Combinatorial motion planning

Computational Geometry csci3250 Laura Toma Bowdoin College

Motion Planning

Input:

- a robot R
- start and end position
- a set of obstacles $S = \{O_1, O_2, ...\}$

Find a path from start to end (that optimizes some objective function).

Parameters:

- geometry of obstacles (polygons, disks, convex, non-convex, etc)
- geometry of robot (point, polygon, disc)
- robot movement (dof)
- objective function to minimize (euclidian distance, nb turns, etc)
- 2d, 3d
- static vs dynamic environment
- exact vs approximate algorithm
- known vs unknown map

Problem

screenshot from: ai.stanford.edu/~latombe/cs26n/2012/slides/point-robot-bug.ppt

Motion Planning

Ideally we want a planner to be complete and optimal.

- A planner is complete:
 - it always finds a path when a path exists
- A planner is optimal:
 - it finds an optimal path (wrt objective function)

Approaches

Combinatorial (exact)

- Compute an exact representation of free space
- Roadmap: a graph that represents the free space
- Find a path using the roadmap

Approximate

٠

 roadmaps, sampling-based, search based, space decomposition, probabilistic, potential functions

this week

Point robot in 2D

- General idea
 - Compute free space
 - Compute a representation of free space
 - Build a graph of free space
 - Search graph to find path <----- Reduce motion planning to graph search

Result:

Let R be a point robot moving among a set of polygonal obstacles in 2D with n edges in total. We can pre-process S in O(n lg n) expected time such that, between any start and goal position, a collision-free path for R can be computed in O(n) time, if it exists.

Claim: not optimal

Show that the trapezoid map is not optimal by giving a scene where it dos not give the optimal (shortest) path

Point robot in 2D

What if we wanted the shortest path?

Claim: Any shortest path among a set S of disjoint polygonal obstacles

- is a polygonal path (that is, not curved)
- its vertices are the vertices of S.

- Idea: Build the visibility graph (VG)
 - all possible ways to travel between the vertices of the obstacles

• Claim: any shortest path must be a path in the VG

Algorithm

- Compute visibility graph
 - V = {set of vertices of obstacles + p_{start} + p_{end}}
- SSSP (Dijkstra) in VG
- How big is VG and how long does it take to compute it?

Algorithm

- Compute visibility graph
 - V = {set of vertices of obstacles + p_{start} + p_{end}}
- SSSP (Dijkstra) in VG
- Complexity of VG
 - $V_{VG} = O(n)$, $E_{VG}=O(n^2)$ <---- can have quadratic size
- Computing VG
 - naive: for each edge, check if intersects any obstacle. $O(n^3)$
 - improved: O(n lg n) per vertex, O(n² lg n) total
- Dijkstra on VG: $O(E_{VG} \lg n) = O(n^2 \lg n)$

Algorithm

- Compute visibility graph <----- O(n² lg n)
- SSSP (Dijkstra) in VG <----- O(E_{VG} lg n)

Theorem:

A shortest path of two points among a set of polygonal obstacles with n edges in total can be computed in $O(E_{VG} \lg n) = O(n^2 \lg n)$ time.

- Idea
 - for every vertex v: compute all vertices visible from v in O(n lg n)

- Idea
 - for every vertex v: compute all vertices visible from v in O(n lg n)

- Idea
 - for every vertex v: compute all vertices visible from v in O(n lg n)

active structure stores all edges intersected by sweep line, ordered by distance from v

- Idea
 - for every vertex v: compute all vertices visible from v in O(n lg n)

w visible if vw does not intersect the interior of any obstacle

Motion planning with VG

- Optimal and complete
- VG needs to be computed only once, so we can think of it as pre-processing
- VG may be large ==> path planning doomed to quadratic complexity

Motion planning with VG (2D)

- Optimal and complete
- VG needs to be computed only once, so we can think of it as pre-processing
- VG may be large ==> path planning doomed to quadratic complexity

History:

- Quadratic barrier broken by Joe Mitchell: SP of a point robot moving in 2D can be computed in O(n^{5/3 + eps})
- Hershberger and Suri [1993]: SP of a point robot moving in 2D can be computed in O(n lg n) ("continuous Dijkstra" approach)
- Special cases can be solved faster:
 - e.g. SP inside a simple polygon w/o holes: O(n) time

VG in 3D

- VG does not generalize to 3D
- Shortest paths in 3D much harder
 - no easy way to discretize the problem: inflection points of SP are not restricted to vertices of S, can be inside edges
 - 3D shortest paths among polyhedral obstacles is NP-complete

(Complete and optimal planning in 3D is hopeless)

• 2D

- point robot moving inside an arbitrary polygon
- point robot moving among (arbitrary) polygons
- disk robot moving among (arbitrary) polygons
- convex robot moving among (arbitrary) polygons
- non-convex robot moving among (arbitrary) polygons
- robot with arms

harder

Convex polygon moving in 2D

- How can the robot move?
 - Translation only
 - Translation + rotation

screenshot from internet

Work/physical space

• Space where robot moves around

translation + rotation

translation + rotation

robot	physical space	C-space
polygon, (translation only)	2D	2D

robot	physical space	C-space
polygon, (translation only)	2D	2D
polygon, (translation + rotations)	2D	3D

robot	physical space	C-space
polygon, (translation only)	2D	2D
polygon, (translation + rotations)	2D	3D
polygon (translation, rotations)	3D	6D

robot	physical space	C-space
polygon, (translation only)	2D	2D
polygon, (translation + rotations)	2D	3D
polygon (translation, rotations)	3D	6D
Robot arm with joints	ЗD	#DOF

Motion planning

- Any path for R corresponds to a path for R in C-space
- Motion planning => motion planning in C-space

Motion planning in C-space

• Free C-space

Motion planning in C-space

• Forbidden C-space

- Extended obstacle, or C-obstacle
 - Given obstacle O, robot R(x,y): what placements cause intersection with O?

- Extended obstacle, or C-obstacle
 - Given obstacle O, robot R(x,y): what placements cause intersection with O?

- Extended obstacle, or C-obstacle
 - Given obstacle O, robot R(x,y): what placements cause intersection with O?

- Extended obstacle, or C-obstacle
 - Given obstacle O, robot R(x,y): what placements cause intersection with O?

Show the corresponding C-obstacles for a disc robot.

Exercise

Show the corresponding C-obstacle.

Polygonal robot translating in 2D

Algorithm

- For each obstacle O, compute the corresponding C-obstacle
- Compute the union of C-obstacles
- Compute its complement. That's the free C-space

//now the problem is reduced to a point

//robot moving in free C-space

- Compute a trapezoidal map of free Cspace
- Compute a roadmap

How fast can we do this?

How do we compute C-obstacles?

Minkowski sum

- Let A, B two sets of points in the plane
- Interpretation: consider set A to be centered at the origin. Then A⊕B represents many copies of A, translated by y, for all y in B; i.e. place a copy of A centered at each point of B.

Minkowski sum

• $A \oplus B$: Slide A so that the center of A traces the edges of B

C-obstacles as Minkowski sums

• Consider a robot R with the center in the lower left corner

C-obstacles as Minkowski sums

• Consider a robot R with the center in the lower left corner

 $\mathsf{B} \oplus \mathsf{R}$ is not quite the C-obstacle of B

C-obstacles as Minkowski sums

The C-obstacle of B is $B \bigoplus (-R(0,0))$.

Slide so that R touches the obstacle

C-obstacle corresponding to O

Slide so that centerpoint of -R traces the edges of obstacle

C-obstacle corresponding to O

C-obstacle corresponding to O

Slide so that centerpoint of -R traces the edges of obstacle R -R

C-obstacle corresponding to O

How do we compute Minkowski sums?

How do we compute Minkowski sums?

Computing Minkowski sums

CASE 1: Convex robot with convex polygon

Observations:

- Each edge in R, O will cause an edge in R+O
- R+O has m+n edges (unless there are parallel edges)
- To compute: Place -R at all vertices of O and compute convex hull
- Possible to compute in O(m+n) time by walking along the boundaries of R and O

Computing Minkowski sums

2D

convex + convex polygons

- The Minkowski sum of two convex polygons with n, and m edges respectively, is a convex polygon with n+m edges and can be computed in O(n+m) time.
- convex + non-convex polygons
 - Triangulate and compute Minkowski sums for each pair [convex polygon, triangle], and take their union
 - Size of Minkowski sum: O(m+3) for each triangle => O(mn)
- non-convex + non-convex polygons:
 - size of Minkowski sum: O(n²m²)

3D

• it gets worse . . .
Polygonal robot translating in 2D

Algorithm

- For each obstacle O, compute the corresponding C-obstacle
- Compute the union of C-obstacles
- Compute its complement. That's the free C-space

//now the problem is reduced to point

//robot moving in free C-space

- Compute a trapezoidal map of free C-space
- Compute a roadmap

For a **convex** robot of **O(1) size**

 Free C-space can be computed in O(n lg²n) time.

==> With O(n lg²n) time preprocessing, a collision-free path can be found for any start and end in O(n) time.

Complete, non optimal.

- Physical space is 2D
- A placement is specifies by 3 parameters: R(x,y, theta) => C-space is 3D.

• We'd like to extend the same approach:

Reduce to point robot moving among C-obstacles in C-space.

- Compute C-obstacles
- Compute free space as complement of union of C-obstacles
- Decompose free space into simple cells
- Construct a roadmap
- BFS on roadmap

A C-obstacle is a 3D shape.

Imagine moving a horizontal plane vertically through C-space.

Each cross-section of the C-obstacle is a Minkowski sum $O \oplus -R(0,0,\theta)$

=> twisted pillar

the closest i could find ..

What's known:

- C-space is 3D
- Boundary of free space is curved, not polygonal.
- Combinatorial complexity of free space is O(n²) for convex, O(n³) for non-convex robot

What's known:

- C-space is 3D
- Boundary of free space is curved, not polygonal.
- Combinatorial complexity of free space is O(n²) for convex, O(n³) for non-convex robot
- Extend same approach:

- 2. Compute a decomposition of free space into simple cells
- 3. Construct a roadmap
 4. BFS on roadmap
 Difficult to construct a good cell decomposition for curved 3D space

- Difficult to construct a good cell decomposition for curved 3D space
- A possible approach:
 - If angle is fixed: you got translational motion planning
 - Discretize rotation angle and compute a finite number of slices, one for each angle
 - Construct a trapezoidal decomposition for each slice and its roadmap
 - Link them into a 3D roadmap
 - Add "vertical" edges between slices to allow robot to move up/down between slices; these correspond to rotational moves.
- Example: Consider two angles a and b. If placement (x,y) is in free space in slice a, and (x,y) is in free space in slice b, then the 3D roadmap should contain a vertical edge between slice a and b at that position

Combinatorial path planning: Summary

- Idea: Compute free C-space combinatorially (= exact)
- Approach
 - Reduce (robot, obstacles) => (point robot, C-obstacles)
 - Compute roadmap of free C-space
 - any path: trapezoidal decomposition or triangulation
 - shortest path: visibility graph

· Comments

- Complete
- Works beautifully in 2D and for some cases in 3D
 - Worst-case bound for combinatorial complexity of C-objects in 3D is high
- Unfeasible/intractable for high #DOF
 - A complete planner in 3D runs in O(2^{n^#DOF})