The problem: Given two convex polygons, compute their intersection.

Key component in other algorithms, such as:
- computing intersection of half-planes
- finding the kernel of a polygon
- linear programming problems

Claim: Intersection of two convex polygons \(P \) and \(Q \) has complexity \(O(|P| + |Q|) \).

Algorithm outline:
1. Choose edge \(A \) on \(P \), \(B \) on \(Q \) arbitrarily.
2. Repeat:
 - If \(A \) intersects \(B \):
 - Print intersection (and update inside flag).
 - Advance \(A \) or \(B \).
 - Until both \(A \) and \(B \) cycle their polygons.

Idea: the edges \(A \) and \(B \) chase each other, adjusting so that they meet at each intersection.

Advancing
• A directed edge
• $H(A)$: left half-plane of A

Idea: the edges A and B chase each other, adjusting so that they meet at each intersection

- If both A and B point towards each other
 - advance whichever is outside the other
- If B points towards A and A does not point towards B
 - advance B
- If A points towards B and B does not point towards A
 - advance A
- If neither A and B point towards each other
 - advance whichever is outside the other
A points away from B, B points away from A: advance whichever is outside the other

A points away from B, B points away from A: advance whichever is outside the other

A points towards B: advance A

A points towards B: advance A

A points to B and B towards A: advance B

A points to B, B points to A: advance B
A points to B: advance A

intersection detected

B points to A: advance B