Computational Geometry

(csci3250)

Laura Toma

Bowdoin College

Warm-up: Finding collinear points

Problem:
Given a set of n points in 2D, determine if there exist three that are collinear.

Finding collinear points

Brute force

Algorithm 1 (brute force)

- for all distinct triplets of points p_{i}, p_{j}, p_{k} : if collinear return true
- (if you get here) return false
- Questions:
- Correct?
- Worst-case running time?
- Space?

Finding collinear points

Via sorting

Algorithm 2

- initialize array $\mathrm{L}=$ empty
- for all distinct pairs of points p_{i}, p_{j}
- compute their line equation (slope, intercept) and add it to an array L
- sort array L by (slope, intercept)
- traverse L and if you find any 3 consecutive identical (s,i) \rightarrow collinear
- Questions:
- Correct?
- Worst-case running time?
- Space?

Finding collinear points

With a binary search tree

Algorithm 3

- initialize BBST = empty
- for all distinct pairs of points p_{i}, p_{j}
- compute their line equation (s, i)
- insert (s, i) in BBST; if when inserting you find that (s, i) is already in the tree, you got three collinear points and return true
- (if you ever get here) return false
- Questions:
- Correct?
- Worst-case running time?
- Space?

Finding collinear points

With hashing

Algorithm 4

- initialize HashTable = empty
- for all distinct pairs of points p_{i}, p_{j}
- compute their line equation (s, i)
- insert (s, i) in HashTable; if when inserting you find that (s, i) is already in the HT, you got three collinear points and return true
- (if you ever get here) return false
- Questions:
- Correct?
- Worst-case running time?
- Space?

Finding collinear points

A different way to sort

Algorithm 5

- for every point p_{i}
- set array $\mathrm{L}=$ empty
- for every point p_{j} (with $p_{j}!=p_{i}$)
* compute slope of p_{j} wrt to p_{i} and add it to array L
- sort L
- traverse L and if you find two consecutive points that have same slope, they are collinear with p_{i} so return true
- (if you get here) return false
- Questions:
- Correct?
- Worst-case running time?
- Space?

