle of the trapezoid.

Trapezoid partitions

• Each trapezoid has precisely two vertices of the polygon, one on the left and
one on the right. They can be on the top, bottom or middle of the trapezoid.

Diagonals

• In each trapezoid: if its two vertices are not on the same edge, they define a
diagonal.

Diagonals

• In each trapezoid: if its two vertices are not on the same edge, they define a
diagonal.

• In each trapezoid: if its two vertices are not on the same edge, they define a
diagonal.

Diagonals

• In each trapezoid: if its two vertices are not on the same edge, they define a
diagonal.

Diagonals

• In each trapezoid: if its two vertices are not on the same edge, they define a
diagonal.

Diagonals

• In each trapezoid: if its two vertices are not on the same edge, they define a
diagonal.

Diagonals

• In each trapezoid: if its two vertices are not on the same edge, they define a
diagonal.

Diagonals

Diagonals in the trapezoid partition of P

We can use the trapezoid partition of P to “split” the cusps

Removing cusps

Removing cusps

1. Identify cusp vertices

2. Compute a trapezoid partition of P

3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Identify cusp vertices

2. Compute a trapezoid partition of P

3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Identify cusp vertices

2. Compute a trapezoid partition of P

3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Identify cusp vertices

2. Compute a trapezoid partition of P

3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Identify cusp vertices

2. Compute a trapezoid partition of P

3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Identify cusp vertices

2. Compute a trapezoid partition of P

3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

This creates a partition of P.

Claim: The resulting polygons have no cusps and thus are monotone (by theorem).

Removing cusps

• Another example

Removing cusps

1. Identify cusp vertices

Removing cusps

1. Identify cusp vertices

2. Compute a trapezoid partition of P

Removing cusps

1. Identify cusp vertices

2. Compute a trapezoid partition of P

3. Add obvious diagonal before/after each cusp

Removing cusps

This partitions the polygon into monotone pieces.

Partition P into monotone polygons

x

1. Identify cusp vertices

2. Compute a trapezoid partition of P

3. Add obvious diagonal before/after each cusp

Towards an O(n lg n) Polygon Triangulation Algorithm

Trapezoid partition Triangulate
monotone polygons

add
cusps

diagonals

O(n) O(n)

Given a trapezoid partition of P, we can triangulate it in O(n) time.

polygon P

triangulated P

Towards an O(n lg n) Polygon Triangulation Algorithm

Trapezoid partition Triangulate
monotone polygons

add
cusps

diagonals

O(n) O(n)

polygon P

triangulated P

Given a trapezoid partition of P, we can triangulate it in O(n) time.

add
all

diagonals

Triangulate
monotone mountains

triangulated P

OR

O(n) O(n)

1. Compute a trapezoid partition of P

2. Output all diagonals.

Partitioning into monotone mountains

1. Compute a trapezoid partition of P

2. Output all diagonals.

 Claim: All diagonals partition the polygon into monotone mountains.

Partitioning into monotone mountains

1. Compute a trapezoid partition of P

2. Output all diagonals.

 Claim: The diagonals partition the polygon into monotone mountains.

Partitioning into monotone mountains

Proof idea:
• Each “internal” trapezoid in a polygon must have the polygon vertices either

both above (or both below), otherwise they would generate a diagonal => all
internal trapezoids have same edge below/above => one edge

Claim: The diagonals partition the polygon into monotone mountains.

there cannot be any diagonal here

Towards an O(n lg n) Polygon Triangulation Algorithm

Trapezoid partition Triangulate
monotone polygons

add
cusps

diagonals

O(n) O(n)

polygon P

triangulated P

Given a trapezoid partition of P, we can triangulate it in O(n) time.

add
all

diagonals

Triangulate
monotone mountains

triangulated P

OR

O(n) O(n)

Trapezoid partition
? ?
? ?

polygon P

How do we compute
the trapezoid partition?

Computing the trapezoid partition

Computing the trapezoid partition in O(n lg n)

• Plane sweep

Computing the trapezoid partition in O(n lg n)

• Plane sweep

Computing the trapezoid partition in O(n lg n)

• Plane sweep

Computing the trapezoid partition in O(n lg n)

• Plane sweep

Computing the trapezoid partition in O(n lg n)

• Plane sweep

Computing the trapezoid partition in O(n lg n)

• Plane sweep

Computing the trapezoid partition in O(n lg n)

• Plane sweep

Computing the trapezoid partition in O(n lg n)

• Plane sweep

Computing the trapezoid partition in O(n lg n)

• Plane sweep

Computing the trapezoid partition in O(n lg n)

• Plane sweep
• Events: polygon vertices
• Status structure: edges that intersect current sweep line, in y-order
• Events:

How do we determine the trapezoids?

Computing the trapezoid partition in O(n lg n)

• Algorithm

