Approximate path planning

Computational Geometry
csci3250
Laura Toma
Bowdoin College



Path planning

e Combinatorial <—— last time

* Approximate <—— next



Combinatorial path planning

- ldea: Compute free C-space combinatorially (= exact)
- Approach
* (robot, obstacles) => (point robot, C-obstacles)
« Compute roadmap of free C-space
e any path: trapezoidal decomposition or triangulation

e shortest path: visibility graph

- Comments
« Complete
« Works beautifully in 2D and for some cases in 3D
« Worst-case bound for combinatorial complexity of C-objects in 3D is high
« Unfeasible/intractable for high #DOF

« A complete planner in 3D runs in O(2n"#DOF)



Approximate path planning

e Since you can’t compute C-free, approximate it

* Approaches
 (Graph search strategies
« A* weighted A*, D*, ARA*,...
e Sampling-based + roadmaps
 PRM, RRT, ...
e Potential field
e Hybrid



Planning as a graph-search problem

1. Construct the graph representing the environment

2. Search the graph (hopefully for a close-to-optimal) path

The two steps are often interleaved.



Planning as a graph-search problem

Graphs can be grouped into two classes

e Skeletonization/roadmaps
e visibility graphs
¢ trapezoidal decomposition

* (probabilistic) roadmaps

e Cell decomposition
® grids

e multi-resolution grids



Grid-based graphs

Sample C-space with uniform grid/lattice
e refined: quadtree/octree

 This essentially “pixelizes" the space (pixels/voxels in C-free)

Graph is usually implicit

e given by lattice topology: move +/-1 in each direction, possibly
diagonals as well

e successors(state s)

Search the graph for a path from start to end

e Dikstra/A* + variants

Graph can be pre-computed (occupancy grid), or computed incrementally
e one-time path planning vs many times

e gstatic vs dynamic environment



Dijkstra’s SSSP algorithm

* Dbest-first search: priority(v) = d[v] = cost of getting from s to v
e Initialize: d[v] = inffor all v, d[s] =0

e repeat: greedily select the vertex with smallest priority, and relax its edges



Dijkstra(vertex s)

initialize

d[v] = infinity for all v, d[s] =0

- for all v: PQ.insert(<v, d[v]>)
while PQ not empty
u = PQ.deleteMin()

for each edge (u,v):

if v not done, and if d[v] > d[u] + edge(u,v):
« d[v]=d[u] +edge(u,v)
PQ.decreasePriority (v, d[V])

no need to check if v is done,
because once Vv is done,
no subsequent relaxation can improve its d[]

T

usually not implemented



Dijkstra(vertex s)
initialize
d[v] = infinity for all v, d[s] =0
PQ.insert(<s, d[s]>) insert only the start
while PQ not empty
u = PQ.deleteMin()

for each edge (u,v):
ifisFree(v) and d[v] > d[u] + edge(u,v):
d[v] =d[u] + edge(u,v)

PQ.insert(<v, d[v]>) insert it
(even if it's already there)

What to do with a partially blocked cell?
isFree(v): is v in C-free



Grid-based graphs

« Dijkstra’s algorithm : if only one path is needed (not SSSP), a heuristic can be
used to guide the search towards the goal

W

e best-first search
- priority f(v) = g(v) + h(v)
e g(v): cost of getting from start to v
e h(v): estimate of the cost from v to goal

e Theorem: If h(v) is “admissible” ( h(v) < trueCost(v—>goal)) then A* will return
an optimal solution.

e Dijkstra is (A* with h(v) =0)
* In general it may be hard to estimate h(v)

e path planning: h(v) = EuclidianDistance(v, goal)



Grid-based graphs

 A” explores fewer vertices to get to the goal, compared to Dijkstra
* The closer h(v) is to the trueCost(v), the more efficient
 Example

e https://www.youtube.com/watch?v=DINClL 5cd w0

* Many A* variants
 weighted A*
* C.Nh() ==> solution is no worse than (1+c) x optimal
* real-time replanning

« if the underlying graph changes, it usually affects a small part of the graph ==>
don’t run search from scratch

« D™ efficiently recompute SP every time the underlying graph changes
e anytime A*

* use weighted A* to find a first solution ; then use A* with first solution as upper
bound to prune the search


https://www.youtube.com/watch?v=DINCL5cd_w0

Grid-based graphs

« Comments
 Not complete, but resolution complete

e find a solution, if one exists, with probability —> 1 as the resolution of the
grid increases

 The paths may be longer than true shortest path in C-space

* can interleave the construction with the search (ie construct only what is
necessary)

* +
e very simple to understand/implement

e works in any dimension

e size depends on size of the environment

e Size can be too large => slow



Sampling-based planning

 (Combinatorial: hard to construct C-obstacles exactly when D is high

 (@rid-based: space is too large when D is high

« Sampling-based planning

generates a sparse (sample-based) representation of free C-
space

isFree(p): would my robot | if placed in this configuration,
intersect any obstacle?

points to sample are generated probabilistically
alms to provide probabilistic completeness

e find a solution, if one exists, as the number of samples
approaches infinity

well-suited for high D planning



Sampling

* You are not given the representation of C-free: Imagine being blindfolded
IN a maze

« Sampling: you walk around hitting your head on the walls

« Left long enough, after hitting many walls, if you remember everything, you
have a pretty good representation of the maze

 However the space is huge
« e.9g. DOF=6: 1000 x 1000 x 1000 x 360 x 360 x 360

e SO you need to be smart about how you chose the points to sample



2D: robot can translate and rotate C-space: 3D

position p: (X, Y, theta)

sample (8,15,45): not free

sample (8,5,0): free

How would you write: isFree((x,y,theta)) 7



GENERIC sampling-based planning

e Roadmap

e Instead of computing C-free explicitly, sample it and compute a
roadmap that captures its connectivity to the best of our (limited)
kKnowledge

« Roadmap construction phase
e Start with a sampling of points in C-free and try to connect them

e Two points are connected by an edge if a simple quick planner
can find a path between them

 This will create a set of connected components
 Roadmap query phase

 Use roadmap to find path between any two points



GENERIC sampling-based planning

e (Generic-Sampling-based-roadmap:
*  V =Dstart + Sample_points(C, n); E = {}
« for each pointxin V:

- for each neighbor y in neighbors(x, V):

- if collisionFree(segment xy): E=E + Xy
- return (V, E)

e Algorithms differ in
e sample_points(C, n) : how they select the initial random samples from C
e return a set of n points arranged in a regular grid in C
e return random n points
 neighbors(x, V) : how they select the neighbors
« return the k nearest neighbors of x in V
e return the set of points lying in a ball centered at x of radius r

« Often used: samples arranged in a 2-dimensional grid, with nearest 4 neighbors (d, 2d)



PrObabiliStiC ROadmapS (Kavraki, Svetska, Latombe, Overmars et al , 1996)

e Start with a random sampling of points in
C-free

 Roadmap stored as set of trees for space
efficiency

e trees encode connectivity, cycles
don’t change it. Additional edges are
useful for shortest paths, but not for
completeness

 Augment roadmap by selecting additional
sample points in areas that are estimated
to be “difficult”

« (Components

« sampling C-free: random sampling

(1)
(2)
(3)
(4)

(5)

(6)
(7)

(8)

(9)
(10)

N « 0
F o« 0
loop
¢ «~ a randomly chosen free
configuration
N.+«~ a set of candidate neighbors
of ¢ chosen from N
N « N U {c}
for all n € N., in order of
increasing D(e,n) do
if -same_connected.component(c,n)
AA(e,n) then
E —~ EU{(¢c,n)}
update R's connected
components

e selecting the neighbors: within a ball of radius r

« the local planner delta(c,n): is segment cn collision free?

« the heuristical measure of difficulty of a node



PrObabiliStiC ROadmapS (Kavraki, Svetska, Latombe, Overmars et al , 1996)

Comments

« Roadmap adjusts to the density of free

. (1) N « 0
space and is more connected around the 2y F — 0
obstacles (3) loop
(4) ¢ «~ a randomly chosen free
* Size of roadmap can be adjusted as configuration
needed (5) N.~ a set of candidate neighbors
of ¢ chosen from N
o i ' ( A (6) N « N U{c
More time spent in the “learning” phase (7 for a1l '{'é N.. in order of
==> pbetter roadmap increasing D(e,n) do
(8) if -same_connected.component(c,n)
 Shown to be probabilistically complete AA(e,n) then
(9) E —~ EU{(c,n)}
 probability that the graph contains a (10) update R’'s connected
valid solution —> 1 as number of components

samples increases




Probabilistic Roadmaps

 One of the leading motion planning technique
e Efficient, easy to implement, applicable to many types of scenes

« Embraced by many groups, many variants of PRM’s, used in many type
of scenes.

« PRM*
« FMT” (fast marching tree)

 Not completely clear which technigue better in which circumstances


https://arxiv.org/pdf/1604.07446.pdf

Incremental search planners

 (Graph search planners over a fixed lattice:

* may fail to find a path or find one that’s too long

« PRM:

* suitable for multiple-query planners

* |Incremental search planners:
* designed for single-query path planning

e incrementally build increasingly finer discretization of the configuration
space, while trying to determine it a path exists at each step

* probabilistic complete, but time may be unboundead



Incremental search planners

BUIIJD_RRT(QUH!.)

I T.init{gin);

2 fork=1to K do

3 Grand — RANDOM_CONFIG();
4 EXTEND(T, grand);

5 Return T

 RRT (LaValle, 1998)

EXTEND(T, g)
1 Gnear — NEAREST NEIGHBOR(q, T);
* |dea: Incrementally grow a tree 2 if NEW_CONFIG(q, gnears Gnews) then
y y 3 T .add _vertex(q, .., ):
rooted at “start” outwards to 4 T.2dd _edge(qnears Gnew):
i i 5 if ¢rewe = q then

explore reachable configuration 6 Return Reached;

7 else
Space 8 Return Advanced,;

9 Return Trapped;

Figure 2: The basic RRT construction algorithm.

|
€

[ — ) Qnem

| | ‘__.—"
/ B A .

. ‘/ ~ o .
r q
P /.. . Qnear

.’ “~

| Qinit

Figure 3: The EXTEND operation.

e https://personalrobotics.ri.cmu.edu/files/courses/papers/Kuffner00-rrtconnect.pdf



https://personalrobotics.ri.cmu.edu/files/courses/papers/Kuffner00-rrtconnect.pdf

Self-driving cars

e Both graph search and incremental tree-based

« DARPA urban challenge:
« CMU: lattice graph in 4D (x,y, orientation, velocity); graph search with D*
« Stanford: incremental sparse tree of possible maneuvers, hybrid A*
« Virginia Tech: graph discretization of possible maneuvers, searchwith A*

« MIT: variant of RRT with biased sampling

Good read: A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles, by
Brian Paden, Michal Cap, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli

https://arxiv.org/pdf/1604.07446.pdf



https://arxiv.org/pdf/1604.07446.pdf

Some demos

http://kevinkdo.com/rrt_demo.html

https://www.youtube.com/watch?v=MT6FyoHefgY

https://www.youtube.com/watch?v=E-l[UAL-DI9SY

https://www.youtube.com/watch?v=mP4ljdTsvxI


http://kevinkdo.com/rrt_demo.html
https://www.youtube.com/watch?v=MT6FyoHefgY
https://www.youtube.com/watch?v=E-IUAL-D9SY
https://www.youtube.com/watch?v=mP4ljdTsvxI

Potential field methods

 |dea [Latombe et al, 1992]

e Define a potential field

 Robot moves in the direction of steepest descent on potential function

e |deally potential function has global minimum at the goal, has no local
minima, and is very large around obstacles

e Algorithm outline:
e place aregular grid over C-space

e search over the grid with potential function as heuristic

https://www.youtube.com/watch?v=r9FD7P76zJs



https://www.youtube.com/watch?v=r9FD7P76zJs

Potential field methods

* Pro:
 Framework can be adapted to any specific scene
o Con:

e can get stuck in local minima
e Potential functions that are minima-free are known, but expensive to compute

 Example: RPP (Randomized path planner) is based on potential functions
e Escapes local minima by executing random walks
e Succesfully used to

e performs riveting ops on plane fuselages

e plan disassembly operations for maintenance of aircraft engines



From UNC: papers + videos

Optimization-based motion planning in dynamic environments (UNC)



http://gamma.cs.unc.edu/ITOMP/

