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Motion Planning 

Parameters:  
• geometry of obstacles (polygons, disks, convex, non-convex, etc) 
• geometry of robot (point, polygon, disc)  
• robot movement (dof) 
• objective function to minimize (euclidian distance, nb turns, etc) 
• 2d, 3d 
• static vs dynamic environment  
• exact vs approximate algorithm  
• known vs unknown map 

Input:   
• a robot R 
• start and end position
• a set of obstacles S = {O1, O2,…}

Find a path from start to end (that optimizes some objective function).



screenshot from: ai.stanford.edu/~latombe/cs26n/2012/slides/point-robot-bug.ppt



• A planner is complete: 
• it always finds a path when a path exists

• A planner is optimal: 
• it finds an optimal path (wrt objective function) 

Motion Planning 

Ideally we want a planner to be complete and optimal.



Approaches

• Combinatorial (exact)
• Compute an exact representation of free space
• Roadmap: a graph that represents the free space
• Find a path using the roadmap 

• Approximate
• roadmaps, sampling-based, search based, space decomposition, 

probabilistic, potential functions

this week

next week



Point robot in 2D
• General idea

• Compute free space 

• Compute a representation of free space 

• Build a graph of free space 

• Search graph to find path      <---------- Reduce motion planning to graph search 



Point robot in 2D

Result: 

Let R be a point robot moving among a set of polygonal obstacles in 2D with n edges in 
total.  We can pre-process S in O(n lg n) expected time such that, between any start 
and goal position, a collision-free path for R can be computed in O(n) time, if it exists. 

n   =  complexity of obstacles  
 (total number of edges) 

Claim: not optimal

complete



Show that the trapezoid map is not optimal by giving a scene where it 

dos not give the optimal (shortest) path  



What if we wanted the shortest path? 

Point robot in 2D



Claim: Any shortest path among a set S of disjoint polygonal obstacles 
• is a polygonal path (that is, not curved)
• its vertices are the vertices of S. 

p p

Shortest paths for point robot in 2D



Shortest paths for point robot in 2D

• Idea: Build the visibility graph (VG)
• all possible ways to travel between the vertices of the obstacles

• Claim:  any shortest path must be a path in the VG 











Algorithm

• Compute visibility graph 

• V = {set of vertices of obstacles + pstart + pend}

• SSSP (Dijkstra) in VG 

Shortest paths for point robot in 2D

• How big is VG and how long does it take to compute it? 

n   =  complexity of obstacles  
 (total number of edges) 



Algorithm

• Compute visibility graph 

• V = {set of vertices of obstacles + pstart + pend}

• SSSP (Dijkstra) in VG 

Shortest paths for point robot in 2D

• Complexity of VG

• VVG = O(n), EVG=O(n2)  <------- can have quadratic size

• Computing VG 

• naive:         for each edge, check if intersects any obstacle. O(n3)

• improved:    O(n lg n) per vertex, O(n2 lg n) total 

• Dijkstra on VG:  O(EVG lg n) = O(n2 lg n)

n   =  complexity of obstacles  
 (total number of edges) 



Algorithm

• Compute visibility graph  <------ O(n2 lg n)

• SSSP (Dijkstra) in VG     <------ O(EVG lg n)

Shortest paths for point robot in 2D

Theorem: 

 A shortest path of two points among a set of polygonal obstacles with n 
 edges in total can be computed in O(EVG lg n) = O(n2 lg n) time. 

n   =  complexity of obstacles  
 (total number of edges) 



• Idea

• for every vertex v:  compute all vertices visible from v in O(n lg n)

v

Improved computation of VG



Improved computation of VG

• Idea

• for every vertex v:  compute all vertices visible from v in O(n lg n)

v



Improved computation of VG

• Idea

• for every vertex v:  compute all vertices visible from v in O(n lg n)

v

active structure stores all edges intersected by sweep line,  
ordered by distance from v



Improved computation of VG

• Idea

• for every vertex v:  compute all vertices visible from v in O(n lg n)

v

w

w visible if vw does not intersect the interior of any obstacle



Motion planning with VG

• Optimal and complete  

• VG needs to be computed only once, so we can think of it as pre-processing  

• VG may be large ==> path planning doomed to quadratic complexity



Motion planning with VG (2D)

History:  
• Quadratic barrier broken by Joe Mitchell:  SP of a point robot moving in 2D 

can be computed in O(n5/3 + eps) 

• Hershberger and Suri [1993]: SP of a point robot moving in 2D can be 
computed in O( n lg n) (“continuous Dijkstra” approach) 

• Special cases can be solved faster:   

• e.g. SP inside a simple polygon w/o holes:  O(n) time

• Optimal and complete  

• VG needs to be computed only once, so we can think of it as pre-processing  

• VG may be large ==> path planning doomed to quadratic complexity



VG in 3D 

•  VG does not generalize to 3D

•  Shortest paths in 3D much harder

• no easy way to discretize the problem:  inflection points of SP are not 
restricted to vertices of S, can be inside edges

• 3D shortest paths among polyhedral obstacles is NP-complete 

(Complete and optimal planning in 3D is hopeless)



• 2D

• point robot moving inside an arbitrary polygon

• point robot moving among (arbitrary) polygons

• disk robot moving among (arbitrary) polygons

• convex robot moving among (arbitrary) polygons

• non-convex robot moving among (arbitrary) polygons

• robot with arms …. harder



Convex polygon moving in 2D

• How can the robot move? 

• Translation only 

• Translation + rotation 

screenshot from  internet



Work/physical space 
• Space where robot moves around 

R(0,0)

reference point

6

5

R(6,4)

R(0,0,0)

reference point

6

5

R(6,4,45)

45

4

4

translation + rotation

translation only



Work/physical space 
• Space where robot moves around 

R(0,0)

reference point

6

5

R(6,4)

R(0,0,0)

reference point

6

5

R(6,4,45)

45

4

4

A placement of robot is specified by the 
degrees of freedom (dof) of the robot

• Example: 

 R(x,y) 

  R(x,y,θ) 

translation + rotation

translation only



Configuration space (C-space)
• A point in C-space corresponds to 

placement of the robot in physical 
space

• C-space: The parametric space of the 
robot = space of all possible placements 
of the robot

• Examples: 

 2D, translation only  <-> R(x,y) 

 2D, transl.+ rot. <-> R(x,y, theta) 

 

R(0,0)

reference point

6

5

R(6,4)

R(0,0,0)

reference point

6

5

R(6,4,45)

45

translation + rotation

translation only



robot physical space C-space

polygon, 
(translation only) 2D 2D

Physical Space and C-space



robot physical space C-space

polygon, 
(translation only) 2D 2D

polygon, 
(translation + rotations) 2D 3D

Physical Space and C-space



robot physical space C-space

polygon, 
(translation only) 2D 2D

polygon, 
(translation + rotations) 2D 3D

polygon  
(translation, rotations) 3D 6D

Physical Space and C-space



robot physical space C-space

polygon, 
(translation only) 2D 2D

polygon, 
(translation + rotations) 2D 3D

polygon  
(translation, rotations) 3D 6D

Robot arm with joints 3D #DOF

Physical Space and C-space



Motion planning

• Any path for R corresponds to a path for R in C-space 

• Motion planning => motion planning in C-space

R(0,0)

R(1,1)

R(2,2)

R(3,1)

R(4,.5,)



Motion planning in C-space

• Free C-space

(x,y)

placement or robot at 
(x,y)

does not intersect 
obstacles



Motion planning in C-space

• Forbidden C-space

(x,y)

placement or robot at 
(x,y)

intersects obstacle

forbidden C-space:  

placements (x,y)  
where robot intersects  

with obstacle



C-obstacles

• Extended obstacle, or C-obstacle

• Given obstacle O, robot R(x,y): what placements cause intersection with O? 



• Extended obstacle, or C-obstacle

• Given obstacle O, robot R(x,y): what placements cause intersection with O? 

O

C-obstacle corresponding to O

C-obstacles



• Extended obstacle, or C-obstacle

• Given obstacle O, robot R(x,y): what placements cause intersection with O? 

C-obstacles



• Extended obstacle, or C-obstacle

• Given obstacle O, robot R(x,y): what placements cause intersection with O? 

C-obstacles



Exercise

r

robot

Show the corresponding C-obstacles for a disc robot.



Exercise

Show the corresponding C-obstacle.

robot



Polygonal robot translating in 2D

Algorithm 

• For each obstacle O, compute the 
corresponding C-obstacle 

• Compute the union of C-obstacles 
• Compute its complement. That’s the free 

C-space 

 //now the problem is reduced to a point  

    //robot moving in free C-space 
• Compute a trapezoidal map of free C-

space 
• Compute a roadmap

O

O

O

How fast can we do this?



How do we compute C-obstacles?



Minkowski sum
• Let A, B two sets of points in the plane  
• Define A + B =  { x + y | x in A, y in B}                 Minkowski sum 

• Interpretation:   consider set A to be centered at the origin. Then A + B 
represents many copies of A, translated by y, for all y in B; i.e. place a copy of 
A centered at each point of B.

BB
x

A A

x+A

A

A translated by x

A

BA
A A A

A
A

AA
A

A

B +  A

y

y

y

x, y vectorsvector sum



Minkowski sum

• A + B: Slide A so that the center of A traces the edges of B 

BB
x

A A

x+A

A

A translated by x

A

BA
A A A

A
A

AA
A

A

B +  A

y

y

y



C-obstacles as Minkowski sums

BB
x

x+R

R translated by x

B

B +  R

R R

R

R

R
RR

R

R
R

R

• Consider a robot R with the center in the lower left corner



C-obstacles as Minkowski sums

B + R is not quite the C-obstacle of B

• Consider a robot R with the center in the lower left corner

BB
x

x+R

R translated by x

B

B +  R

R R

R

R

R
RR

R

R
R

R



BB
x

-R translated by x

B

B +  -R
-R

R

-R: R reflected by origin

-R

-R

-R

-R
-R -R

-R
-R

-R
-R

-R-R

The C-obstacle of B is B + (- R(0,0)).

C-obstacles as Minkowski sums



O

C-obstacle corresponding to O

Slide so that R touches the obstacle Find O + (-R)



O

C-obstacle corresponding to O

Slide so that R touches the obstacle

C-obstacle corresponding to O

R

-R

Slide so that centerpoint of -R  traces 
the edges of obstacle



O

C-obstacle corresponding to O

Slide so that R touches the obstacle

C-obstacle corresponding to O

R

-R

Slide so that centerpoint of -R  traces 
the edges of obstacle
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How do we compute Minkowski sums?



How do we compute Minkowski sums?

C-obstacle corresponding to O

R

-R



CASE 1: Convex robot with convex polygon 

Observations:  
• Each edge in R, O will cause an edge in R+O 
• R+O has m+n edges (unless there are parallel edges) 
• To compute: Place -R at all vertices of O and compute convex hull  
• Possible to compute in O(m+n) time by walking along the boundaries of R and O

Computing Minkowski sums

R
-R



2D
• convex + convex polygons

• The Minkowski sum of two convex polygons with n, and m edges 
respectively, is a convex polygon with n+m edges and can be computed in 
O(n+m) time. 

• convex + non-convex polygons
• Triangulate and compute Minkowski sums for each pair [convex polygon, 

triangle], and take their union
• Size of Minkowski sum:  O(m+3) for each triangle => O(mn)

• non-convex + non-convex polygons: 
• size of Minkowski sum: O(n2m2)

3D 
• it gets worse . . . 

Computing Minkowski sums 



Polygonal robot translating in 2D

Algorithm 

• For each obstacle O, compute the 
corresponding C-obstacle 

• Compute the union of C-obstacles 
• Compute its complement. That’s the 

free C-space 

 //now the problem is reduced to point    

    //robot moving in free C-space 
• Compute a trapezoidal map of free 

C-space 
• Compute a roadmap

O

O

O

For a convex robot of O(1) size
• Free C-space can be 

computed in O(n lg2n) time.  

 ==> With O(n lg2n)  time pre-
processing, a collision-free path 
can be found  for any start and 
end in O(n) time.  

Complete, non optimal. 



Polygonal robot in 2D with rotations 

• Physical space is 2D  
• A placement is specifies by 3 parameters: R(x,y, theta)  ==> C-space is 3D. 



• We’d like to extend  the same approach:  

 Reduce to point robot moving among C-obstacles in C-space.  
• Compute C-obstacles  
• Compute free space as complement of union of C-obstacles 
• Decompose free space into simple cells  
• Construct a roadmap  
• BFS on roadmap

Polygonal robot in 2D with rotations 



• What does a C-obstacle look like when rotations are allowed? 

O

R(0,0,  0)

Polygonal robot in 2D with rotations 

θ
x

y



O

R(0,0,  0)

θ
x

y

Polygonal robot in 2D with rotations 

• What does a C-obstacle look like when rotations are allowed? 



O

R(0,0,20)

Polygonal robot in 2D with rotations 

θ
x

y

• What does a C-obstacle look like when rotations are allowed? 



O

R(0,0,20)

Polygonal robot in 2D with rotations 

θ
x

y

• What does a C-obstacle look like when rotations are allowed? 



A C-obstacle is a 3D shape.  

Imagine moving a horizontal plane vertically 
through C-space.  

Each cross-section of the C-obstacle is a 
Minkowski sum O + -R (0,0,θ)  

=> twisted pillar
O

R(0,0,  θ)

Polygonal robot in 2D with rotations 

θ
x

y



the closest i could find ..



What’s known:  
• C-space is 3D 

• Boundary of free space is curved, not polygonal.  

• Combinatorial complexity of free space is O(n2) for convex, O(n3) for non-convex 
robot

Polygonal robot in 2D with rotations 



What’s known:  
• C-space is 3D 

• Boundary of free space is curved, not polygonal.  

• Combinatorial complexity of free space is O(n2) for convex, O(n3) for non-convex 
robot

Polygonal robot in 2D with rotations 

• Extend same approach:  

1. Compute C-obstacles and C-free 

2. Compute a decomposition of free space into simple cells  

3. Construct a roadmap  

4. BFS on roadmap  

space is 3D

Difficult to construct a good cell decomposition for curved 3D space



Polygonal robot in 2D with rotations 

• Difficult to construct a good cell decomposition for curved 3D space 
• A  possible approach:   

• If angle is fixed:  you got translational motion planning 
• Discretize rotation angle and compute a finite number of slices, one for each angle 
• Construct a trapezoidal decomposition for each slice and its roadmap  
• Link them into a 3D roadmap 

• Add “vertical” edges between slices to allow robot to move up/down between 
slices; these  correspond to rotational moves.  

• Example: Consider two angles a and b.  If placement (x,y) is in free space in slice a, 
and (x,y) is in free space in slice b, then the 3D roadmap should contain a vertical 
edge between slice a and b at that position

Is this complete ?



Combinatorial path planning: Summary

• Idea: Compute free C-space combinatorially (= exact)
• Approach

• Reduce (robot, obstacles)  => (point robot,  C-obstacles) 
• Compute roadmap of free C-space 

• any path: trapezoidal decomposition or triangulation 
• shortest path: visibility graph 

• Comments
• Complete 
• Works beautifully in 2D and for some cases in 3D  

• Worst-case bound for combinatorial complexity of C-objects in 3D is high  
• Unfeasible/intractable for high #DOF 

• A complete planner in 3D runs in O(2n^#DOF)


