Combinatorial motion planning

Computational Geometry
csci3250
Laura Toma
Bowdoin College

Motion Planning

Input:

- a robot R
- start and end position
- a set of obstacles $S=\left\{\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots\right\}$

Find a path from start to end (that optimizes some objective function).

Parameters:

- geometry of obstacles (polygons, disks, convex, non-convex, etc)
- geometry of robot (point, polygon, disc)
- robot movement (dof)
- objective function to minimize (euclidian distance, nb turns, etc)
- 2d, 3d
- static vs dynamic environment
- exact vs approximate algorithm
- known vs unknown map

Problem

Motion Planning

Ideally we want a planner to be complete and optimal.

- A planner is complete:
- it always finds a path when a path exists
- A planner is optimal:
- it finds an optimal path (wrt objective function)

Approaches

- Combinatorial (exact)
- Compute an exact representation of free space
- Roadmap: a graph that represents the free space
- Find a path using the roadmap
- Approximate
- roadmaps, sampling-based, search based, space decomposition, probabilistic, potential functions
this week
next week

Point robot in 2D

- General idea
- Compute free space
- Compute a representation of free space
- Build a graph of free space
- Search graph to find path
<--------- Reduce motion planning to graph search

Point robot in 2D

Result:

Let R be a point robot moving among a set of polygonal obstacles in 2D with n edges in total. We can pre-process S in $O(n \lg n$) expected time such that, between any start and goal position, a collision-free path for R can be computed in $O(n)$ time, if it exists.

Claim: not optimal

Show that the trapezoid map is not optimal by giving a scene where it dos not give the optimal (shortest) path

Point robot in 2D

What if we wanted the shortest path?

Shortest paths for point robot in 2D

Claim: Any shortest path among a set S of disjoint polygonal obstacles

- is a polygonal path (that is, not curved)
- its vertices are the vertices of S.

Shortest paths for point robot in 2D

- Idea: Build the visibility graph (VG)
- all possible ways to travel between the vertices of the obstacles

- Claim: any shortest path must be a path in the VG

Shortest paths for point robot in 2D

Algorithm

- Compute visibility graph
- $V=\left\{\right.$ set of vertices of obstacles $\left.+p_{\text {start }}+p_{\text {end }}\right\}$
- SSSP (Dijkstra) in VG
- How big is VG and how long does it take to compute it?

Shortest paths for point robot in 2D

Algorithm

- Compute visibility graph
- $V=\left\{\right.$ set of vertices of obstacles $\left.+p_{\text {start }}+p_{\text {end }}\right\}$
- SSSP (Dijkstra) in VG
- Complexity of VG
- $V_{V G}=O(n), E_{V G}=O\left(n^{2}\right)$ <------ can have quadratic size
- Computing VG
- naive: for each edge, check if intersects any obstacle. $O\left(n^{3}\right)$
- improved: $O(n \lg n)$ per vertex, $O\left(n^{2} \lg n\right)$ total
- Dijkstra on VG: $O\left(E_{v g} \lg n\right)=O\left(n^{2} \lg n\right)$

Shortest paths for point robot in 2D

Algorithm

- Compute visibility graph
- SSSP (Dijkstra) in VG <----- O(Evg lg n)

Theorem:

A shortest path of two points among a set of polygonal obstacles with n edges in total can be computed in $O\left(E_{\mathrm{vg}} \lg n\right)=O\left(n^{2} \lg n\right)$ time.

Improved computation of VG

- Idea
- for every vertex v : compute all vertices visible from v in $O(n \lg n)$

Improved computation of VG

- Idea
- for every vertex v : compute all vertices visible from v in $O(n \lg n)$

Improved computation of VG

- Idea
- for every vertex v : compute all vertices visible from v in $O(n \lg n)$

active structure stores all edges intersected by sweep line, ordered by distance from v

Improved computation of VG

- Idea
- for every vertex v : compute all vertices visible from v in $O(n \lg n)$

w visible if vw does not intersect the interior of any obstacle

Motion planning with VG

- Optimal and complete
- VG needs to be computed only once, so we can think of it as pre-processing
- VG may be large ==> path planning doomed to quadratic complexity

Motion planning with VG (2D)

- Optimal and complete
- VG needs to be computed only once, so we can think of it as pre-processing
- VG may be large ==> path planning doomed to quadratic complexity

History:

- Quadratic barrier broken by Joe Mitchell: SP of a point robot moving in 2D can be computed in $\mathrm{O}\left(\mathrm{n}^{5 / 3}+\right.$ eps $)$
- Hershberger and Suri [1993]: SP of a point robot moving in 2D can be computed in O ($\mathrm{n} \lg \mathrm{n}$) ("continuous Dijkstra" approach)
- Special cases can be solved faster:
- e.g. SP inside a simple polygon w/o holes: $O(n)$ time

VG in 3D

- VG does not generalize to 3D
- Shortest paths in 3D much harder
- no easy way to discretize the problem: inflection points of SP are not restricted to vertices of S, can be inside edges
- 3D shortest paths among polyhedral obstacles is NP-complete (Complete and optimal planning in 3D is hopeless)
- 2D
- point robot moving inside an arbitrary polygon
- point robot moving among (arbitrary) polygons
- disk robot moving among (arbitrary) polygons
- convex robot moving among (arbitrary) polygons
- non-convex robot moving among (arbitrary) polygons
- robot with arms
\downarrow harder

Convex polygon moving in 2D

- How can the robot move?
- Translation only
- Translation + rotation

Work/physical space

- Space where robot moves around

Work/physical space

- Space where robot moves around

translation only

translation + rotation

translation only

Configuration space (C-space)

- A point in C-space corresponds to placement of the robot in physical space
- C-space: The parametric space of the robot = space of all possible placements of the robot
- Examples:
$2 D$, translation only $<->R(x, y)$
2D, transl.+ rot. $<->R(x, y$, theta $)$

translation + rotation

Physical Space and C-space

| robot |
| :---: | :---: | :---: |
| polygon, |
| (translation only) |\quad Chysical space | C-space |
| :---: |

Physical Space and C-space

robot	physical space	C-space
polygon, (translation only) polygon, (translation + rotations)	2D	2D
2D		3D
20		

Physical Space and C-space

robot	physical space	C-space
polygon, (translation only) polygon, (translation + rotations) polygon (translation, rotations)	2D	2D
2D		3D
3D		6D

Physical Space and C-space

robot	physical space	C-space
polygon, (translation only)	2D	2D
polygon, (translation + rotations)	2D	3D
polygon (translation, rotations)	3D	6D
Robot arm with joints	3D	\#DOF

Motion planning

- Any path for R corresponds to a path for R in C -space
- Motion planning $=>$ motion planning in C-space

Motion planning in C-space

- Free C-space

Motion planning in C-space

- Forbidden C-space

C-obstacles

- Extended obstacle, or C-obstacle
- Given obstacle O, robot $R(x, y)$: what placements cause intersection with O ?

C-obstacles

- Extended obstacle, or C-obstacle
- Given obstacle O, robot $R(x, y)$: what placements cause intersection with O ?

C-obstacles

- Extended obstacle, or C-obstacle
- Given obstacle O, robot $R(x, y)$: what placements cause intersection with O ?

C-obstacles

- Extended obstacle, or C-obstacle
- Given obstacle O, robot $R(x, y)$: what placements cause intersection with O ?

Exercise

Show the corresponding C-obstacles for a disc robot.

Exercise

Show the corresponding C-obstacle.

Polygonal robot translating in 2D

Algorithm

- For each obstacle O, compute the corresponding C-obstacle
- Compute the union of C-obstacles
- Compute its complement. That's the free C-space

//now the problem is reduced to a point

//robot moving in free C-space

- Compute a trapezoidal map of free Cspace
- Compute a roadmap

How do we compute C-obstacles?

Minkowski sum

- Let A, B two sets of points in the plane
- Define $A \oplus B=\{x+y \mid x$ in A, y in $B\}$

Minkowski sum

- Interpretation: consider set A to be centered at the origin. Then $A \oplus B$ represents many copies of A, translated by y, for all y in B; i.e. place a copy of A centered at each point of B.

A translated by y

$\mathrm{B} \oplus \mathrm{A}$

Minkowski sum

- $A \oplus B$: Slide A so that the center of A traces the edges of B

C-obstacles as Minkowski sums

- Consider a robot R with the center in the lower left corner

C-obstacles as Minkowski sums

- Consider a robot R with the center in the lower left corner

$B \oplus R$ is not quite the C-obstacle of B

C-obstacles as Minkowski sums

-R: R reflected by origin

The C-obstacle of B is $B \oplus(-R(0,0))$.

Slide so that R touches the obstacle
Slide so that centerpoint of -R traces the edges of obstacle

C-obstacle corresponding to O

Slide so that R touches the obstacle

Slide so that centerpoint of -R traces the edges of obstacle

R

R

R

R

How do we compute Minkowski sums?

How do we compute Minkowski sums?

Computing Minkowski sums

CASE 1: Convex robot with convex polygon
Observations:

- Each edge in R, O will cause an edge in R+O
- R+O has m+n edges (unless there are parallel edges)
- To compute: Place -R at all vertices of O and compute convex hull
- Possible to compute in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ time by walking along the boundaries of R and O

Computing Minkowski sums

2D

- convex + convex polygons
- The Minkowski sum of two convex polygons with n, and m edges respectively, is a convex polygon with $n+m$ edges and can be computed in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time.
- convex + non-convex polygons
- Triangulate and compute Minkowski sums for each pair [convex polygon, triangle], and take their union
- Size of Minkowski sum: $\mathrm{O}(\mathrm{m}+3)$ for each triangle $=>\mathrm{O}(\mathrm{mn})$
- non-convex + non-convex polygons:
- size of Minkowski sum: $O\left(n^{2} m^{2}\right)$

3D

- it gets worse . . .

Polygonal robot translating in 2D

Algorithm

- For each obstacle O, compute the corresponding C-obstacle
- Compute the union of C-obstacles
- Compute its complement. That's the free C-space

//now the problem is reduced to point

//robot moving in free C-space

- Compute a trapezoidal map of free C-space
- Compute a roadmap

For a convex robot of $\mathbf{O (1)}$ size

- Free C-space can be computed in $\mathrm{O}\left(\mathrm{n} \lg \mathrm{g}^{2} \mathrm{n}\right)$ time.
==> With $\mathrm{O}\left(\mathrm{n} \lg ^{2} \mathrm{n}\right)$ time preprocessing, a collision-free path can be found for any start and end in $O(n)$ time.

Complete, non optimal.

Polygonal robot in 2D with rotations

- Physical space is 2D
- A placement is specifies by 3 parameters: $R(x, y$, theta $)==>C$-space is 3D.

Polygonal robot in 2D with rotations

- We'd like to extend the same approach:

Reduce to point robot moving among C-obstacles in C-space.

- Compute C-obstacles
- Compute free space as complement of union of C-obstacles
- Decompose free space into simple cells
- Construct a roadmap
- BFS on roadmap

Polygonal robot in 2D with rotations

- What does a C-obstacle look like when rotations are allowed?

Polygonal robot in 2D with rotations

- What does a C-obstacle look like when rotations are allowed?

Polygonal robot in 2D with rotations

- What does a C-obstacle look like when rotations are allowed?

Polygonal robot in 2D with rotations

- What does a C-obstacle look like when rotations are allowed?

Polygonal robot in 2D with rotations

A C-obstacle is a 3D shape.
Imagine moving a horizontal plane vertically through C-space.

Each cross-section of the C-obstacle is a Minkowski sum $O \oplus-R(0,0, \theta)$
=> twisted pillar

$R(0,0, \theta)$

the closest i could find ..

Polygonal robot in 2D with rotations

What's known:

- C-space is 3D
- Boundary of free space is curved, not polygonal.
- Combinatorial complexity of free space is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for convex, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ for non-convex robot

Polygonal robot in 2D with rotations

What's known:

- C-space is 3D
- Boundary of free space is curved, not polygonal.
- Combinatorial complexity of free space is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for convex, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ for non-convex robot
- Extend same approach:

1. Compute C-obstacles and C-free
2. Compute a decomposition of free space into simple cells
3. Construct a roadmap
4. BFS on roadmap

Difficult to construct a good cell decomposition for curved 3D space

Polygonal robot in 2D with rotations

- Difficult to construct a good cell decomposition for curved 3D space
- A possible approach:
- If angle is fixed: you got translational motion planning
- Discretize rotation angle and compute a finite number of slices, one for each angle
- Construct a trapezoidal decomposition for each slice and its roadmap
- Link them into a 3D roadmap
- Add "vertical" edges between slices to allow robot to move up/down between slices; these correspond to rotational moves.
- Example: Consider two angles a and b. If placement (x, y) is in free space in slice a, and (x, y) is in free space in slice b, then the 3D roadmap should contain a vertical edge between slice a and b at that position

Combinatorial path planning: Summary

- Idea: Compute free C-space combinatorially (= exact)
- Approach
- Reduce (robot, obstacles) => (point robot, C-obstacles)
- Compute roadmap of free C-space
- any path: trapezoidal decomposition or triangulation
- shortest path: visibility graph
- Comments
- Complete
- Works beautifully in 2D and for some cases in 3D
- Worst-case bound for combinatorial complexity of C-objects in 3D is high
- Unfeasible/intractable for high \#DOF
- A complete planner in 3D runs in $O\left(2^{\text {^^\#DOF }}\right)$

