
Computational Geometry

csci3250

Laura Toma

Bowdoin College

Combinatorial motion planning

Motion Planning

Parameters:
• geometry of obstacles (polygons, disks, convex, non-convex, etc)
• geometry of robot (point, polygon, disc)
• robot movement (dof)
• objective function to minimize (euclidian distance, nb turns, etc)
• 2d, 3d
• static vs dynamic environment
• exact vs approximate algorithm
• known vs unknown map

Input:
• a robot R
• start and end position
• a set of obstacles S = {O1, O2,…}

Find a path from start to end (that optimizes some objective function).

screenshot from: ai.stanford.edu/~latombe/cs26n/2012/slides/point-robot-bug.ppt

• A planner is complete:
• it always finds a path when a path exists

• A planner is optimal:
• it finds an optimal path (wrt objective function)

Motion Planning

Ideally we want a planner to be complete and optimal.

Approaches

• Combinatorial (exact)
• Compute an exact representation of free space
• Roadmap: a graph that represents the free space
• Find a path using the roadmap

• Approximate
• roadmaps, sampling-based, search based, space decomposition,

probabilistic, potential functions

this week

next week

Point robot in 2D
• General idea

• Compute free space

• Compute a representation of free space

• Build a graph of free space

• Search graph to find path <---------- Reduce motion planning to graph search

Point robot in 2D

Result:

Let R be a point robot moving among a set of polygonal obstacles in 2D with n edges in
total. We can pre-process S in O(n lg n) expected time such that, between any start
and goal position, a collision-free path for R can be computed in O(n) time, if it exists.

n = complexity of obstacles
 (total number of edges)

Claim: not optimal

complete

Show that the trapezoid map is not optimal by giving a scene where it

dos not give the optimal (shortest) path

What if we wanted the shortest path?

Point robot in 2D

Claim: Any shortest path among a set S of disjoint polygonal obstacles
• is a polygonal path (that is, not curved)
• its vertices are the vertices of S.

p p

Shortest paths for point robot in 2D

Shortest paths for point robot in 2D

• Idea: Build the visibility graph (VG)
• all possible ways to travel between the vertices of the obstacles

• Claim: any shortest path must be a path in the VG

Algorithm

• Compute visibility graph

• V = {set of vertices of obstacles + pstart + pend}

• SSSP (Dijkstra) in VG

Shortest paths for point robot in 2D

• How big is VG and how long does it take to compute it?

n = complexity of obstacles
 (total number of edges)

Algorithm

• Compute visibility graph

• V = {set of vertices of obstacles + pstart + pend}

• SSSP (Dijkstra) in VG

Shortest paths for point robot in 2D

• Complexity of VG

• VVG = O(n), EVG=O(n2) <------- can have quadratic size

• Computing VG

• naive: for each edge, check if intersects any obstacle. O(n3)

• improved: O(n lg n) per vertex, O(n2 lg n) total

• Dijkstra on VG: O(EVG lg n) = O(n2 lg n)

n = complexity of obstacles
 (total number of edges)

Algorithm

• Compute visibility graph <------ O(n2 lg n)

• SSSP (Dijkstra) in VG <------ O(EVG lg n)

Shortest paths for point robot in 2D

Theorem:

 A shortest path of two points among a set of polygonal obstacles with n
 edges in total can be computed in O(EVG lg n) = O(n2 lg n) time.

n = complexity of obstacles
 (total number of edges)

• Idea

• for every vertex v: compute all vertices visible from v in O(n lg n)

v

Improved computation of VG

Improved computation of VG

• Idea

• for every vertex v: compute all vertices visible from v in O(n lg n)

v

Improved computation of VG

• Idea

• for every vertex v: compute all vertices visible from v in O(n lg n)

v

active structure stores all edges intersected by sweep line,
ordered by distance from v

Improved computation of VG

• Idea

• for every vertex v: compute all vertices visible from v in O(n lg n)

v

w

w visible if vw does not intersect the interior of any obstacle

Motion planning with VG

• Optimal and complete

• VG needs to be computed only once, so we can think of it as pre-processing

• VG may be large ==> path planning doomed to quadratic complexity

Motion planning with VG (2D)

History:
• Quadratic barrier broken by Joe Mitchell: SP of a point robot moving in 2D

can be computed in O(n5/3 + eps)

• Hershberger and Suri [1993]: SP of a point robot moving in 2D can be
computed in O(n lg n) (“continuous Dijkstra” approach)

• Special cases can be solved faster:

• e.g. SP inside a simple polygon w/o holes: O(n) time

• Optimal and complete

• VG needs to be computed only once, so we can think of it as pre-processing

• VG may be large ==> path planning doomed to quadratic complexity

VG in 3D

• VG does not generalize to 3D

• Shortest paths in 3D much harder

• no easy way to discretize the problem: inflection points of SP are not
restricted to vertices of S, can be inside edges

• 3D shortest paths among polyhedral obstacles is NP-complete

(Complete and optimal planning in 3D is hopeless)

• 2D

• point robot moving inside an arbitrary polygon

• point robot moving among (arbitrary) polygons

• disk robot moving among (arbitrary) polygons

• convex robot moving among (arbitrary) polygons

• non-convex robot moving among (arbitrary) polygons

• robot with arms …. harder

Convex polygon moving in 2D

• How can the robot move?

• Translation only

• Translation + rotation

screenshot from internet

Work/physical space
• Space where robot moves around

R(0,0)

reference point

6

5

R(6,4)

R(0,0,0)

reference point

6

5

R(6,4,45)

45

4

4

translation + rotation

translation only

Work/physical space
• Space where robot moves around

R(0,0)

reference point

6

5

R(6,4)

R(0,0,0)

reference point

6

5

R(6,4,45)

45

4

4

A placement of robot is specified by the
degrees of freedom (dof) of the robot

• Example:

 R(x,y)

 R(x,y,θ)

translation + rotation

translation only

Configuration space (C-space)
• A point in C-space corresponds to

placement of the robot in physical
space

• C-space: The parametric space of the
robot = space of all possible placements
of the robot

• Examples:

 2D, translation only <-> R(x,y)

 2D, transl.+ rot. <-> R(x,y, theta)

R(0,0)

reference point

6

5

R(6,4)

R(0,0,0)

reference point

6

5

R(6,4,45)

45

translation + rotation

translation only

robot physical space C-space

polygon,
(translation only) 2D 2D

Physical Space and C-space

robot physical space C-space

polygon,
(translation only) 2D 2D

polygon,
(translation + rotations) 2D 3D

Physical Space and C-space

robot physical space C-space

polygon,
(translation only) 2D 2D

polygon,
(translation + rotations) 2D 3D

polygon
(translation, rotations) 3D 6D

Physical Space and C-space

robot physical space C-space

polygon,
(translation only) 2D 2D

polygon,
(translation + rotations) 2D 3D

polygon
(translation, rotations) 3D 6D

Robot arm with joints 3D #DOF

Physical Space and C-space

Motion planning

• Any path for R corresponds to a path for R in C-space

• Motion planning => motion planning in C-space

R(0,0)

R(1,1)

R(2,2)

R(3,1)

R(4,.5,)

Motion planning in C-space

• Free C-space

(x,y)

placement or robot at
(x,y)

does not intersect
obstacles

Motion planning in C-space

• Forbidden C-space

(x,y)

placement or robot at
(x,y)

intersects obstacle

forbidden C-space:

placements (x,y)
where robot intersects

with obstacle

C-obstacles

• Extended obstacle, or C-obstacle

• Given obstacle O, robot R(x,y): what placements cause intersection with O?

• Extended obstacle, or C-obstacle

• Given obstacle O, robot R(x,y): what placements cause intersection with O?

O

C-obstacle corresponding to O

C-obstacles

• Extended obstacle, or C-obstacle

• Given obstacle O, robot R(x,y): what placements cause intersection with O?

C-obstacles

• Extended obstacle, or C-obstacle

• Given obstacle O, robot R(x,y): what placements cause intersection with O?

C-obstacles

Exercise

r

robot

Show the corresponding C-obstacles for a disc robot.

Exercise

Show the corresponding C-obstacle.

robot

Polygonal robot translating in 2D

Algorithm

• For each obstacle O, compute the
corresponding C-obstacle

• Compute the union of C-obstacles
• Compute its complement. That’s the free

C-space

 //now the problem is reduced to a point

 //robot moving in free C-space
• Compute a trapezoidal map of free C-

space
• Compute a roadmap

O

O

O

How fast can we do this?

How do we compute C-obstacles?

Minkowski sum
• Let A, B two sets of points in the plane
• Define A + B = { x + y | x in A, y in B} Minkowski sum

• Interpretation: consider set A to be centered at the origin. Then A + B
represents many copies of A, translated by y, for all y in B; i.e. place a copy of
A centered at each point of B.

BB
x

A A

x+A

A

A translated by x

A

BA
A A A

A
A

AA
A

A

B + A

y

y

y

x, y vectorsvector sum

Minkowski sum

• A + B: Slide A so that the center of A traces the edges of B

BB
x

A A

x+A

A

A translated by x

A

BA
A A A

A
A

AA
A

A

B + A

y

y

y

C-obstacles as Minkowski sums

BB
x

x+R

R translated by x

B

B + R

R R

R

R

R
RR

R

R
R

R

• Consider a robot R with the center in the lower left corner

C-obstacles as Minkowski sums

B + R is not quite the C-obstacle of B

• Consider a robot R with the center in the lower left corner

BB
x

x+R

R translated by x

B

B + R

R R

R

R

R
RR

R

R
R

R

BB
x

-R translated by x

B

B + -R
-R

R

-R: R reflected by origin

-R

-R

-R

-R
-R -R

-R
-R

-R
-R

-R-R

The C-obstacle of B is B + (- R(0,0)).

C-obstacles as Minkowski sums

O

C-obstacle corresponding to O

Slide so that R touches the obstacle Find O + (-R)

O

C-obstacle corresponding to O

Slide so that R touches the obstacle

C-obstacle corresponding to O

R

-R

Slide so that centerpoint of -R traces
the edges of obstacle

O

C-obstacle corresponding to O

Slide so that R touches the obstacle

C-obstacle corresponding to O

R

-R

Slide so that centerpoint of -R traces
the edges of obstacle

R

R

R R R

RR
R
R
R
R
R
R

R
R
R
R
R
R

R

R

R R R

RR
R
R
R
R
R
R

R
R
R
R
R
R

R

-R
R

-R
R

-R

-R
-R
-R
-R -R

-R
-R
-R

-R-R

-R-R-R

-R

-R

-R
R

-R

-R
-R
-R
-R -R

-R
-R
-R

-R-R

-R-R-R

-R

-R

-R
R

-R

-R
-R
-R
-R -R

-R
-R
-R

-R-R

-R-R-R

-R

-RR

R R R

RR
R
R
R
R
R
R

R
R
R
R
R
R

R

-R
R

-R

-R
-R
-R
-R -R

-R
-R
-R

-R-R

-R-R-R

-R

-RR

R R R

RR
R
R
R
R
R
R

R
R
R
R
R
R

R

R

R
R

R
R

R R

R

R

R

R

R
R

R
R

R

R

R
R

R
R

R R

R

R

R

R

R
R

R
R

R

R

R
-R

R
-R

-R-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R-R
-R

-R-R

R
-R

-R-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R-R
-R

-R-R

R
-R

- - -
- -

-
-

-
- -

-
-

-
-

-
-

-
--

-
--

R

R
R

R
R

R R

R
R

R
R

R
R

R
R

R

R
-R

-R-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R-R
-R

-R-R

How do we compute Minkowski sums?

How do we compute Minkowski sums?

C-obstacle corresponding to O

R

-R

CASE 1: Convex robot with convex polygon

Observations:
• Each edge in R, O will cause an edge in R+O
• R+O has m+n edges (unless there are parallel edges)
• To compute: Place -R at all vertices of O and compute convex hull
• Possible to compute in O(m+n) time by walking along the boundaries of R and O

Computing Minkowski sums

R
-R

2D
• convex + convex polygons

• The Minkowski sum of two convex polygons with n, and m edges
respectively, is a convex polygon with n+m edges and can be computed in
O(n+m) time.

• convex + non-convex polygons
• Triangulate and compute Minkowski sums for each pair [convex polygon,

triangle], and take their union
• Size of Minkowski sum: O(m+3) for each triangle => O(mn)

• non-convex + non-convex polygons:
• size of Minkowski sum: O(n2m2)

3D
• it gets worse . . .

Computing Minkowski sums

Polygonal robot translating in 2D

Algorithm

• For each obstacle O, compute the
corresponding C-obstacle

• Compute the union of C-obstacles
• Compute its complement. That’s the

free C-space

 //now the problem is reduced to point

 //robot moving in free C-space
• Compute a trapezoidal map of free

C-space
• Compute a roadmap

O

O

O

For a convex robot of O(1) size
• Free C-space can be

computed in O(n lg2n) time.

 ==> With O(n lg2n) time pre-
processing, a collision-free path
can be found for any start and
end in O(n) time.

Complete, non optimal.

Polygonal robot in 2D with rotations

• Physical space is 2D
• A placement is specifies by 3 parameters: R(x,y, theta) ==> C-space is 3D.

• We’d like to extend the same approach:

 Reduce to point robot moving among C-obstacles in C-space.
• Compute C-obstacles
• Compute free space as complement of union of C-obstacles
• Decompose free space into simple cells
• Construct a roadmap
• BFS on roadmap

Polygonal robot in 2D with rotations

• What does a C-obstacle look like when rotations are allowed?

O

R(0,0, 0)

Polygonal robot in 2D with rotations

θ
x

y

O

R(0,0, 0)

θ
x

y

Polygonal robot in 2D with rotations

• What does a C-obstacle look like when rotations are allowed?

O

R(0,0,20)

Polygonal robot in 2D with rotations

θ
x

y

• What does a C-obstacle look like when rotations are allowed?

O

R(0,0,20)

Polygonal robot in 2D with rotations

θ
x

y

• What does a C-obstacle look like when rotations are allowed?

A C-obstacle is a 3D shape.

Imagine moving a horizontal plane vertically
through C-space.

Each cross-section of the C-obstacle is a
Minkowski sum O + -R (0,0,θ)

=> twisted pillar
O

R(0,0, θ)

Polygonal robot in 2D with rotations

θ
x

y

the closest i could find ..

What’s known:
• C-space is 3D

• Boundary of free space is curved, not polygonal.

• Combinatorial complexity of free space is O(n2) for convex, O(n3) for non-convex
robot

Polygonal robot in 2D with rotations

What’s known:
• C-space is 3D

• Boundary of free space is curved, not polygonal.

• Combinatorial complexity of free space is O(n2) for convex, O(n3) for non-convex
robot

Polygonal robot in 2D with rotations

• Extend same approach:

1. Compute C-obstacles and C-free

2. Compute a decomposition of free space into simple cells

3. Construct a roadmap

4. BFS on roadmap

space is 3D

Difficult to construct a good cell decomposition for curved 3D space

Polygonal robot in 2D with rotations

• Difficult to construct a good cell decomposition for curved 3D space
• A possible approach:

• If angle is fixed: you got translational motion planning
• Discretize rotation angle and compute a finite number of slices, one for each angle
• Construct a trapezoidal decomposition for each slice and its roadmap
• Link them into a 3D roadmap

• Add “vertical” edges between slices to allow robot to move up/down between
slices; these correspond to rotational moves.

• Example: Consider two angles a and b. If placement (x,y) is in free space in slice a,
and (x,y) is in free space in slice b, then the 3D roadmap should contain a vertical
edge between slice a and b at that position

Is this complete ?

Combinatorial path planning: Summary

• Idea: Compute free C-space combinatorially (= exact)
• Approach

• Reduce (robot, obstacles) => (point robot, C-obstacles)
• Compute roadmap of free C-space

• any path: trapezoidal decomposition or triangulation
• shortest path: visibility graph

• Comments
• Complete
• Works beautifully in 2D and for some cases in 3D

• Worst-case bound for combinatorial complexity of C-objects in 3D is high
• Unfeasible/intractable for high #DOF

• A complete planner in 3D runs in O(2n^#DOF)

