Approximate path planning

Computational Geometry csci3250 Laura Toma Bowdoin College

Path planning

- Combinatorial <----- last time
- Approximate <---- next

Combinatorial path planning

Idea: Compute free C-space combinatorially (= exact)

Approach

- (robot, obstacles) => (point robot, C-obstacles)
- Compute roadmap of free C-space
 - any path: trapezoidal decomposition or triangulation
 - shortest path: visibility graph

· Comments

- Complete
- Works beautifully in 2D and for some cases in 3D
 - Worst-case bound for combinatorial complexity of C-objects in 3D is high
- Unfeasible/intractable for high #DOF
 - A complete planner in 3D runs in O(2^{n^#DOF})

Approximate path planning

- Since you can't compute C-free, approximate it
- Approaches
 - Graph search strategies
 - A*, weighted A*, D*, ARA*,...
 - Sampling-based + roadmaps
 - PRM, RRT, ...
 - Potential field
 - Hybrid

Planning as a graph-search problem

- 1. Construct the graph representing the environment
- 2. Search the graph (hopefully for a close-to-optimal) path

The two steps are often interleaved.

Planning as a graph-search problem

Graphs can be grouped into two classes

Skeletonization/roadmaps

- visibility graphs
- trapezoidal decomposition
- (probabilistic) roadmaps

Cell decomposition

- grids
- multi-resolution grids

- Sample C-space with uniform grid/lattice
 - refined: quadtree/octree
 - This essentially "pixelizes" the space (pixels/voxels in C-free)
- Graph is usually implicit
 - given by lattice topology: move +/-1 in each direction, possibly diagonals as well
 - successors(state s)
- Search the graph for a path from start to end
 - Dijkstra/A* + variants
- Graph can be pre-computed (occupancy grid), or computed incrementally
 - one-time path planning vs many times
 - static vs dynamic environment

Dijkstra's SSSP algorithm

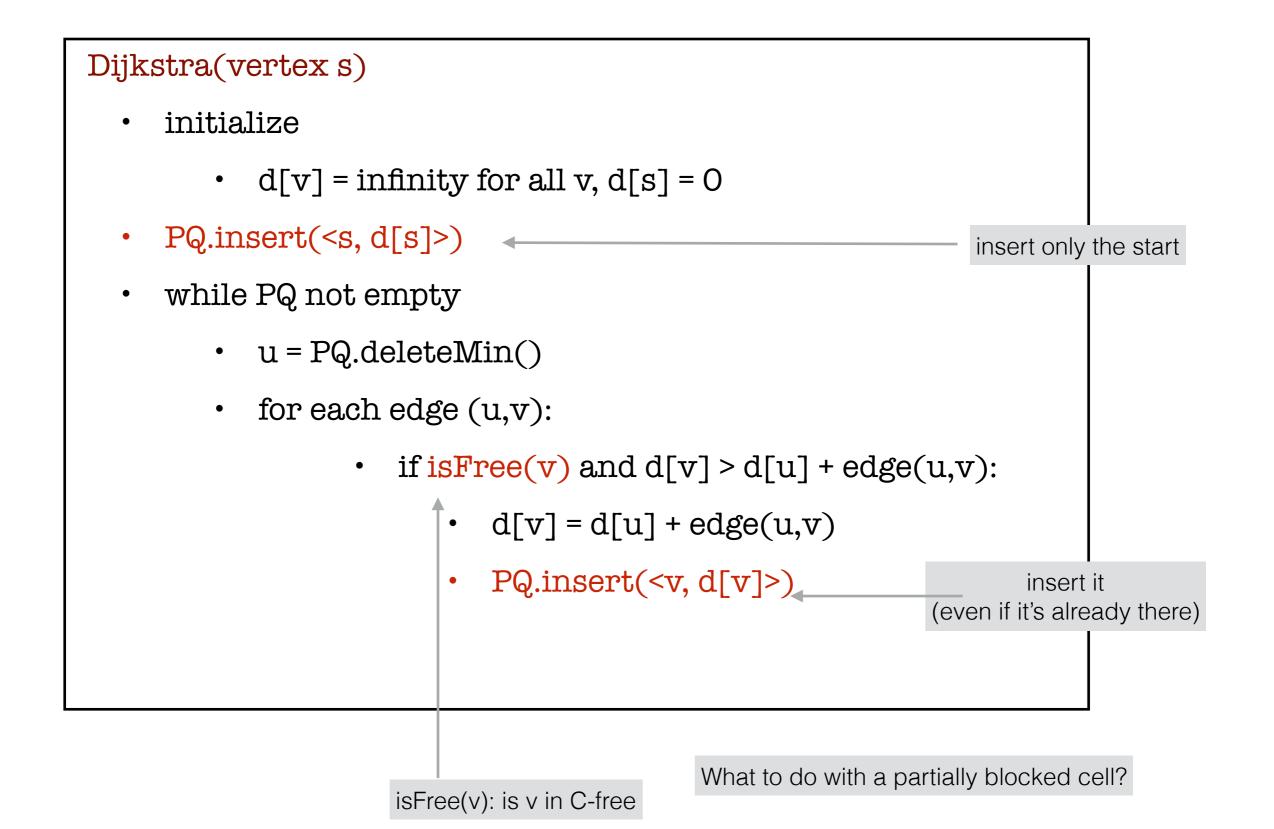
- best-first search: priority(v) = d[v] = cost of getting from s to v
- initialize: d[v] = inf for all v, d[s] = 0
- repeat: greedily select the vertex with smallest priority, and relax its edges

Dijkstra(vertex s)

- initialize
 - d[v] = infinity for all v, d[s] = 0
- for all v: PQ.insert(<v, d[v]>)
- while PQ not empty
 - u = PQ.deleteMin()
 - //claim: d[u] is the SP(s,u)
 - for each edge (u,v):
 - if v not done, and if d[v] > d[u] + edge(u,v):
 - d[v] = d[u] + edge(u,v)
 - PQ.decreasePriority(v, d[v])

usually not implemented

no need to check if v is done, because once v is done, no subsequent relaxation can improve its d[]



• Dijkstra's algorithm : if only one path is needed (not SSSP), a heuristic can be used to guide the search towards the goal

- best-first search
- priority f(v) = g(v) + h(v)
 - g(v): cost of getting from start to v
 - h(v): estimate of the cost from v to goal
- Theorem: If h(v) is "admissible" (h(v) < trueCost(v—>goal)) then A* will return an optimal solution.
- Dijkstra is $(A^* \text{ with } h(v) = 0)$
- In general it may be hard to estimate h(v)
 - path planning: h(v) = EuclidianDistance(v, goal)

- A* explores fewer vertices to get to the goal, compared to Dijkstra
 - The closer h(v) is to the trueCost(v), the more efficient
- Example
 - https://www.youtube.com/watch?v=DINCL5cd_w0

- Many A* variants
 - weighted A*
 - c x h() ==> solution is no worse than (1+c) x optimal
 - real-time replanning
 - if the underlying graph changes, it usually affects a small part of the graph ==> don't run search from scratch
 - D*: efficiently recompute SP every time the underlying graph changes
 - anytime A*
 - use weighted A* to find a first solution ; then use A* with first solution as upper bound to prune the search

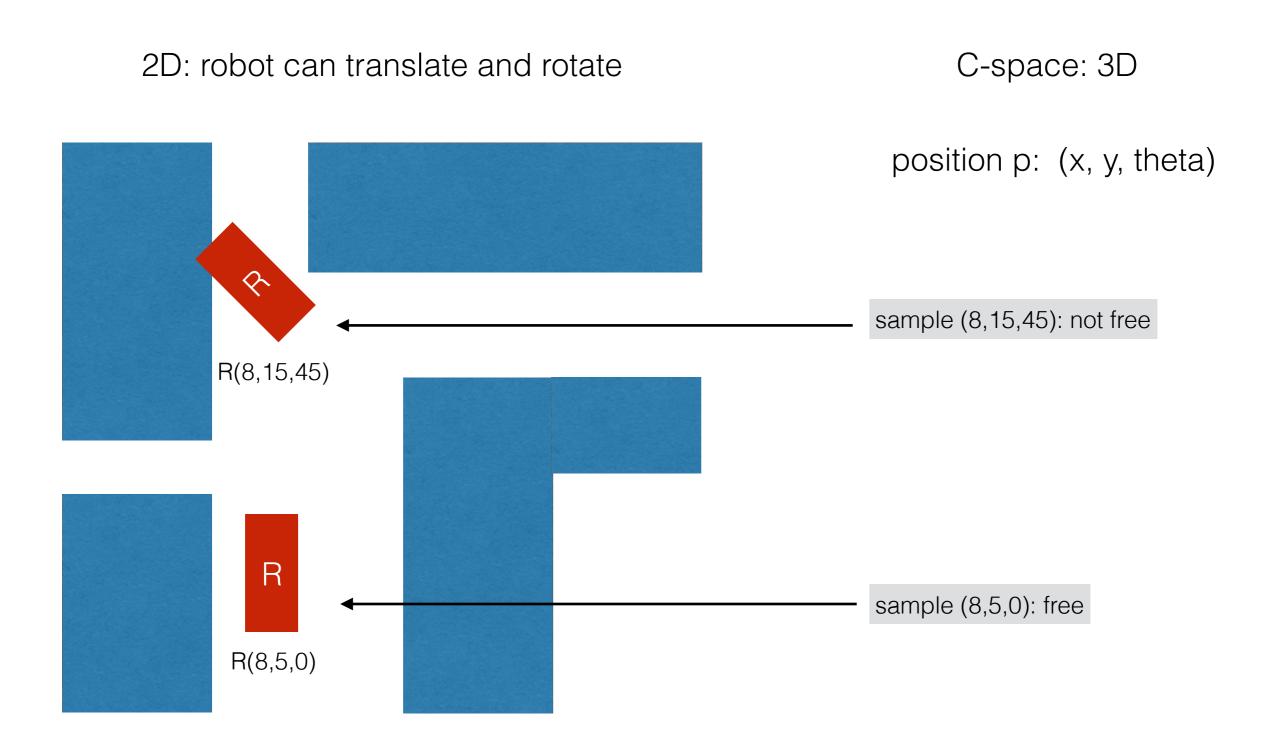
- Comments
 - Not complete, but **resolution complete**
 - find a solution, if one exists, with probability —> 1 as the resolution of the grid increases
 - The paths may be longer than true shortest path in C-space
 - can interleave the construction with the search (ie construct only what is necessary)
 - +
 - very simple to understand/implement
 - works in any dimension
 - _
 - size depends on size of the environment
 - size can be too large => slow

Sampling-based planning

- Combinatorial: hard to construct C-obstacles exactly when D is high
- Grid-based: space is too large when D is high
- Sampling-based planning
 - generates a sparse (sample-based) representation of free Cspace
 - isFree(p): would my robot, if placed in this configuration, intersect any obstacle?
 - points to sample are generated probabilistically
 - aims to provide probabilistic completeness
 - find a solution, if one exists, as the number of samples approaches infinity
 - well-suited for high D planning

Sampling

- You are not given the representation of C-free: Imagine being blindfolded in a maze
- Sampling: you walk around hitting your head on the walls
- Left long enough, after hitting many walls, if you remember everything, you have a pretty good representation of the maze
- However the space is huge
 - e.g. DOF= 6: 1000 x 1000 x 1000 x 360 x 360 x 360
- So you need to be smart about how you chose the points to sample



How would you write: isFree((x,y,theta))?

GENERIC sampling-based planning

- Roadmap
 - Instead of computing C-free explicitly, sample it and compute a roadmap that captures its connectivity to the best of our (limited) knowledge
- Roadmap construction phase
 - Start with a sampling of points in C-free and try to connect them
 - Two points are connected by an edge if a simple quick planner can find a path between them
 - This will create a set of connected components
- Roadmap query phase
 - Use roadmap to find path between any two points

GENERIC sampling-based planning

- Generic-Sampling-based-roadmap:
 - $V = p_{start} + sample_points(C, n); E = \{ \}$
 - for each point x in V:
 - for each neighbor y in neighbors(x, V):

//try to connect x and y

- if collisionFree(segment xy): E = E + xy
- return (V, E)
- Algorithms differ in
 - sample_points(C, n) : how they select the initial random samples from C
 - return a set of n points arranged in a regular grid in C
 - return random n points
 - neighbors(x, V) : how they select the neighbors
 - return the k nearest neighbors of x in V
 - return the set of points lying in a ball centered at x of radius r
 - Often used: samples arranged in a 2-dimensional grid, with nearest 4 neighbors (d, 2^d)

Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

- Start with a *random* sampling of points in C-free
- Roadmap stored as set of *trees* for space efficiency
 - trees encode connectivity, cycles don't change it. Additional edges are useful for shortest paths, but not for completeness
- Augment roadmap by selecting additional sample points in areas that are estimated to be "difficult"

- (1) $N \leftarrow \emptyset$
- $(2) \quad E \leftarrow \emptyset$
- (3) **loop**
- (4) $c \leftarrow a$ randomly chosen free configuration
- (5) $N_c \leftarrow a \text{ set of candidate neighbors}$ of c chosen from N
- $(6) \qquad N \leftarrow N \cup \{c\}$
- (7) for all $n \in N_c$, in order of increasing D(c,n) do
- (8) **if** $\neg same_connected_component(c, n)$ $\land \Delta(c, n)$ **then**
- $(9) E \leftarrow E \cup \{(c,n)\}$
- (10) update R's connected components

- Components
 - sampling C-free: random sampling
 - selecting the neighbors: within a ball of radius r
 - the local planner delta(c,n): is segment cn collision free?
 - the heuristical measure of difficulty of a node

Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

Comments

- Roadmap adjusts to the density of free space and is more connected around the obstacles
- Size of roadmap can be adjusted as needed
- More time spent in the "learning" phase
 => better roadmap
- Shown to be **probabilistically complete**
 - probability that the graph contains a valid solution —> 1 as number of samples increases

(1)	$N \leftarrow \emptyset$
(2)	$E \leftarrow \emptyset$
(3)	loop
(4)	$c \leftarrow$ a randomly chosen free
	configuration
(5)	$N_c \leftarrow$ a set of candidate neighbors
	of c chosen from N
(6)	$N \leftarrow N \cup \{c\}$
(7)	for all $n \in N_c$, in order of
	increasing $D(c,n)$ do
(8)	if $\neg same_connected_component(c, n)$
	$\wedge \Delta(c,n)$ then
(9)	$E \leftarrow E \cup \{(c,n)\}$
(10)	update R 's connected
	components
(8)	increasing $D(c,n)$ do if $\neg same_connected_component(c,n)$ $\land \Delta(c,n)$ then $E \leftarrow E \cup \{(c,n)\}$ update R 's connected

Probabilistic Roadmaps

- One of the leading motion planning technique
- Efficient, easy to implement, applicable to many types of scenes
- Embraced by many groups, many variants of PRM's, used in many type of scenes.
 - PRM*
 - FMT* (fast marching tree)
 - . . .
- Not completely clear which technique better in which circumstances

Incremental search planners

- Graph search planners over a fixed lattice:
 - may fail to find a path or find one that's too long
- PRM:
 - suitable for multiple-query planners
- Incremental search planners:
 - designed for single-query path planning
 - incrementally build increasingly finer discretization of the configuration space, while trying to determine if a path exists at each step
 - probabilistic complete, but time may be unbounded

Incremental search planners

- RRT (LaValle, 1998)
- Idea: Incrementally grow a tree rooted at "start" outwards to explore reachable configuration space

 $BUILD_RRT(q_{init})$

- 1 $T.init(q_{init});$
- 2 for k = 1 to K do
 - $q_{rand} \leftarrow \text{RANDOM_CONFIG}();$
- 4 EXTEND $(T, q_{rand});$
- 5 Return T

3

$\text{EXTEND}(\mathcal{T}, q)$

- 1 $q_{near} \leftarrow \text{NEAREST_NEIGHBOR}(q, T);$
- 2 if NEW_CONFIG (q, q_{near}, q_{new}) then
- 3 $T.add_vertex(q_{new});$
- 4 $T.add_edge(q_{near}, q_{new});$
- 5 if $q_{new} = q$ then
- 6 Return Reached;
- 7 else
- 8 Return Advanced;
- 9 Return Trapped;

Figure 2: The basic RRT construction algorithm.

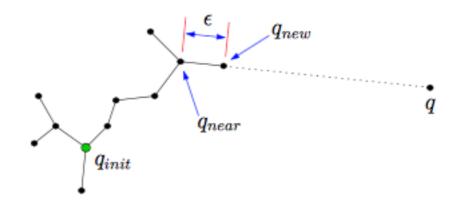


Figure 3: The EXTEND operation.

• https://personalrobotics.ri.cmu.edu/files/courses/papers/Kuffner00-rrtconnect.pdf

Self-driving cars

- Both graph search and incremental tree-based
- DARPA urban challenge:
 - **CMU**: lattice graph in 4D (x,y, orientation, velocity); graph search with D*
 - **Stanford**: incremental sparse tree of possible maneuvers, hybrid A*
 - Virginia Tech: graph discretization of possible maneuvers, searchwith A*
 - **MIT**: variant of RRT with biased sampling

Good read: A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles, by Brian Paden, Michal Cáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli

https://arxiv.org/pdf/1604.07446.pdf

http://kevinkdo.com/rrt_demo.html

https://www.youtube.com/watch?v=MT6FyoHefgY

https://www.youtube.com/watch?v=E-IUAL-D9SY

https://www.youtube.com/watch?v=mP4ljdTsvxl

Potential field methods

- Idea [Latombe et al, 1992]
 - Define a potential field
 - Robot moves in the direction of steepest descent on potential function
- Ideally potential function has global minimum at the goal, has no local minima, and is very large around obstacles
- Algorithm outline:
 - place a regular grid over C-space
 - search over the grid with potential function as heuristic

https://www.youtube.com/watch?v=r9FD7P76zJs

Potential field methods

- Pro:
 - Framework can be adapted to any specific scene
- Con:
 - can get stuck in local minima
 - Potential functions that are minima-free are known, but expensive to compute
- Example: RPP (Randomized path planner) is based on potential functions
 - Escapes local minima by executing random walks
 - Succesfully used to
 - performs riveting ops on plane fuselages
 - plan disassembly operations for maintenance of aircraft engines

From UNC: papers + videos

Optimization-based motion planning in dynamic environments (UNC)