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Polygon P 

Triangulation of P: a partition of P into triangles using a set of diagonals.

Polygon Triangulation: Definition

A diagonal is a segment between 2 non-adjacent 
vertices that lies entirely within the interior of the polygon. 
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Polygon P 

Triangulation of P: a partition of P into triangles using a set of diagonals.

Polygon Triangulation: Definition

not unique



Given a polygon P, triangulate it.  

(output a set of diagonals that partition the polygon into triangles).

Polygon Triangulation: The problem



Motivation: Art gallery

Fisk’s proof 

1. Any simple polygon can be triangulated. 

2. Any triangulated simple polygon can be 3-colored. 

3. Placing the guards at all the vertices assigned to one color guarantees 
the polygon is covered.  

4. There must exist a color that’s used at most n/3 times. Pick that color 
and place guards at the vertices of that color. 



Does a triangulation always exist? 

Polygon Triangulation

YES. The key to proving this is that any polygon n>3 has a diagonal.  



• Theorem: Any simple polygon must have a convex vertex (angle <180).  

• Theorem: Any simple polygon with n>3 vertices contains (at least) a diagonal. 

• Theorem: Any polygon can be triangulated by adding diagonals. 

• Theorem: Any triangulation of a polygon of n vertices has n-2 triangles and n-3 
diagonals. 

• Theorem: Any simple polygon has at least two ears. 

Known Results



• A diagonal is a segment between 2 non-adjacent vertices that lies entirely 
within the interior of the polygon.  

• Come up with algorithms to:  
• determine if two vertices of P form a diagonal 

• find a diagonal of P  

• triangulating a polygon by recursively finding diagonals. 

Naive triangulation by recursively finding diagonals 



• Algorithm 1: Triangulation by finding diagonals 
• Idea: Check all pairs of vertices to find one which is a diagonal; repeat.  
• Analysis:  

• checking all vertices:  O(n2) candidates for diagonals, checking 
each takes O(n), overall O(n3) 

• recurse, worst case on a problem of size n-1 
• overall O(n4) 

• Algorithm 2: Triangulation by smartly finding diagonals 
• Idea: Find a diagonal, output it, recurse.  
• A diagonal  can be found in O(n) time (using the proof  that a diagonal 

exists) 
•  O(n2)

Naive triangulation by recursively finding diagonals 



• A ear  with tip vi is a set of 3 consecutive vertices vi-1, vi, vi+1 if vi-1vi+1 is a diagonal. 
• Put differently, vi  is an ear tip if the vertex right before it and the vertex right after it 

are visible to each other 

• Theorem: Any simple polygon has at least two ears. 

Algorithm 3: Triangulation by finding ears



• Idea: Find an ear, output the diagonal, delete the ear tip, repeat.  

• Analysis:  
• checking whether a vertex is ear tip or not: O(n) 
• checking all vertices:  O(n2) 
• overall O(n3)

Algorithm 3: Triangulation by finding ears



• Idea: Avoid recomputing ear status for all vertices every time 
• When you remove a ear tip from the polygon, which vertices might 

change their ear status?

Algorithm 4: Triangulation by finding ears in O(n2)



History of Polygon Triangulation

• Early algorithms: O(n4), O(n3), O(n2)  
• Several O(n lg n) algorithms known 
• … 
• Many papers with improved bounds 
• … 
• 1991: Bernard Chazelle (Princeton) gave an O(n) algorithm  

• https://www.cs.princeton.edu/~chazelle/pubs/polygon-triang.pdf 
• Ridiculously complicated, not practical  
• O(1) people actually understand it  (and I’m not one of them) 

• No algorithm is known that is practical enough to run faster than the O( n lg n) algorithms 
• OPEN problem 

• A practical algorithm that’s theoretically better than O(n lg n).

practical

not practical



• Ingredients  

• Consider the special case of triangulating monotone/unimonotone polygons  

• Convert an arbitrary polygon into monotone/unimonotone polygons 

An O(n lg n) Polygon Triangulation Algorithm



Monotone chains

A polygonal chain is x-monotone if any line perpendicular to x-axis intersects 
it in one point (one connected component).



Monotone chains

A polygonal chain is x-monotone if any line perpendicular to x-axis intersects 
it in one point (one connected component).

one point one connected  
component



Monotone chains

Not x-monotone



Monotone chains

• Claim: Let u and v be the points on the chain with min/max x-coordinate. 
The vertices on the boundary of an x-monotone chain, going from u to v, 
are in x-order.

x-monotone

u

v

a

c

b



Monotone chains

not x-monotonex-monotone

As you travel along this chain, your x-
coordinate is staying the same or increasing



Monotone chains

A polygonal chain is y-monotone if any line perpendicular to y-axis intersects 
it in one point (one connected component).

y-monotone not y-monotone



Monotone chains

A polygonal chain is L-monotone if any line perpendicular to line L intersects 
it in one point (one connected component).

L-monotone not L-monotone

L



Monotone polygons

A polygon is x-monotone if its boundary can be split into two x-monotone chains.



Monotone polygons

xmin xmaxThe vertices on each chain are sorted w.r.t. x-axis.

A polygon is x-monotone if its boundary can be split into two x-monotone chains.



Monotone polygons

x-monotone y-monotone



Monotone Mountains

A polygon is an x-monotone mountain if it is monotone and one of the two chains 
is a single segment.



Monotone Mountains

xmin xmax

A polygon is an x-monotone mountain if it is monotone and one of the two chains 
is a single segment.

Both endpoints have to be convex.



Monotone mountains are easy to triangulate! 

Class work: Let’s come up with an algorithm (and analyze it).  
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Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 

Analysis: O(n) time



From monotone mountains to monotone polygons

Same idea:  pick the next vertex in x-order.  It can be on upper or 
lower chain.  
O(n) time 



Towards an O(n lg n) Polygon Triangulation Algorithm

Partition into  
monotone polygons

Triangulate 
monotone polygons

polygon P ?

Partition into  
unimonotone polygons

Triangulate 
unimonotone polygons

?

triangulated P

triangulated Ppolygon P

?

?
? ?

? ?
OR



How can we partition a polygon into (uni)monotone pieces?



Intuition

x-monotone not x-monotone

What makes a polygon not monotone?



Intuition

x-monotone not x-monotone

What makes a polygon not monotone?



Intuition

x-monotone not x-monotone

What makes a polygon not monotone?

Cusp: a reflex vertex v such that the vertices before and after 
are both smaller or both larger than v (in terms of x-coords).



Intuition

• Theorem: If a polygon has no cusps, then it’s monotone. 
• Proof: Intuitively clear, but proof a little tedious. 

x-monotone not x-monotone

Cusp: a reflex vertex v such that the vertices before and after 
are both smaller or both larger than v (in terms of x-coords).



We’ll get rid of cusps using a trapezoidation of P.



Trapezoid partitions

Shoot vertical rays  
•   If polygon is above vertex, shoot vertical ray up until reaches boundary 
•   If f polygon is below vertex, shoot down  
•   If polygon is above and below vertex, shoot both up and down  



Trapezoid partitions

Shoot vertical rays  
•   If polygon is above vertex, shoot vertical ray up until reaches boundary 
•   If f polygon is below vertex, shoot down  
•   If polygon is above and below vertex, shoot both up and down  



• Each polygon in the partition is a trapezoid, because:  
• It has one or two rays as sides.  
• If it has two, they must both hit the same edge above, and the same edge below. 

• How many ?  
• At most one ray through each vertex => O(n) threads => O(n) trapezoids

Trapezoid partitions: Properties



Trapezoid partitions

• Each trapezoid has precisely two vertices of the polygon, one on the left and 
one on the right. They can be on the top, bottom or middle of the trapezoid.
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Trapezoid partitions
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Diagonals

• In each trapezoid: if its two vertices are not on the same edge, they define a 
diagonal.
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• In each trapezoid: if its two vertices are not on the same edge, they define a 
diagonal.

Diagonals



Diagonals in the trapezoid partition of P



We can use the trapezoid partition of P to “split” the cusps



Removing cusps



Removing cusps

1. Identify cusp vertices 

2. Compute a trapezoid partition of P 

3. For each cusp vertex, add diagonal in trapezoid before/after the cusp
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Removing cusps

1. Identify cusp vertices 

2. Compute a trapezoid partition of P 

3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

This creates a partition of  P.   

Claim: The resulting polygons have no cusps and thus are monotone (by theorem). 







Removing cusps

• Another example



Removing cusps

1. Identify cusp vertices 



Removing cusps

1. Identify cusp vertices 

2. Compute a trapezoid partition of P 



Removing cusps

1. Identify cusp vertices 

2. Compute a trapezoid partition of P 

3. Add obvious diagonal before/after each cusp



Removing cusps

This partitions the polygon into monotone pieces.



Partition P into monotone polygons

x

1. Identify cusp vertices 

2. Compute a trapezoid partition of P 

3. Add obvious diagonal before/after each cusp



Towards an O(n lg n) Polygon Triangulation Algorithm

Trapezoid partition Triangulate 
monotone polygons

add   
cusps  

diagonals

O(n) O(n)

Given a trapezoid partition of P,  we can triangulate it in O(n) time.

polygon P

triangulated P
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Trapezoid partition Triangulate 
monotone polygons
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O(n) O(n)

polygon P

triangulated P

Given a trapezoid partition of P,  we can triangulate it in O(n) time.

add   
all  

diagonals

Triangulate 
monotone mountains

triangulated P

OR

O(n) O(n)



1. Compute a trapezoid partition of P 

2. Output all diagonals. 

    

Partitioning into monotone mountains



1. Compute a trapezoid partition of P 

2. Output all diagonals. 

     Claim: All diagonals partition the polygon into monotone mountains.

Partitioning into monotone mountains



1. Compute a trapezoid partition of P 

2. Output all diagonals. 

     Claim: The diagonals partition the polygon into monotone mountains.

Partitioning into monotone mountains



Proof idea:  
• Each “internal” trapezoid in a polygon must have the polygon vertices either 

both above (or both below), otherwise they would generate a diagonal => all 
internal trapezoids have same edge below/above => one edge 

Claim: The diagonals partition the polygon into monotone mountains.



there cannot be any diagonal here



Towards an O(n lg n) Polygon Triangulation Algorithm

Trapezoid partition Triangulate 
monotone polygons
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Given a trapezoid partition of P,  we can triangulate it in O(n) time.
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all  
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OR
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Trapezoid partition
? ?
? ?

polygon P

How do we compute  
the trapezoid partition?



Computing the trapezoid partition



Computing the trapezoid partition in O(n lg n)

• Plane sweep
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Computing the trapezoid partition in O(n lg n)
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Computing the trapezoid partition in O(n lg n)

• Plane sweep 
• Events: polygon vertices 
• Status structure: edges that intersect current sweep line, in y-order 
• Events: 

How do we determine the trapezoids?



Computing the trapezoid partition in O(n lg n)

• Algorithm


