Line segment intersection (l):
Orthogonal line segment intersection

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

Outline

e The problem (what)
e Applications (why)
e Algorithms (how)

e A special case: Orthogonal line segments

e General case: Bentley-Otman line sweep algorithm

Line segment intersection

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

Line segment intersection

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

Line segment intersection

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

A
A =

Line segment intersection:

Applications

Applications

Graphics: rendering => hidden surfaces ==> intersections

-
-~
-
-
-
-~
.
.~
.~

viewing
frustum . . '
clip plane Viewpoint

.‘-‘
Seo
e
S
e

- MedelingHero.com Beginner - Amold Face Medel

Applications

Motion planning and collision detection in autonomous systems/robotics

Applications

Geographic data: River networks, road networks, railways, ..

Wilden : :
3 Craig ' ot Collins Sterling
1han :
ng Boglder «QP
» 4 \ &
| gl .
ng
Rifle} e ¥ Vail p £ Ewslon
- < ¥ Breckenridge ‘ JLimon 470 : :f.‘;'s‘"t;‘:
E x 4 v Liverpwl
! £ r : :’l;r::elol
v ngte
ung ‘ | 3 SlPaua
Colorado : amo
; a

Applications

Map overlay in GIS

from: www.geo.hunter.cuny.edu/aierulli/qis2/lectures/L ecture?/fig9-30_raster_overlay.qif

http://c

e —— Y
. Miwd, [P,
— -]

: : | - :T;"’ H; Counties of Texas
Applications ==

Nrirxe

- LA Mb"u-tl Wb Qo™

iwenr |
Mot Laia | Huw | St by e T Wby T P
1 ooz e P P i

T Tl .14 e A (S

et amtwetipdisood sowe scssns sy | tan | Covice [dore Nortrd iy femem ""[-'.‘ iy <= |

1 == e

Lm~w v | wl!uo»uMJ “on ot | e [Gymiors} Colie e [raciins| ;_*-:"" l

. ———) LTy Faongl e ™ “.r._;]
T S Py [y oy e pape— Podms (L d | Doloe [_‘L-“’"‘?} .

Pauliln "l L Ny Sl = | S

4 4 L Y L . w.&“". "

| road Mot . *_‘ 3 -

l do b et nw-.-va(‘ e oy Lwﬂ":'.‘-. umv;._;;'_‘_.: .(r;.,, “ﬁ'nmu(: —1!4’ "cﬂ‘
e] | o s : ,

7 v Guarioth S Y e S e
: T [e k| Lo paced” Bherd ™ hones oM T e, T G e RRETT Wy
\ T —— 1 3 — fear Pt 7N Tregke . MERORW S
o e | cusime | o Wed s Rl b "‘;.‘f""}, ’ ‘nav‘-" L
"\ | b i [T l..‘.{ - T- Ll NS b YA) E

(W) L g P g :".-‘. T o’ ¢_.‘¢" -<“l::.'l
~ s 1 Urena -~ N 2 ey e
N ; .] - ke sy \

W | e = P R pask— 2\ \I'ﬂ*’?',
- .- Y Kok Noard Ao e L ke (W
~ . waae ~x _ Cocat: Mises| Sow 7 Swmpmers o7 then U s —t 11
T e o N 4 \ L M~ \ - Lno” E -y J
\ — e) swan | Vi Rl am 4 . | ‘

o P LT e)
X e A Indi p “im>= S) \ L
|] ST e — PR ~ S ’\ =
~ | \ £ o T * Nilkeny 5 4

o~ . f . -t y)]wa
\ - . e | " NN Aeenes Agr® L e Y \

. L i : o o N 4) -

~ .] 1 \

. s TR
e 1 T Yo =g Al

Y Yo" o
J \ ;N uh“):y

o S

o S,]

Wbl ST
N i

TV Kewad

yp

. Intortrn Hichanys

VS Filvene
| WS U—
S sslle U 100 KIA 106 Ml

from: www.qgeo.hunter.cuny.edu/aierulli

is?/lectures/L ecture2/fig9-30_raster_overlay.qif

http://c

Applications

Geographic data: River networks, road networks, railways, ..

N /,,' y‘ r::.-y-:m '/n'
4 oF / } /
X,

Computing line segment intersection:

Algorithms

Notation

Nalve * n: size of the input (number of segments)

* k: size of output (number of intersections)

Problem: Given a set of n line segments in 2D, find all their pairwise intersections.

Class work:

o Give upper and lower bounds for k, draw examples that achieve these bounds.

« Give a straightforward algorithm that computes all intersections and analyze its
running time. Give scenarios when this algorithm is efficient/inefficient.

o What is your intuition of an upper bound for this problem? (how fast would you
hope to be able to solve it?)

A special case: Orthogonal line segment intersection

Problem: Given a set of orthogonal line segments in 2D, find all their pairwise
intersections.

A special case: Orthogonal line segment intersection

Problem: Given a set of orthogonal line segments in 2D, find all their pairwise
intersections.

Exercises
« (Come up with a straightforward algorithm and analyze its time

e (Can you do better?

Balanced Binary Search Trees
- crash course -

Binary Search Trees (BST)

Operations

Insert
delete

search

successor, predecessor

)

traversals (in order, .

min, max

Balanced Binary Search Trees (BBST)

 Binary search trees + invariants that constrain the tree to be balanced (and
thus have logarithmic height)

 These invariants have to be maintained when inserting and deleting

e we can think of the tree as self-balancing

e BBST variants
 red-black trees
AVL trees

B-trees

(a,b) trees

Example: Red-Black trees

e Binary search tree, and
e Each node is Red or Black
* The children of a Red node must be Black

« The number of Black nodes on any path from the root to any node that
does not have two children must be the same

uﬁ! nﬂ!
Note:

e easier to conceptualize the tree as containing explicit NULL leaves, all Black
e the number of Black nodes on any root-to-leaf path must be the same

Example: Red-Black trees

e Theorem:

A Red-Black tree of n nodes has height Theta(Ig n).

Example: Red-Black trees

e Theorem:

e After an insertion or a deletion, the RB tree invariants can be maintained
in additional O(Ig n) time. This is done by performing rotations and
recoloring nodes on the path from the inserted/deleted node to the root.

o0

Binary Search Trees

Operations

Insert

delete

search

successor, predecessor
traversals (in order, ..)
min, max

range search (1D)

"
& & & W
D @ & @& @

1D Range Searching

e Given a set of values P = {x1, X2, X3, ...Xn }
e Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

\SZ

1D Range Searching

e Given a set of values P = {x1, X2, X3, ...Xn }
e Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

< >
o
P is known ahead
and
does not change

e |f Pis static

1D Range Searching

e Given a set of values P = {x1, X2, X3, ...Xn }
e Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

4

e |f Pis static

e sort, then binary search for a and walk. O(lgn ; K) per query

1D Range Searching

e Given a set of values P = {x1, X2, X3, ...Xn }
e Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

< .
 |[f Pis dynamic P changes by .
adding and

* use a BBST deleting values

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

21 53

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

43

@ & @ o

21 53

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

e

1 54
@ @ @ W
[©

DE &

21 53

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

21 53

1D Range Searching with Red-Black Trees

Example: range_search(10, 16): return 11, 13, 15

NIL NIL

10 16

1D range searching with Binary Search Trees

 Range search (a,b):

1D range searching with Binary Search Trees

 Range search (a,b):

e Can be answered in O(Ig n+k), where k = O(n) is the size of output

(L

¢

{
W

Balanced

Binary Search Trees
- end -

Orthogonal line segment intersection

Orthogonal line segment intersection

o Events

‘ beginning of a horizontal segment

end of a horizontal segment

vertical segment

e Let X be the set of x-coordinates of all segments: these are the “events”

Xstart Xend

Orthogonal line segment intersection

‘ line sweep technique

 Events: Let X be the set of x-coordinates of all segments. Sort X.

e [raverse the events in sorted order

Orthogonal line segment intersection

‘ line sweep technique

 Events: Let X be the set of x-coordinates of all segments. Sort X.

e [raverse the events in sorted order

Orthogonal line segment intersection

‘ line sweep technique

N

 Events: Let X be the set of x-coordinates of all segments. Sort X.

e [raverse the events in sorted order

Orthogonal line segment intersection

- ‘ line sweep technique

 Events: Let X be the set of x-coordinates of all segments. Sort X.

e [raverse the events in sorted order

Orthogonal line segment intersection

—>
:
1
1

— ‘ line sweep technique

 Events: Let X be the set of x-coordinates of all segments. Sort X.

e [raverse the events in sorted order

Orthogonal line segment intersection

1

|

line sweep technique

 Events: Let X be the set of x-coordinates of all segments. Sort X.

e [raverse the events in sorted order

Orthogonal line segment intersection

Events

beginning of a horizontal segment
end of a horizontal segment

vertical segment

Line sweep technique

Traverse events in order and maintain an
Active Structure (AS)

 AS contains objects that are
“active” (started but not ended) in
other words they are intersected by
the current sweep line

e at some events, insert in AS
e at some events, delete from AS

e at some events, query AS

Orthogonal line segment intersection

e |et X be the set of x-coordinates of all segments

e Initialize AS = {}

e Sort X and traverse the events in sorted order; let
X be the next event in X

‘ if X is start of horizontal segment (x, X', y):

Insert segment (x,x’,y) in AS

g p— ‘ * if x is end of horizontal segment (x, X', y):

delete segment (x,x’,y) from AS

 if X corresponds to a vertical segment (y, y',X):
AS="
in order to do this efficiently

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

e |et X be the set of x-coordinates of all segments

e Initialize AS = {}

e Sort X and traverse the events in sorted order; let
X be the next event in X

‘ if X is start of horizontal segment (x, X', y):

Insert segment (x,x’,y) in AS

g p— ‘ * if x is end of horizontal segment (x, X', y):

delete segment (x,x’,y) from AS

 if X corresponds to a vertical segment (y, y',X):
AS="
in order to do this efficiently

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

e |et X be the set of x-coordinates of all segments

e Initialize AS = {}

e Sort X and traverse the events in sorted order; let
X be the next event in X

 if X is start of horizontal segment (x, X', y):

Insert segment (x,x’,y) in AS

— e if x is end of horizontal segment (x, X, y):

delete segment (x,x’,y) from AS

 if X corresponds to a vertical segment (y, y',X):
AS="
in order to do this efficiently

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

e |et X be the set of x-coordinates of all segments

e Initialize AS = {}

e Sort X and traverse the events in sorted order; let
X be the next event in X

 if X is start of horizontal segment (x, X', y):

Insert segment (x,x’,y) in AS

— e if x is end of horizontal segment (x, X, y):

:—>
’

delete segment (x,x’,y) from AS

 if X corresponds to a vertical segment (y, y',X):
AS="
in order to do this efficiently

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

e |et X be the set of x-coordinates of all segments

e Initialize AS = {}

e Sort X and traverse the events in sorted order; let
X be the next event in X

 if X is start of horizontal segment (x, X', y):

iInsert segment (x,x’,y) in AS

— e if x is end of horizontal segment (x, X, y):

|

delete segment (x,x’,y) from AS

 if X corresponds to a vertical segment (y, y',X):
AS="
in order to do this efficiently

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

— * Let X be the set of x-coordinates of all segments

: — * Initialize AS = {}

: _ » Sort X and traverse the events in sorted order; let

' X be the next event in X

; e if X is start of horizontal segment (x, X', y):

: iInsert segment (x,x’,y) in AS

: e * if x is end of horizontal segment (x, X, y):
|

delete segment (x,x’,y) from AS

 if X corresponds to a vertical segment (y, y',X):
AS="
in order to do this efficiently

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

— * Let X be the set of x-coordinates of all segments

: — * Initialize AS = {}

: _ » Sort X and traverse the events in sorted order; let

' X be the next event in X

: e if X is start of horizontal segment (x, X', y):

F

: iInsert segment (x,x’,y) in AS

: e * if x is end of horizontal segment (x, X, y):
|

delete segment (x,x’,y) from AS

 if X corresponds to a vertical segment (y, y',X):
AS="
in order to do this efficiently

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

e |et X be the set of x-coordinates of all segments

e Initialize AS = {}

e Sort X and traverse the events in sorted order; let
X be the next event in X

 if X is start of horizontal segment (x, X', y):

iInsert segment (x,x’,y) in AS

e if x is end of horizontal segment (x, X, y):

delete segment (x,x’,y) from AS

 if X corresponds to a vertical segment (y, y',X):
AS="
in order to do this efficiently

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

e |et X be the set of x-coordinates of all segments

e Initialize AS = {}

e Sort X and traverse the events in sorted order; let
X be the next event in X

 if X is start of horizontal segment (x, X', y):

Insert segment (x,x’,y) in AS

e if x is end of horizontal segment (x, X, y):

delete segment (x,x’,y) from AS

 if X corresponds to a vertical segment (y, y',X):
AS="
in order to do this efficiently

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

— * Let X be the set of x-coordinates of all segments
— * Initialize AS = {}
- e Sort X and traverse the events in sorted order; let
X be the next event in X
 if X is start of horizontal segment (x, X', y):
iInsert segment (x,x’,y) in AS
: = * if x is end of horizontal segment (x, X, y):
I —

: delete segment (x,x’,y) from AS

 if X corresponds to a vertical segment (y, y',X):
AS="

in order to do this efficiently

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

1

e |et X be the set of x-coordinates of all segments

e Initialize AS = {}

e Sort X and traverse the events in sorted order; let
X be the next event in X

 if X is start of horizontal segment (x, X', y):

Insert segment (x,x’,y) in AS

e if x is end of horizontal segment (x, X, y):

delete segment (x,x’,y) from AS

 if X corresponds to a vertical segment (y, y',X):
AS="
in order to do this efficiently

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

e |et X be the set of x-coordinates of all segments

e Initialize AS = {}

e Sort X and traverse the events in sorted order; let
X be the next event in X

 if X is start of horizontal segment (x, X', y):

i

iInsert segment (x,x’,y) in AS

— e if x is end of horizontal segment (x, X, y):

delete segment (x,x’,y) from AS

 if X corresponds to a vertical segment (y, y',X):
AS="
in order to do this efficiently

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

— * Let X be the set of x-coordinates of all segments
: — * Initialize AS = {}
: _ e Sort X and traverse the events in sorted order; let
' X be the next event in X
; e if X is start of horizontal segment (x, X', y):
E iInsert segment (x,x’,y) in AS
. * if x is end of horizontal segment (x, X, y):
|
: delete segment (x,x’,y) from AS
 if X corresponds to a vertical segment (y, y',X):
AS="

in order to do this efficiently

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

e Let X be the set of x-coordinates of all segments

 |nitialize AS = {}

e Sort X and traverse the events in sorted order; let
X be the next event in X

* Pick an example and simulate the * if x is start of horizontal segment (x, X', y):
algorithm

e How do you implement the AS? insert segment (x,x,y) in AS
e if x is end of horizontal segment (x, X, y):

* Analysis?

delete segment (x,x’,y) from AS

 if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [y,y'] and report intersections

Line sweep

Line sweep algorithms

 Powerful, elegant, frequently used technigue

e L|Line can be horizontal or vertical or radial or

e Traverse events in order and maintain an
T Active Structure (AS)

 AS contains objects that are
“active” (started but not ended) in other
words they are intersected by the current
sweep line

1\ e at some events, insert in AS

3

““““ e at some events, delete from AS

e at some events, query AS

.
*
*
.
.
.
.
.
.
.
.
.
.
.
3
.
.
3
.
.
3
*
.
*
*
*
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
.
.
3
.
’O
*

