Approximate path planning

Computational Geometry

csci3250
Laura Toma
Bowdoin College

Path planning

- Combinatorial < _ last time
- Approximate < - next

Combinatorial path planning

- Idea: Compute free C-space combinatorially (= exact)
- Approach
- (robot, obstacles) => (point robot, C-obstacles)
- Compute roadmap of free C-space
- any path: trapezoidal decomposition or triangulation
- shortest path: visibility graph
- Comments
- Complete
- Works beautifully in 2D and for some cases in 3D
- Worst-case bound for combinatorial complexity of C-objects in 3D is high
- Unfeasible/intractable for high \#DOF
- A complete planner in 3D runs in $O\left(2^{\text {^^\#DOF }}\right)$

Approximate path planning

- Since you can't compute C-free, approximate it
- Approaches
- Graph search strategies
- A^{*}, weighted A^{*}, D^{*}, ARA $^{*}, \ldots$
- Sampling-based + roadmaps
- PRM, RRT, ...
- Potential field
- Hybrid

Planning as a graph-search problem

1. Construct the graph representing the environment
2. Search the graph (hopefully for a close-to-optimal) path

The two steps are often interleaved.

Planning as a graph-search problem

Graphs can be grouped into two classes

- Skeletonization/roadmaps
- visibility graphs
- trapezoidal decomposition
- (probabilistic) roadmaps
- Cell decomposition
- grids
- multi-resolution grids

Grid-based graphs

- Sample C-space with uniform grid/lattice
- refined: quadtree/octree
- This essentially "pixelizes" the space (pixels/voxels in C-free)
- Graph is usually implicit
- given by lattice topology: move +/-1 in each direction, possibly diagonals as well
- successors(state s)
- Search the graph for a path from start to end
- Dijkstra/A* + variants
- Graph can be pre-computed (occupancy grid), or computed incrementally
- one-time path planning vs many times
- static vs dynamic environment

Dijkstra's SSSP algorithm

- best-first search: priority $(\mathrm{v})=\mathrm{d}[\mathrm{v}]=$ cost of getting from s to v
- initialize: $\mathrm{d}[\mathrm{v}]=$ inf for all $\mathrm{v}, \mathrm{d}[\mathrm{s}]=0$
- repeat: greedily select the vertex with smallest priority, and relax its edges

Dijkstra(vertex s)

- initialize
- $\mathrm{d}[\mathrm{v}]=$ infinity for all $\mathrm{v}, \mathrm{d}[\mathrm{s}]=0$
- for all v : PQ .insert (<v, $\mathrm{d}[\mathrm{v}]>$)
- while PQ not empty
- u = PQ.deleteMin()
- //claim: d[u] is the SP(s,u)
no need to check if v is done,
because once v is done,
no subsequent relaxation can improve its d[]
- for each edge (u,v):
- if v not done, and if $d[v]>d[u]+e d g e(u, v)$:
- $d[v]=d[u]+e d g e(u, v)$
- PQ.decreasePriority (v, d[v])

Dijkstra(vertex s)

- initialize
- $\mathrm{d}[\mathrm{v}]=$ infinity for all $\mathrm{v}, \mathrm{d}[\mathrm{s}]=0$
- PQ.insert(<s, d[s]>)
- while PQ not empty
- $\mathrm{u}=\mathrm{PQ}$.deleteMin()
- for each edge (u,v):
- if isFree(v) and $d[v]>d[u]+$ edge (u, v) :
- $d[v]=d[u]+\operatorname{edge}(u, v)$
- PQ.insert(<v, d[v]>)
(even if it's already there)
isFree(v): is v in C-free

Grid-based graphs

- Dijkstra's algorithm : if only one path is needed (not SSSP), a heuristic can be used to guide the search towards the goal
- A^{*}
- best-first search
- priority $f(\mathrm{v})=\mathbf{g}(\mathrm{v})+\mathrm{h}(\mathrm{v})$
- $g(v)$: cost of getting from start to v
- $h(v)$: estimate of the cost from v to goal
- Theorem: If $h(v)$ is "admissible" ($h(v)<\operatorname{trueCost}(\mathrm{v}->$ goal $)$) then A^{*} will return an optimal solution.
- Dijkstra is (A* with $h(v)=0)$
- In general it may be hard to estimate $h(v)$
- path planning: $\mathrm{h}(\mathrm{v})=$ EuclidianDistance(v, goal)

Grid-based graphs

- A^{*} explores fewer vertices to get to the goal, compared to Dijkstra
- The closer $\mathrm{h}(\mathrm{v})$ is to the trueCost(v), the more efficient
- Example
- https://www.youtube.com/watch?v=DINCL5cd w0
- Many A* variants
- weighted A^{\star}
- $\mathrm{C} \times \mathrm{h}()==>$ solution is no worse than $(1+\mathrm{c}) \times$ optimal
- real-time replanning
- if the underlying graph changes, it usually affects a small part of the graph ==> don't run search from scratch
- D*: efficiently recompute SP every time the underlying graph changes
- anytime A^{\star}
- use weighted A^{*} to find a first solution ; then use A^{*} with first solution as upper bound to prune the search

Grid-based graphs

- Comments
- Not complete, but resolution complete
- find a solution, if one exists, with probability $\longrightarrow 1$ as the resolution of the grid increases
- The paths may be longer than true shortest path in C-space
- can interleave the construction with the search (ie construct only what is necessary)
- +
- very simple to understand/implement
- works in any dimension
- size depends on size of the environment
- size can be too large => slow

Sampling-based planning

- Combinatorial: hard to construct C-obstacles exactly when D is high
- Grid-based: space is too large when D is high
- Sampling-based planning
- generates a sparse (sample-based) representation of free Cspace
- isFree(p): would my robot , if placed in this configuration, intersect any obstacle?
- points to sample are generated probabilistically
- aims to provide probabilistic completeness
- find a solution, if one exists, as the number of samples approaches infinity
- well-suited for high D planning

Sampling

- You are not given the representation of C-free: Imagine being blindfolded in a maze
- Sampling: you walk around hitting your head on the walls
- Left long enough, after hitting many walls, if you remember everything, you have a pretty good representation of the maze
- However the space is huge
- e.g. $\mathrm{DOF}=6$: $1000 \times 1000 \times 1000 \times 360 \times 360 \times 360$
- So you need to be smart about how you chose the points to sample

2D: robot can translate and rotate
C-space: 3D

How would you write: isFree((x, y,theta)) ?

GENERIC sampling-based planning

- Roadmap
- Instead of computing C-free explicitly, sample it and compute a roadmap that captures its connectivity to the best of our (limited) knowledge
- Roadmap construction phase
- Start with a sampling of points in C-free and try to connect them
- Two points are connected by an edge if a simple quick planner can find a path between them
- This will create a set of connected components
- Roadmap query phase
- Use roadmap to find path between any two points

GENERIC sampling-based planning

- Generic-Sampling-based-roadmap:
- $\mathrm{V}=\mathrm{p}_{\text {start }}+$ sample_points(C, n$) ; \mathrm{E}=\{ \}$
- for each point x in V :
- for each neighbor y in neighbors($x, V)$:
//try to connect x and y
- if collisionFree(segment xy): E = E + xy
- return (V, E)
- Algorithms differ in
- sample_points(C, n) : how they select the initial random samples from C
- return a set of n points arranged in a regular grid in C
- return random n points
- neighbors(x, V) : how they select the neighbors
- return the k nearest neighbors of x in V
- return the set of points lying in a ball centered at \times of radius r
- Often used: samples arranged in a 2-dimensional grid, with nearest 4 neighbors ($d, 2^{d}$)

Probabilistic Roadmaps (Kavarki, svestsa, Latombe, Overmars etal, 1996)

- Start with a random sampling of points in C-free
- Roadmap stored as set of trees for space efficiency
(1) $\quad N \leftarrow \emptyset$
(2) $\quad E \leftarrow \emptyset$
(3) loop
(4) $\quad c \leftarrow a$ randomly chosen free configuration
(5) $\quad N_{c} \leftarrow$ a set of candidate neighbors
- trees encode connectivity, cycles don't change it. Additional edges are
(6) $\quad N \leftarrow N \cup\{c\}$ useful for shortest paths, but not for
(7) for all $n \in N_{c}$, in order of completeness increasing $D(c, n)$ do
if \neg same_connected_component (c, n) $\wedge \Delta(c, n)$ then
$E \leftarrow E \cup\{(c, n)\}$
update R^{\prime} s connected components
- Components
- sampling C-free: random sampling
- selecting the neighbors: within a ball of radius r
- the local planner delta(c,n): is segment cn collision free?
- the heuristical measure of difficulty of a node

Probabilistic Roadmaps (Kavakk, svestsa, Latombe, overmars etal, 1996)

Comments

- Roadmap adjusts to the density of free space and is more connected around the obstacles
- Size of roadmap can be adjusted as needed
- More time spent in the "learning" phase
(1) $\quad N \leftarrow \emptyset$
(2) $E \leftarrow \emptyset$
(3) loop
(4) $\quad c \leftarrow a$ randomly chosen free configuration
(5) $\quad N_{c} \leftarrow$ a set of candidate neighbors
of c chosen from N
(6) $\quad N \leftarrow N \cup\{c\}$
==> better roadmap
- Shown to be probabilistically complete
- probability that the graph contains a valid solution $->1$ as number of samples increases
for all $n \in N_{c}$, in order of increasing $D(c, n)$ do
if \neg same_connected_component (c, n) $\wedge \Delta(c, n)$ then
$E \leftarrow E \cup\{(c, n)\}$ update R 's connected
components

Probabilistic Roadmaps

- One of the leading motion planning technique
- Efficient, easy to implement, applicable to many types of scenes
- Embraced by many groups, many variants of PRM's, used in many type of scenes.
- PRM^{*}
- FMT* (fast marching tree)
- Not completely clear which technique better in which circumstances

Incremental search planners

- Graph search planners over a fixed lattice:
- may fail to find a path or find one that's too long
- PRM:
- suitable for multiple-query planners
- Incremental search planners:
- designed for single-query path planning
- incrementally build increasingly finer discretization of the configuration space, while trying to determine if a path exists at each step
- probabilistic complete, but time may be unbounded

Incremental search planners

- RRT (LaValle, 1998)
- Idea: Incrementally grow a tree

```
BUILD_RRT(qinit )
    T.init(q}(\mp@subsup{q}{\mathrm{ init }}{})
    for }k=1\mathrm{ to }K\mathrm{ do
        qrand}\leftarrow\mp@code{RANDOM_CONFIG();
```



```
    Return T
```

$\operatorname{EXTEND}(\tau, q)$
$q_{\text {near }} \leftarrow$ NEAREST_NEIGHBOR (q, \mathcal{T});
if NEW_CONFIG $\left(q, q_{\text {near }}, q_{\text {new }}\right)$ then
τ.add_vertex $\left(q_{\text {new }}\right)$;
τ.add_edge $\left(q_{\text {near }}, q_{\text {new }}\right)$;
if $q_{\text {new }}=q$ then
Return Reached;
else
Return Advanced;
Return Trapped;

Figure 2: The basic RRT construction algorithm.

Figure 3: The EXTEND operation.

Self-driving cars

- Both graph search and incremental tree-based
- DARPA urban challenge:
- CMU: lattice graph in 4D (x, y, orientation, velocity); graph search with D^{*}
- Stanford: incremental sparse tree of possible maneuvers, hybrid A*
- Virginia Tech: graph discretization of possible maneuvers, searchwith A*
- MIT: variant of RRT with biased sampling

Good read: A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles, by
Brian Paden, Michal Cáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli
https://arxiv.org/pdf/1604.07446.pdf

Some demos
http://kevinkdo.com/rrt demo.html
https://www.youtube.com/watch?v=MT6FyoHefgY
https://www.youtube.com/watch?v=E-IUAL-D9SY
https://www.youtube.com/watch?v=mP4ljdTsvx|

Potential field methods

- Idea [Latombe et al, 1992]
- Define a potential field
- Robot moves in the direction of steepest descent on potential function
- Ideally potential function has global minimum at the goal, has no local minima, and is very large around obstacles
- Algorithm outline:
- place a regular grid over C-space
- search over the grid with potential function as heuristic

https://www.youtube.com/watch?v=r9FD7P76zJs

Potential field methods

- Pro:
- Framework can be adapted to any specific scene
- Con:
- can get stuck in local minima
- Potential functions that are minima-free are known, but expensive to compute
- Example: RPP (Randomized path planner) is based on potential functions
- Escapes local minima by executing random walks
- Succesfully used to
- performs riveting ops on plane fuselages
- plan disassembly operations for maintenance of aircraft engines

From UNC: papers + videos

Optimization-based motion planning in dynamic environments (UNC)

