
Laura Toma

Bowdoin College

Computational Geometry
(csci3250)

What is Computational Geometry?

• CG deals with algorithms for geometric data

points

lines and line segments

polygons

• Points, lines and polygons are used to model complex shapes

What is Computational Geometry?

Applications

• Computer graphics and animation
• rendering, hidden surface removal, lighting,

moving, collision detection,..

• Robotics and motion planning
• Autonomous vehicles

• collision detection involves finding
intersections

Applications

• Cell phone data
• Use location data
• model real-time traffic conditions, find

congestion patterns

• Spatial database engines
• store data and its geometry
• contain specialized data structures for

answering queries on geometric data
• e.g.: find all restaurants in a range

Syllabus overview

• Introduction and setup
• Geometric primitives

• point leftOf segment, segment intersection

• 2D Convex hull
• Gift wrapping, incremental. Quick hull,

Graham scan
• lower bound

• 3D convex hull
• incremental algorithm

Syllabus overview

• Segment intersection
• Bentley-Ottman sweep

• The art gallery problem

Syllabus overview

• Polygon triangulation
• O(n lg n) algorithm via trapezoidalization

• Voronoi diagrams and Delaunay triangulations
• if time permits

• Orthogonal range searching
• kd-trees and range trees

Syllabus overview

• Path planning : find collision-free path from start to end

Syllabus overview

• Path planning in 2D
• shortest path in a simple (non-convex)

polygon with the Funnel algorithm.
• shortest paths among polygonal obstacles

via visibility graph (VG)
• computation of the VG with plane sweep.

• Path planning in 3D
• combinatorial planning
• sampling-based planning

• probabilistic roadmaps (PRM)
• RRT

Syllabus overview

• We’ll explore algorithms

• The usual questions

• Properties of the solution?

• Complexity of the result?

• Worst-case running time?

• Can we do better?

• Lower bound for the problem?

• Is the algorithm practical?

• Handle degeneracies in the input?

• Can we make some practical assumptions about the data?

How will this class work?

• Style: Lectures and in-class group work

• Material is theoretical, assignments are programming

• All work comes from programming assignments

• 7 assignments, one every two weeks

• Language: C/C++

• We’ll use GitHub

• pair-programming encouraged (you must follow pair-

programming guidelines posted on class website)

Assignments

• A1: Finding the closest pair of
points in a set

• A4: Mondrian art via building a
kd-tree tree

• A3: 3D convex hull

• A2: 2D convex hull via Graham
scan

Assignments

• Assignment 5: Guarding a non-convex polygon

Assignments

• Assignment 6: Motion planning via the VG
for a point robot moving among polygonal
obstacles in 2D

• Assignment 7: Heuristical motion planning for
a polygonal robot moving in 2D via PRM or
RRT

• Assignment 7: Heuristical motion planning for a polygonal robot moving in 2D
via PRM or RRT

How will this class work?

• Office hours

• tbd , will announce next week

• TAs

• n/a

How will this class work?

• Grading

• 7 assignments, each weighted equally

• class participation for tie breaking

• No exams

• Work can get intense!

• plan accordingly..

• If you don’t like or don’t want to learn programming

• seriously consider a different class and send me an email to

discuss alternatives

CREDIT: https://www.castsoftware.com/images/imported-images/poor-software-quality.jpg

Programming is a craft

• Systems is a prereq for this class, so everyone should be familiar with C/C++

• Assignments are increasing in difficulty

• The first assignments are easier and skeleton code is provided

• Assignments 5, 6, 7 are harder and from scratch

• Programming is not a science, it’s a learnt craft

• We all grow as programmers by practicing. No exceptions.

• Start wherever you are and move forward!

Programming is a craft

• For starters, expect to spend most of your time debugging your code

• From here, you’ll start writing code expecting you’ll debug

• This will change the way you approach coding

• The pain of debugging will teach you (eventually!) to develop your code

structured, well documented => simple, elegant, easy to understand

code => high quality code ==> easy to debug

Growing as a programmer: the cycle we all go through

I’ll just do it quick and dirty
for now..

Comments are for
wimps

Noone will read this
code but me so why

does it matter? code is
code. I’ll make it pretty

later

Why bother writing
another function? i’ll do

that later

In this class…YOU need to debug YOUR code.

test early and often

small functions

good comments

develop incrementally

I can’t debug my
code! Help!

I don’t even know
where the error starts!

The screen is blank!

It ran just fine on that
different input!

DEBUGGING

Good quality coding practices

• Break the functionality in separate blocks/functions

• Develop your code incrementally, one function at a time

• Use meaningful names

• Give functions and variables meaningful names

• Bad names may seem short and easy, but they make code harder to

understand and debug and maintain

• Testing

• Add testing and test cases. Make sure one function passes the testing
before you move to the next one

• Test early and often. Don’t write everything and then start the testing

Credit:

Good quality coding practices

• Write comments

• you will forget what the code does

• other people read your code

• debugging bad code is time consuming and
frustrating

• comments help the reader understand the code

• Bad comments: e.g. repeat what the code does

• Good comments: e.g. summarize what each
function does and its parameters. Summarize
blocks of code. State logical invariants.

YOU need to get here

The faster the better!

Teaching philosophy

How will this class work?

• For algorithmic work, group problem solving is crucial to understanding the
material

• I count on you to engage

• Learning will be a lot better for everyone if we create a community

• The classroom is a friendly space to ask questions and to “not know”

• Don’t feel bad to look dumb!

• If someone thinks a question is dumb, then they are dumb

• Questions and mistakes lead to learning

• Start on time, ask questions

• Respect the class by preparing and staying on track

• This is still a weird semester, and I am committed to being flexible

• We may need to drop material and assignments

• that’s ok!

• If anyone of us gets sick (with covid), work won’t be expected while we

recover

• that’s ok!

• Send me an email with any concerns or if you have circumstances that make

your learning difficult

