
Pattern Recognition 40 (2007) 1078 –1090
www.elsevier.com/locate/pr

An improved watershed algorithm based on efficient computation
of shortest paths

Víctor Osma-Ruiz∗, Juan I. Godino-Llorente, Nicolás Sáenz-Lechón, Pedro Gómez-Vilda
Dpt. of Ingeniería de Circuitos y Sistemas, Universidad Politécnica de Madrid, Ctra. Valencia, Km. 7, 28031, Madrid, Spain

Received 5 July 2005; received in revised form 10 March 2006; accepted 27 June 2006

Abstract

The present paper describes a new algorithm to calculate the watershed transform through rain simulation of greyscale digital images
by means of pixel arrowing. The efficiency of this method is based on limiting the necessary neighbouring operations to compute the
transform to the outmost, and in the total number of scannings performed over the whole image. The experiments demonstrate that the
proposed algorithm is able to significantly reduce the running time of the fastest known algorithm without involving any loss of efficiency.
! 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Watershed; Image segmentation; Arrowing

1. Introduction

The watershed transform is one of the most valued tools
in the field of digital image segmentation [1]. One of the
main advantages of this technique lays in the fact that the
result is a set of well delimited areas, so if we consider that
these areas represent the searched objects, we will obtain an
accurate edge detection defined by a set of connected pixels.
This is a great improvement with respect to other segmen-
tation techniques, which address edge detection through un-
connected lines that allow the differentiation of the objects
at first glance, but are rather complicated when dealing with
automatic systems.

The concept of watersheds comes from the field of to-
pography, referring to the division of a landscape in sev-
eral basins or water catchment areas. A good example is the
continental divide that separates the USA into two main re-
gions: one associated with the Atlantic Ocean, and another
associated with the Pacific Ocean. So, on rainy days, all the
drops of rain that fall on one side of the divide flow into

∗ Corresponding author. Tel.: +34 91 336 78 32; fax: +34 91 336 78 29.
E-mail addresses: vosma@ics.upm.es (V. Osma-Ruiz),

igodino@ics.upm.es (J.I. Godino-Llorente), nicolas.saenz@upm.es
(N. Sáenz-Lechón), pedro@pino.datsi.fi.upm.es (P. Gómez-Vilda).

0031-3203/$30.00 ! 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2006.06.025

one ocean, while rain falling on the other side of the divi-
sion will flow into the other ocean. It is clear that the water
will reach the ocean provided that it is not trapped in a local
minimum along the way. Both regions are usually named
catchment basins, and each one has an associated minimum
(the oceans). The border line that separates both basins is
called the watershed line, corresponding to the continental
divide in the example. From this point of view, we can con-
sider the image as a topographic surface where each pixel
is a point situated at some altitude as a function of its grey
level [1–3]. The white colour (grey level 255) is taken to
mean the maximum altitude and the black colour (grey level
0) the minimum. The rest of the grey levels match an alti-
tude associated to the image between these extremes.

Given this definition, during the last years, two concep-
tually distinct techniques have been developed to calculate
the watershed transform:

• The first method proposes the transformation by flood-
ing the topographic surface. This technique basically
involves gradually immersing the surface in a water con-
tainer. Previously, a hole has been made in each of the
surface minima. The water will begin to flow through
the holes, first through those with less altitude but gradu-
ally reaching those with a greater altitude. Progressively

http://www.elsevier.com/locate/pr
mailto:vosma@ics.upm.es
mailto:igodino@ics.upm.es
mailto:nicolas.saenz@upm.es
mailto:pedro@pino.datsi.fi.upm.es

V. Osma-Ruiz et al. / Pattern Recognition 40 (2007) 1078–1090 1079

all the catchment basins associated to the minima are
flooded. The water coming from the flooding of two or
more different basins might converge. At this point, sup-
pose that a dyke is built to prevent the joining. Once the
whole surface is immersed, only the dykes will rise above
the water level, making up the watershed lines. The water-
sheds or catchment basins are all the areas surrounded by
the lines. There are several algorithms implementing this
technique [4,5], which have been subsequently improved
[6–10] and even implemented in hardware [11].

• The second method simulates the rain over the surface as-
sociated with the image. The drops that fall over a point
will flow along the path of steepest descent until reach-
ing a minimum. Such a point is labelled as belonging to
the reception basin associated with this minimum. This
process is repeated for all the points on the surface, so in
the end every point will be assigned to a minimum and
the surface will be divided into its catchment basins. In
this approach, no point will explicitly belong to a water-
shed line, because every point is labelled as belonging to
a certain basin. The lines will therefore be formed by the
edges of the pixels that separate the different basins. This
method has been implemented in Ref. [1], and improved
in Refs. [12–14]. There also exist other studies focus-
ing on hardware adaptation [15], and parallel processing
[16,17].

In this brief description we have not differentiated be-
tween methods based on topographic distance [18,19] and
methods based on local conditions (defined here as rain sim-
ulation) because they are conceptually rather similar [17].
However, it is important to mention that most methods based
on topographic distance also produce watershed lines as do
those based on immersion.

Most of the processes that follow the flooding criterion
face the common problem that large image areas could form
a part of the watershed lines, whereas it is desirable that
these lines will never have a width greater than the min-
imum resolution in the digital image (usually one pixel).
This fact can be clearly observed in the image in Fig. 1. The
catchment basins are represented in light grey, whereas the
points with darker grey are those that constitute the water-
shed lines. The numbers in each cell represent the grey level
of the corresponding pixel. Moreover, the points labelled as
belonging to a watershed line tend to slow down the merging
process that usually follows the calculation of the watershed
transform [20–25].

The techniques based on rain-flow simulation do not
present the above mentioned problems, because they la-
bel all the points as belonging to a basin. In Fig. 2, a
different grey level has been used for each of the four
catchment basins that divide the image. The thick line
represents the border line, i.e., the equivalent to the for-
mer watershed lines, this time presenting an ideal width.
This paper presents a new algorithm capable of comput-
ing the watershed transform according to this criterion, but

10 10 12 14 20 20 15 13 11 11

20 20 20 20 20 20 20 20 20 20

12 12 12 14 20 20 15 13 13 13

14 14 14 14 20 20 15 15 15 15

20 20 20 20 20 20 20 20 20 20

10 10 12 14 20 20 15 13 11 11

18 18 18 18 20 20 19 19 19 19

17 17 17 18 20 20 19 18 18 18

15 15 17 18 20 20 19 18 17 17

15 15 17 18 20 20 19 18 17 17

10 10 12 14 20 20 15 13 11 11

20 20 20 20 20 20 20 20 20 20

12 12 12 14 20 20 15 13 13 13

14 14 14 14 20 20 15 15 15 15

20 20 20 20 20 20 20 20 20 20

10 10 12 14 20 20 15 13 11 11

18 18 18 18 20 20 19 19 19 19

17 17 17 18 20 20 19 18 18 18

15 15 17 18 20 20 19 18 17 17

15 15 17 18 20 20 19 18 17 17

Fig. 1. Watershed lines and catchment basins obtained using the algorithm
of Vincent and Soille [6]. In dark grey are represented the watershed
lines. In light grey the catchment basins. The numbers represent the grey
level of the pixels.

10 10 12 14 20 20 15 13 11 11

20 20 20 20 20 20 20 20 20 20

12 12 12 14 20 20 15 13 13 13

14 14 14 14 20 20 15 15 15 15

20 20 20 20 20 20 20 20 20 20

10 10 12 14 20 20 15 13 11 11

18 18 18 18 20 20 19 19 19 19

17 17 17 18 20 20 19 18 18 18

15 15 17 18 20 20 19 18 17 17

15 15 17 18 20 20 19 18 17 17

10 10 12 14 20 20 15 13 11 11

20 20 20 20 20 20 20 20 20 20

12 12 12 14 20 20 15 13 13 13

14 14 14 14 20 20 15 15 15 15

20 20 20 20 20 20 20 20 20 20

10 10 12 14 20 20 15 13 11 11

18 18 18 18 20 20 19 19 19 19

17 17 17 18 20 20 19 18 18 18

15 15 17 18 20 20 19 18 17 17

15 15 17 18 20 20 19 18 17 17

10 10 12 14 20 20 15 13 11 11

20 20 20 20 20 20 20 20 20 20

12 12 12 14 20 20 15 13 13 13

14 14 14 14 20 20 15 15 15 15

20 20 20 20 20 20 20 20 20 20

10 10 12 14 20 20 15 13 11 11

18 18 18 18 20 20 19 19 19 19

17 17 17 18 20 20 19 18 18 18

15 15 17 18 20 20 19 18 17 17

15 15 17 18 20 20 19 18 17 17

Fig. 2. Watershed transform of an image following the criterion of sim-
ulation based on raining of Sun et al. [14].

more efficiently and with lower running time than current
approaches.

In Refs. [12,14] two algorithms are presented that calcu-
late the watershed by means of rain simulation. The image
is explored 4 times (plus another scan to initialize the data
structures) allowing a running time lower than the fastest at
that moment [6,18].

The algorithm proposed in this paper produces the same
result as the previous works using only two scans (plus an-
other to initialize the data structures), thus decreasing the
running time obtained by Sun [14] and Bieniek [12]. The ef-
fectiveness of the algorithm obtains the same results as the
other methods developed to compute the watershed trans-
form. Both assertions are demonstrated throughout this pa-
per and supported by several examples.

1080 V. Osma-Ruiz et al. / Pattern Recognition 40 (2007) 1078–1090

The paper is organized as follows: Section 2 describes
the basic concepts about watershed transform by means of
rain simulation. In Section 3 these basic concepts are devel-
oped and applied to build the proposed algorithm. Section
4 demonstrates the efficiency and effectiveness of the algo-
rithm through several experiments. And finally, Section 5
presents the conclusions.

2. Review of watershed concepts

This section presents a review of the basic concepts and
terminology to build the watershed transform of a digital
image using a rain simulation.

2.1. Definition of regional minimum

A regional minimum is a point or a group of connected
points with the same grey level, where none of them have
a neighbour with a lower grey level [1,3,26]. In order to
determine the connection and neighbourhood of the points,
the degree of connectivity has to be defined: it is typi-
cally either 8 (each point is considered connected with all
its neighbours in vertical, horizontal and diagonal direc-
tions) or 4 (each point is considered connected with all
its neighbours in vertical and horizontal directions, but not
in diagonal) [1]. All the examples in this paper assume 8-
connectivity.

Watershed methods are used to establish a topographic
analogy between digital images and the way the water flows
through a real terrain surface. According to this analogy, for
rain simulation-based methods, a regional minimum is the
area of the surface where the rain water would get trapped
without flowing to lower levels.

In Fig. 3, a circle surrounds the grey level of those pix-
els belonging to the four regional minima that exist in the
image.

29 27 15 13 28 11 15 10 28 29

20 19 18 15 16 18 10 5 9 10

20 22 5 8 9 8 8 10 22 24

15 11 4 1 16 8 9 14 15 20

12 10 9 10 17 15 23 13 10 14

25 26 9 10 15 14 8 11 26 27

23 13 11 14 20 19 12 5 7 6

26 12 9 10 22 23 15 5 5 8

27 13 11 15 11 32 11 5 5 11

29 21 22 18 23 30 27 25 26 15

29 27 15 13 28 11 15 10 28 29

20 19 18 15 16 18 10 5 9 10

20 22 5 8 9 8 8 10 22 24

15 11 4 1 16 8 9 14 15 20

12 10 9 10 17 15 23 13 10 14

25 26 9 10 15 14 8 11 26 27

23 13 11 14 20 19 12 5 7 6

26 12 9 10 22 23 15 5 5 8

27 13 11 15 11 32 11 5 5 11

29 21 22 18 23 30 27 25 26 15

29 27 15 13 28 11 15 10 28 2929 27 15 13 28 11 15 10 28 29

20 19 18 15 16 18 10 5 9 1020 19 18 15 16 18 10 5 9 10

20 22 5 8 9 8 8 10 22 2420 22 5 8 9 8 8 10 22 24

15 11 4 1 16 8 9 14 15 2015 11 4 1 16 8 9 14 15 20

12 10 9 10 17 15 23 13 10 1412 10 9 10 17 15 23 13 10 14

25 26 9 10 15 14 8 11 26 2725 26 9 10 15 14 8 11 26 27

23 13 11 14 20 19 12 5 7 623 13 11 14 20 19 12 5 7 6

26 12 9 10 22 23 15 5 5 826 12 9 10 22 23 15 5 5 8

27 13 11 15 11 32 11 5 5 1127 13 11 15 11 32 11 5 5 11

29 21 22 18 23 30 27 25 26 1529 21 22 18 23 30 27 25 26 15

Fig. 3. An example of regional minima in a digital image.

2.2. Definition of steepest descending path

A descending path from a point (x, y) is a series of con-
nected points with the origin in (x, y), where each point
presents a grey level strictly lower than the previous one.
Logically, every descending path will end in a regional min-
imum, because a minimum does not have any neighbour
with a lower grey level.

There may exist several descending paths from any given
point, because there could be more than one neighbour with
a grey level below that at the point that is being analysed.
A descending path is said to be a steepest descending path
if each point in the path is connected to the neighbour with
the lowest grey level. Note that the steepest descending path,
like descending paths, need not be unique [1].

Following with the topographic analogy of rain simula-
tion, the steepest descending path is the path that a drop of
water would follow while flowing down to a regional mini-
mum.

Fig. 4 shows the steepest descending path originating from
point (0, 0) (the upper-left corner) to the regional minimum
where it ends. It also shows, in darker grey, two steepest
descending paths beginning at point (8, 5) and ending in a
different minimum. The choice between one or the other
depends only on the implementation.

2.3. Definition of catchment basins

The watershed transform implemented using rain simula-
tion consists of dividing the image into a set of catchment
basins, so each point of the image belongs to one and only
one of these catchment basins [12] (called watersheds in
Ref. [1]).

A catchment basin is formed by a regional minimum and
all the points whose steepest descending path fall in that
minimum [12].

29 27 15 13 28 11 15 10 28 29

20 19 18 15 16 18 10 5 9 10

20 22 5 8 9 8 8 10 22 24

15 11 4 1 16 8 9 14 15 20

12 10 9 10 17 15 23 13 10 14

25 26 9 10 15 14 8 11 26 27

23 13 11 14 20 19 12 5 7 6

26 12 9 10 22 23 15 5 5 8

27 13 11 15 11 32 11 5 5 11

29 21 22 18 23 30 27 25 26 15

29 27 15 13 28 11 15 10 28 29

20 19 18 15 16 18 10 5 9 10

20 22 5 8 9 8 8 10 22 24

15 11 4 1 16 8 9 14 15 20

12 10 9 10 17 15 23 13 10 14

25 26 9 10 15 14 8 11 26 27

23 13 11 14 20 19 12 5 7 6

26 12 9 10 22 23 15 5 5 8

27 13 11 15 11 32 11 5 5 11

29 21 22 18 23 30 27 25 26 15

29 27 15 13 28 11 15 10 28 29

20 19 18 15 16 18 10 5 9 10

20 22 5 8 9 8 8 10 22 24

15 11 4 1 16 8 9 14 15 20

12 10 9 10 17 15 23 13 10 14

25 26 9 10 15 14 8 11 26 27

23 13 11 14 20 19 12 5 7 6

26 12 9 10 22 23 15 5 5 8

27 13 11 15 11 32 11 5 5 11

29 21 22 18 23 30 27 25 26 15

29 27 15 13 28 11 15 10 28 2929 27 15 13 28 11 15 10 28 29

20 19 18 15 16 18 10 5 9 1020 19 18 15 16 18 10 5 9 10

20 22 5 8 9 8 8 10 22 2420 22 5 8 9 8 8 10 22 24

15 11 4 1 16 8 9 14 15 2015 11 4 1 16 8 9 14 15 20

12 10 9 10 17 15 23 13 10 1412 10 9 10 17 15 23 13 10 14

25 26 9 10 15 14 8 11 26 2725 26 9 10 15 14 8 11 26 27

23 13 11 14 20 19 12 5 7 623 13 11 14 20 19 12 5 7 6

26 12 9 10 22 23 15 5 5 826 12 9 10 22 23 15 5 5 8

27 13 11 15 11 32 11 5 5 1127 13 11 15 11 32 11 5 5 11

29 21 22 18 23 30 27 25 26 1529 21 22 18 23 30 27 25 26 15

Fig. 4. Example of steepest descending paths. In light grey is represented
the steepest descending path that originates from point (0, 0) until a
minimum situated in (3, 3). In dark grey, two steepest descending paths
that start from point (8, 5) to two different regional minima.

V. Osma-Ruiz et al. / Pattern Recognition 40 (2007) 1078–1090 1081

29 27 15 13 28 11 15 10 28 29

20 19 18 15 16 18 10 5 9 10

20 22 5 8 9 8 8 10 22 24

15 11 4 1 16 8 9 14 15 20

12 10 9 10 17 15 23 13 10 14

25 26 9 10 15 14 8 11 26 27

23 13 11 14 20 19 12 5 7 6

26 12 9 10 22 23 15 5 5 8

27 13 11 15 11 32 11 5 5 11

29 21 22 18 23 30 27 25 26 15

29 27 15 13 28 11 15 10 28 29

20 19 18 15 16 18 10 5 9 10

20 22 5 8 9 8 8 10 22 24

15 11 4 1 16 8 9 14 15 20

12 10 9 10 17 15 23 13 10 14

25 26 9 10 15 14 8 11 26 27

23 13 11 14 20 19 12 5 7 6

26 12 9 10 22 23 15 5 5 8

27 13 11 15 11 32 11 5 5 11

29 21 22 18 23 30 27 25 26 15

29 27 15 13 28 11 15 10 28 29

20 19 18 15 16 18 10 5 9 10

20 22 5 8 9 8 8 10 22 24

15 11 4 1 16 8 9 14 15 20

12 10 9 10 17 15 23 13 10 14

25 26 9 10 15 14 8 11 26 27

23 13 11 14 20 19 12 5 7 6

26 12 9 10 22 23 15 5 5 8

27 13 11 15 11 32 11 5 5 11

29 21 22 18 23 30 27 25 26 15

29 27 15 13 28 11 15 10 28 2929 27 15 13 28 11 15 10 28 29

20 19 18 15 16 18 10 5 9 1020 19 18 15 16 18 10 5 9 10

20 22 5 8 9 8 8 10 22 2420 22 5 8 9 8 8 10 22 24

15 11 4 1 16 8 9 14 15 2015 11 4 1 16 8 9 14 15 20

12 10 9 10 17 15 23 13 10 1412 10 9 10 17 15 23 13 10 14

25 26 9 10 15 14 8 11 26 2725 26 9 10 15 14 8 11 26 27

23 13 11 14 20 19 12 5 7 623 13 11 14 20 19 12 5 7 6

26 12 9 10 22 23 15 5 5 826 12 9 10 22 23 15 5 5 8

27 13 11 15 11 32 11 5 5 1127 13 11 15 11 32 11 5 5 11

29 21 22 18 23 30 27 25 26 1529 21 22 18 23 30 27 25 26 15

Fig. 5. Catchment basins of the example image.

Thus, according to the topographic analogy, a catchment
basin is an area of the image with an associated regional
minimum, such that if a drop of water should fall in any
given point of that area, it would descend to its minimum
following the steepest descending path of that point.

As mentioned above, a point might have several steep-
est descending paths ending in different minima. Because a
point may also belong to different catchment basins, some
criterion must be chosen to determine which basin to use.
Examples include: grey level of the minimum associated to
each catchment basin, position of the catchment basins in
the image, randomly, etc.

In Fig. 5, the image has been segmented into four catch-
ment basins, marked with different grey levels, following
the steepest descending paths of their pixels. The regional
minima of each catchment basin are indicated with a cir-
cle, and the steepest descending paths have been represented
with arrows indicating the direction of descent. In order to
discriminate among the steepest descending paths that start
from the same point, highest priority has been given to those
going up to the left. The priority decreases as we move to
the right and down, so the right-down direction has the low-
est priority. This criterion is the one used in the algorithm
presented in Section 3.

2.4. Definition of geodesic distance

The geodesic distance between two points of an image
(x1, y1) and (x2, y2) belonging to a certain domain X (a
subset of points of the image) is defined as the minimum
length of any path from (x1, y1) to (x2, y2) without leaving
the domain X [1,5,6].

In digital imaging it is usual to consider that the distance
between a point and any of its neighbours is unity, indepen-
dent of the direction (vertical, horizontal or diagonal).

Fig. 6 shows the geodesic distance between two points of
the image, considering as the domain X a plateau of grey

43

43

41 33

34

42 32

43

43 31

41 33

34

35

42 32

21 19 1821 19 18

36 37 34 32 2041

41

25 25 25 25 25

25 25 25 25 25

25 25 25 25

25 33 25

25 25 25 25 25

21 19 1821 19 18

36 37 34 32 2041

43

42

43 31

15

35

42 21

33

39

25

25

34

41

41

31

42

41

43

43

41 33

34

42 32

43

43 31

41 33

34

35

42 32

21 19 1821 19 18

36 37 34 32 2041

41

25 25 25 25 25

25 25 25 25 25

25 25 25 25

25 33 25

25 25 25 25 25

21 19 1821 19 18

36 37 34 32 2041

43

42

43 31

15

35

42 21

33

39

25

25

34

41

41

31

42

41

Fig. 6. Representation of the geodesic distance between two points. The
domain X consists of pixels with grey level equal to 25. The degree of
connectivity is 8.

level 25. The starting and ending point are represented with
dark grey, and the domain in lighter grey. The thick arrows
indicate the geodesic path, and the geodesic distance is 3.
The thin arrows indicate another possible path between both
points, but with a longer distance.

2.5. Definition of lower-complete image

Many images have regions where the pixels have the same
grey level. When these regions do not form a regional mini-
mum they are called non-minima plateaus [12,14] and they
pose a problem in calculating the watershed transform. This
is because the computation of this transform requires that all
the points that do not belong to a regional minimum have at
least one neighbour with a lower grey level. This approach
ensures that all the points that do not correspond with a min-
imum will have a steepest descending path and will belong
to a catchment basin [1].

To achieve this goal it is enough to sort those points be-
longing to a non-minima plateau in such a way that all of
them have a lower neighbour. To accomplish this sorting,
the points of these plateaus are divided into two different
groups:

• Descending edge points of the plateau: this group consists
of every point of the plateau that has a neighbour with a
grey level less than its grey level.

• Inner points of the plateau: this group consists of every
point of the plateau whose neighbours have grey levels of
equal or higher value than its grey level.

Subsequently, the geodesic distance of an inner point of the
plateau to all the points of the edge (with the plateau as
domain) is calculated. The lowest value will represent the
geodesic distance from this point to the descending edge of

1082 V. Osma-Ruiz et al. / Pattern Recognition 40 (2007) 1078–1090

43

43

41 33

34

42 32

43

43 31

41 33

34

35

42 32

21 19 1821 19 18

36 37 34 32 2041

41

25 25 25 25 25

25 25 25 25 25

25 25 25 25

25 33 25

25 25 25 25 25

21 19 1821 19 18

36 37 34 32 2041

43

42

43 31

15

35

42 21

33

39

25

25

34

41

41

31

42

41

43

43

41 33

34

42 32

43

43 31

41 33

34

35

42 32

21 19 1821 19 18

36 37 34 32 2041

41

25 25 25 25 25

25 25 25 25 25

25 25 25 25

25 33 25

25 25 25 25 25

21 19 1821 19 18

36 37 34 32 2041

43

42

43 31

15

35

42 21

33

39

25

25

34

41

41

31

42

41

Fig. 7. Arrowing of a plateau with a grey level of 25, considering a
geodesic distance from the inner points to the edge of the plateau.

the plateau. The process is repeated for all the inner points of
the plateau. The points belonging to the edge of the plateau
will have a geodesic distance equal to 0. Once the process is
finished, all the points of the image (except those in a min-
imum) will have a lower neighbour, because if two points
have the same grey level, the one with a lower geodesic dis-
tance to the descending edge is considered to have a lower
grey level. The new image, that keeps an account not only of
the grey levels but also of the geodesic distances, to deter-
mine the level of each point, is called lower-complete image.

Fig. 7 presents a set of arrows that illustrates the steep-
est descending path of each point that belongs to the non-
minima plateau, by considering the geodesic distance from
the inner points to the edge of the plateau. To calculate the
geodesic distance, an iterative process is applied, starting
from the edge points (represented in dark grey in Fig. 7).
The neighbours of every pixel in the plateau are scanned
and are made to point to the starting pixel, providing they
do not point to any other pixel of the plateau yet.

If we would like to know the exact geodesic distance from
any point to the edge of the plateau, we would only have
to count the arrows along the path between that point and
the edge where the arrows are leading. Nevertheless, this
is not necessary because the arrows indicate the steepest
descending path for each point belonging to the non-minima
plateau. This is not the only way to calculate the geodesic
distance, but it is very useful for our implementation.

2.6. Definition of watershed transform

The watershed transform is a matrix of points of the same
size as the original image, where each point has been labelled
using its steepest descending path as belonging to a unique
catchment basin.

From a topographic point of view, the watershed transform
represents the division of the surface into its water catchment
basins.

The goal is that each catchment basin matches an ob-
ject in the image. Nevertheless, the result of the watershed
transform is usually disappointing, due to the fact that thou-
sands of catchment basins arise where only a few were ex-
pected [1]. Following the topographic analogy, this is like
pretending to divide a country into catchment basins accord-
ing to rivers and oceans but detecting even the potholes in
the roads. This problem is called oversegmentation and is
mainly due to noise in the image. The best solution is to
merge the catchment basins after the watershed transform,
following various criteria as described in existing literature
[1,20–25,27].

3. Algorithm description

3.1. Description of the elements and basic operations

There now follows a brief description of the nomenclature
employed to represent data and operations that have been
used throughout the paper:

• Input matrix (image): F.
• Output matrix (watershed transform): W.
• Grey level of pixel p in image F: F(p).
• Label of pixel p in the output matrix: W(p).
• Neighbour of pixel p in image F: N(p).
• Minimum grey level of the neighbours of a point p in the

image F, below the grey level of point p: min{F(N(p))}.
• Traversing the points of an image: Scan(p).
• Insert a pixel p into a queue: queue_name-put(p).
• Extract a pixel p from a queue: p = queue_name-get().
• Arrowing operation: W(p) → p′ (p points to p′).

All the queues used to build the algorithm are FIFO (first
in, first out), i.e. the first element in, is the first element
out. In this context, a queue is only a segment of memory
to store numbers (such as the position of a pixel), allowing
operations over the stored values. The size of the queues (i.e.
the allocated memory) is managed using adjoined blocks.
If any value has to be stored in the queue, the allocation is
carried out for a group of them, so the next value is likely
to find free memory remaining, and a new allocation is not
needed. The allocated memory is reused after each iteration
and is only freed at the end of the whole process. With this
approach, the amount of memory used is greater, but the
time spent by the algorithm to manage the memory is lower.
Bearing in mind that nowadays memory is relatively cheap
in comparison with the cost in terms of time, it is considered
a good solution.

The regional minima and steepest descending paths must
be marked in the output matrix W. A positive number is
used to identify the regional minima and a number less than
or equal to 0 is used to identify the arrowing (the steepest
descending paths). The criterion to assign directions in the
arrowing is summarized in Fig. 8. The constant value −8

V. Osma-Ruiz et al. / Pattern Recognition 40 (2007) 1078–1090 1083

0

-1

-4

-2

-3

-6

-5-7

0

-1

-4

-2

-3

-6

-5-7

Fig. 8. Arrowing criterion used to implement the algorithm to indicate
the direction of the steepest descending paths.

(represented in the algorithm with the label UNVISITED)
indicates that the point has not been analysed yet, and −9
(label PENDING) means that it is in the process of being
labelled.

For example, let us suppose that the point located at (2, 5)

has a neighbour belonging to its steepest descending path in
(3, 6). Then the position (2, 5) of the output matrix has to
be labelled with a −5.

3.2. Algorithm description

The algorithm presented is able to perform the watershed
transform by scanning the image just twice (plus once for
initialization). The swiftness of the algorithm to calculate
the catchment basins is based on a reduction of the num-
ber of neighbourhood operations. Neighbourhood operations
introduce a high running time; for example, assuming 8-
connectivity, such an operation involves manipulating the 8
surrounding pixels. However, this process is mandatory for
every algorithm that calculates the watershed transform. The
key to efficiency is making best use of each neighbourhood
operation to do all the possible calculations, thus reducing
the number of scans.

Following this idea, the algorithm is implemented as
follows:

Step 0: Initialization
Define UNVISITED= −8 and PENDING= −9
Scan(p){

W(p) = UNVISITED
}
NumCatchment = 1
Create 4 queues: qPending, qEdge, qInner, qDescending
Step 1: Identifying regional minima and steepest descending paths
Scan(p){

//If the point has not been analyzed yet, study it
If (W(p) = UNVISITED){

∀p’ belonging to N(p){
If (F(p’) = F(p)){ //This is a plateau

If (qPending = ∅){ W(p) = PENDING; qPending−put(p)}
W(p’) = PENDING;
qPending−put(p’)

}
Else If (F(p’) = min{F(N(p))}){

Min = p’
}

}
//If p belongs to a plateau, make it lower-complete image
//If not, p is considered a minimum unless there is a
//lower neighbour
If (qPending ̸= ∅){

While (qPending ̸= ∅){
p’ = qPending−get()
If (p’ ̸= p){ //Calculations already done for seed

//Put in the queue all the points in the plateau
∀ p’’ belonging to N(p’){

If (F(p’’) = F(p)){
If (W(p’’) = UNVISITED){

W(p’’) = PENDING; qPending−put(p’’)
}

}

1084 V. Osma-Ruiz et al. / Pattern Recognition 40 (2007) 1078–1090

Else If (F(p’’) = min{F(N(p’))}){
Min = p’’

}
}

}
//Classify the point as either an edge or inner point
If (∃ Min){W(p’) → Min; qEdge−put(p’)}
Else{qInner−put(p’)}

}
//If the plateau has no edge points, it is a minimum
//If the plateau has edge and inner points, make it
//lower-complete
If (qEdge ̸= ∅){

If (qInner ̸= ∅){
While (qEdge ̸= ∅){

p’ = qEdge−get()
∀p’’ belonging to N(p’){

If (F(p’’) = F(p’) and W(p’’) = PENDING){
W(p’’) → p’
qEdge−put(p’’)

}
}

}
}

}
Else{

While (qInner ̸= ∅){
p’ = qInner−get()
W(p’) = NumCatchment

}
NumCatchment = NumCatchment+1

}
}
Else{

If(Not ∃ Min){
W(p) = NumCatchment;
NumCatchment = NumCatchment+1

}
Else{W(p) → Min}

}
}

}
Step 2: Assignment of pixels to catchment basins
Scan(p){

p’ = p
While (W(p’) < = 0){ //It is not a minimum

qDescending−put(p’)
p’ = Point pointed to by p’ (labelled in W)

}
While (qDescending ̸= ∅){

p’’ = qDescending−get()
W(p’’) = W(p’) //W(p’)= label of c. basin of previous while

}
}

V. Osma-Ruiz et al. / Pattern Recognition 40 (2007) 1078–1090 1085

3.3. Explanation of the algorithm

Step 0 initializes the output watershed matrix to
UNVISITED, meaning that no analysis has yet been carried
out.

Step 1 performs all the operations needed to identify the
regional minima used to calculate the catchment basins, and
to identify the steepest descending paths by means of arrow-
ing. As part of this process, the geodesic distance of those
points that belong to the non-minima plateaus is calculated,
in order to identify the steepest descending paths. The pro-
cess is as follows:

1. Check whether the point has yet been analysed. It is pos-
sible that some points could have already been analysed
because when a point that belongs to a plateau is detected,
all the points of the plateau are also labelled.

2. If the point has not yet been processed, each one of its
neighbours will be analysed with two objectives: to detect
whether or not it belongs to a plateau (it has a neighbour
with the same grey level), and to detect the neighbour
with the lowest grey level that is less than the current
grey level. If there are several neighbours matching this
condition, the point has two or more steepest descending
paths. The criterion employed to select just one path is
to choose the first according to the scanning order (left
to right, up to down).

3. If the point does not belong to a plateau, two possibilities
are considered: (a) the point has a neighbour with a lower
grey level; if so, this point will be marked in the watershed
matrix pointing to this neighbour; (b) all the neighbours
have a higher grey level, and if so the point will be marked
as a minimum. Determining whether there is a neighbour
with a lower grey level has been performed in the previous
operation.

4. If the point belongs to a plateau, all the components are
analysed to divide them into edge points (points with a
neighbour of a lower grey level) and inner points (the
rest). The process is as follows: all the points with the
same grey level as the current one that have not been
analysed (that is, having an UNVISITED in the output
matrix W) are put into the queue qPending and, to avoid
repetitions, they are marked in the output matrix with a
value PENDING. At the same time, those neighbours with
the same grey level are queued into qPending, and clas-
sified as edge or inner points. Moreover, if these points
belong to an edge they are marked in the output matrix
W with their lowest neighbour by means of the arrowing
technique specified before. All this is done in only one
neighbourhood operation.

5. Three situations may occur when the queue qPending is
empty: (a) the plateau only has inner points and, if so,
they are classified as regional minima; (b) the plateau only
has edge points, and if so all the points that belong to a
plateau will have a lower neighbour already marked; (c)
the plateau has edge points and inner points, and if so the

geodesic distance has to be calculated to order the points
that belong to the plateau. The proposed implementation
provides an approximation to the geodesic distance that
directly gives an arrowing of all the points. It consists
of a new scan of the plateau beginning at the edges, so
each neighbour will point to that edge. The following
iterations of the algorithm will check the neighbours of
those points that have already been labelled, making these
neighbours point to their central pixel. The iterations will
continue until all the points of the plateau have been
labelled.

At the end of step 1, the matrix W will contain all regional
minima points labelled with a positive number (different for
each minimum), and the rest of points are labelled to indicate
the position of their lowest level neighbour. Step 2 goes over
the matrix to associate them with the minimum where each
steepest descending path ends. The process is as follows:
all the points belonging to a steepest descending path are
stored in the queue, descending until a point is reached that
is labelled as part of a catchment basin. Then the points
stored in the queue are labelled with the same number as
this catchment basin.

After step 2, all the points have been labelled as belong-
ing to one and only one catchment basin, so the watershed
transform of the image is complete.

Fig. 9 presents an example of the execution of our algo-
rithm to divide an image into its catchment basins. Fig. 9a
represents the original image F. Fig. 9b represents the detec-
tion of the minima and steepest descending paths obtained
after step 1 of the algorithm (the minima are surrounded
with a circle; the light grey cells represent the inner part of
the non-minima plateaus; and the edges are represented with
dark grey). Fig. 9c represents the output matrix W before the
execution of step 2 of the algorithm (for the sake of clarity,
the same grey levels as in the previous figure are used). Fi-
nally, Fig. 9d presents the resulting watershed transform W
after applying step 2 (where each catchment basin is repre-
sented with a different grey level).

3.4. Complexity analysis

The presented algorithm requires only two scans (exclud-
ing the initialization) to perform the watershed transform.

Step 1 of the algorithm scans all the pixels of the matrix
at least once. Those pixels belonging to the non-minima
plateaus (with inner and edge pixels) are scanned twice,
because they have to be put into two different queues. Let N
be the number of pixels of the image, and NNMP the pixels
that belong to the non-minima plateaus. The computational
cost of step 1 is O(N + NNMP).

In step 2, each pixel is added to and removed from a queue
to be labelled, regardless of whether it belongs to a plateau
or not. This operation is carried out for all pixels except
those representing regional minima. Considering NRM the

1086 V. Osma-Ruiz et al. / Pattern Recognition 40 (2007) 1078–1090

10 9 8 35 20 20 24 59

20 20 20 20 20 20 20 20

6 1 1 8 20 20 38 39

4 1 1 14 20 20 37 26

10 14 22 20 20 20 20 20

10 12 10 7 20 20 40 45

60 49 45 27 19 17 14 10

62 55 47 29 24 20 16 2

10 9 8 35 20 20 24 59

20 20 20 20 20 20 20 20

6 1 1 8 20 20 38 39

4 1 1 14 20 20 37 26

10 14 22 20 20 20 20 20

10 12 10 7 20 20 40 45

60 49 45 27 19 17 14 10

62 55 47 29 24 20 16 2

10 9 8 35 20 20 24 59

20 20 20 20 20 20 20 20

6 1 1 8 20 20 38 39

4 1 1 14 20 20 37 26

10 14 22 20 20 20 20 20

10 12 10 7 20 20 40 45

60 49 45 27 19 17 14 10

62 55 47 29 24 20 16 2

10 9 8 35 20 20 24 59

20 20 20 20 20 20 20 20

6 1 1 8 20 20 38 39

4 1 1 14 20 20 37 26

10 14 22 20 20 20 20 20

10 12 10 7 20 20 40 45

60 49 45 27 19 17 14 10

62 55 47 29 24 20 16 2

10 9 8 35 20 20 24 59

20 20 20 20 20 20 20 20

6 1 1 8 20 20 38 39

4 1 1 14 20 20 37 26

10 14 22 20 20 20 20 20

10 12 10 7 20 20 40 45

60 49 45 27 19 17 14 10

62 55 47 29 24 20 16 2

10 9 8 35 20 20 24 59

20 20 20 20 20 20 20 20

6 1 1 8 20 20 38 39

4 1 1 14 20 20 37 26

10 14 22 20 20 20 20 20

10 12 10 7 20 20 40 45

60 49 45 27 19 17 14 10

62 55 47 29 24 20 16 2

-4 -4 -5 -6 -7 0 0 0

-2 -1 -1 -5 -5 -5 -5 -6

-4 1 1 0 -1 -1 -1 -6

-3 1 1 -1 -1 -1 -1 -7

-3 -2 -1 -1 -1 -1 -7 -7

-5 -6 -7 -7 0 -1 -1 -1

-2 -1 -1 -4 -4 -4 -5 -6

-3 -3 -3 -3 -3 -3 -4 2

-4 -4 -5 -6 -7 0 0 0

-2 -1 -1 -5 -5 -5 -5 -6

-4 1 1 0 -1 -1 -1 -6

-3 1 1 -1 -1 -1 -1 -7

-3 -2 -1 -1 -1 -1 -7 -7

-5 -6 -7 -7 0 -1 -1 -1

-2 -1 -1 -4 -4 -4 -5 -6

-3 -3 -3 -3 -3 -3 -4 2

1 1 1 1 1 1 1 1

1 1 1 2 2 2 2 2

1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 2

1 1 1 1 1 1 2 2

1 1 1 1 1 1 1 1

1 1 1 2 2 2 2 2

1 1 2 2 2 2 2 2

1 1 1 1 1 1 1 1

1 1 1 2 2 2 2 2

1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 2

1 1 1 1 1 1 2 2

1 1 1 1 1 1 1 1

1 1 1 2 2 2 2 2

1 1 2 2 2 2 2 2

1 1 1 1 1 1 1 1

1 1 1 2 2 2 2 2

1 1 1 1 1 1 1 2

1 1 1 1 1 1 1 2

1 1 1 1 1 1 2 2

1 1 1 1 1 1 1 1

1 1 1 2 2 2 2 2

1 1 2 2 2 2 2 2

(a) (b)

(c) (d)

Fig. 9. From left to right, top to down (a, b, c, d): (a) Original image, (b) detection of minima and steepest descending paths carried out in step 1 of
the algorithm, (c) output matrix after step 1, (d) output matrix after step 2.

number of regional minima, the computational cost of step
2 is O(N − NRM).

The total computational cost of the algorithm is O(2N +
NNMP−NRM). Sun [14] and Bieniek [12] reported a higher
complexity and higher execution time.

Concerning memory requirements, the proposed algo-
rithm only needs an input matrix, the output matrix and four
FIFO queues. The size of these queues is smaller than those
required in [14]. This fact will be demonstrated in Section 4.

4. Evaluation of the algorithm and comparisons with
previous works

4.1. Introduction

In order to demonstrate the efficiency of the new algo-
rithm, several tests have been carried out to measure the
computational cost. The running time is compared with that
obtained using the algorithm previously developed by Sun,
Yang and Ren (called SYR from now on) [14], which is
demonstrated to have a running time quite similar to that ob-
tained by Bieniek and Moga (BM) [12], and lower than that
obtained by Vincent and Soille (VS) [6]. The tests performed
in this evaluation demonstrate that the proposed algorithm
is faster than SYR.

On the other hand, the present paper is limited to present
an algorithm to calculate the watershed transform of any
image in an efficient way, and so the measurements are car-

ried out over original images in greyscale, leaving aside the
pre-processing (for example, a gradient operation) and post-
processing (merging), because these operations are indepen-
dent of the algorithm for obtaining the watershed transform.
However, the algorithm simplifies the post-processing, as
SYR does

• During step 2 of the algorithm, it is possible to extract
several features of each catchment basin, such as its size,
the average grey level of its pixels, the standard deviation,
etc.

• Starting from any pixel, its associated catchment basin
can be identified by arrowing without scanning the whole
image.

4.2. Results

Table 1 presents the results of our experiments carried out
with images of different sizes (Fig. 10). The table summa-
rizes the time spent by the proposed algorithm and the time
spent by SYR to calculate the watershed transform. It also
specifies the number of catchment basins obtained for each
algorithm. All measurements have been performed using an
IBM PC Pentium III, equipped with a 1 GHz processor, and
640 MB of RAM.

Looking at the results over images of various sizes, it is
easy to see that the proposed algorithm decreases the average
running time by more than 31%.

V. Osma-Ruiz et al. / Pattern Recognition 40 (2007) 1078–1090 1087

Table 1
Comparison of the new algorithm with SYR

Test images (size) Parameters Algorithm SYR New algorithm % Improvement

Lena (1024 × 1024) Running time (ms) 1242 951 23.43
Catchment basins 19 856 19 856

Baboon (1024 × 1024) Running time (ms) 1144 779 31.91
Catchment basins 24 613 24 613

Peppers (1024 × 1024) Running time (ms) 1220 913 25.16
Catchment basins 26 101 26 101

Lena (512 × 512) Running time (ms) 309 212 31.39
Catchment basins 13 953 13 953

Baboon (512 × 512) Running time (ms) 287 185 35.54
Catchment basins 18 197 18 197

Peppers (512 × 512) Running time (ms) 298 203 31.88
Catchment basins 16 143 16 143

Baboon (256 × 256) Running time (ms) 72 44 38.89
Catchment basins 5781 5781

Peppers (128 × 128) Running time (ms) 28 18 35.71
Catchment basins 729 729

Fig. 10. Test images used for the evaluation of the algorithms.

In terms of effectiveness, our results are the same as any
of the other algorithms found in the state of the art (VS,
BM and SYR). In [14] it is demonstrated that the algorithm
SYR obtains the same results as VS and BM. In Table 1 it is
demonstrated that the new algorithm obtains the same results
as SYR, in terms of the number of catchment basins.

4.3. Some issues concerning implementation

Our implementation of the SYR algorithm has been care-
fully done to obtain the maximum efficiency. In this sense,
several improvements have been developed over the algo-
rithm presented in Ref. [14].

The first improvement is to create two fixed memory tables
to perform the conversion of the point-in chain-code values
to the real location of those points that have to be scanned
in the last step of the SYR algorithm [14]. The two tables
have 256 positions (from 0 to 255), each one representing a
different value of all possible chain-code values that might
appear at a point. The first table establishes the number of
point-in chain codes starting at a given point, and the second
establishes the relative position of each one with respect

to the current. Without these tables, the running time of
the algorithm would be around 200% higher. For “Baboon
512 × 512”, the running time goes from 287 ms to 670 ms.
Regarding the point-out chain codes a similar improvement
has been developed, although the gain is not significant. As
they can only point to one location, their conversion can be
easily done on the fly. Concerning the proposed algorithm,
the arrowing technique works in the same way as the point-
out chain-codes, so no improvements are needed.

Another improvement developed for the SYR, prior to any
performance comparison, is related with the way the mem-
ory for the queues is allocated. Fig. 11 shows the running
time versus the amount of free memory space allocated each
time the queues need to increase their size, demonstrating
that it is a sensitive choice. The memory management is
done as in the proposed algorithm, explained in Section 3.1.
Memory allocation by blocks and memory reuse guarantee
the minimization of the temporal cost due to these tasks.
In Fig. 11, the images “Lena (1024 × 1024)” and “Baboon
(512×512)” have been used to support this idea. Both show
the sensitivity of the algorithm with respect to the basic al-
location unit. The sensitivity is clearly influenced by step 2
of the algorithm SYR [14], where the points belonging to the

1088 V. Osma-Ruiz et al. / Pattern Recognition 40 (2007) 1078–1090
R

un
ni

ng
 ti

m
e

(m
s)

250
300

35
0

400
450
500

600

R
un

ni
ng

 ti
m

e
(m

s)

5000
4500
4000
3500
3000
2500
2000
1500
1000

100 1000 10000 100000 1000000

Memory block size (number of pixels)

Lena (1024x1024)

Memory blocksize (number of pixels)

100 1000 10000 100000 1000000

700
650

550

Baboon (512x512)

Fig. 11. Running time of the SYR algorithm as a function of the basic memory unit used for the implementation. Left plot: Lena (1024 × 1024). Right
plot: Baboon (512 × 512). The x-axis is represented in log scale.

0
100
200
300
400
500
600
700
800
900

0 600

R
un

ni
ng

 ti
m

e
(m

s)

Image Size (thousandsof pixels)
400 800 1000200

1000

Fig. 12. Running time of the proposed algorithm as a function of the number of pixels in the image. Dashed line: peppers. Solid line: Baboon.

non-minima plateaus are analysed. To carry out this task,
the whole image is scanned and the edge points found are
stored. These points may belong to different plateaus. While
storing these points in a queue, there are certain images that
need a lot of memory, like “Lena (1024×1024)”, which has
47 755 edge points belonging to different plateaus. It takes a
time of 4196 ms using memory blocks of 200 elements just
to perform step 2, which implies a significant increase with
respect to the times presented in Table 1. The other image
in Fig. 11, “Baboon (512 × 512)”, presents only 2226 edge
points, so this problem is not so important. In this exam-
ple, the time spent in step 2 is around 90 ms using memory
blocks of 200 elements.

Looking at the plots it is clear that there exists a minimum
around the block size of 50 000 for Lena and from 2000 to
10 000 for the Baboon image. This fact indicates that the
best results are obtained by adjusting the initial size to the
number of edges in the plateau. The problem is that it is
not possible to know a priori the number of edges of the
plateau. In any case, it is logical to think that the number of
edge pixels in an image is related to the size of the image,
and so a compromise must be established between the basic
unit of memory as a function of the size of the image. After
the analysis of the obtained data, we chose to allocate as

much memory as the 2.5% of the number of pixels in the
image. Reservations below this threshold produce poorer
results due to the fact that the memory allocating operations
are more frequent. Moreover, allocations over this threshold
produced poorer results because much more memory than
was needed was being reserved. For example, “Lena 1024×
1024”, with either small (0.02% of the image) or big memory
blocks (100% of the image), yielded far worse results than
the optimum (Table 1).

In the proposed algorithm, the queues used to analyse
the plateaus are reset for each new plateau that is found
while scanning the image. This provides a great reduction
of memory that enables memory blocks of around 0.02% of
the image size to be used.

Another important advantage of the proposed algorithm
is the linearity of its running time with respect to the num-
ber of pixels of the image. Fig. 12 plots running time as a
function of the image size. Image sizes were varied rescal-
ing the original images. The linearity of running time is ap-
parent for both test images. The plot corresponding to the
“Baboon” image has a lower slope than the plot correspond-
ing to “Peppers” because of the presence of many more pix-
els situated in non-minima plateaus. These pixels require
extra time to be processed, thus increasing the running time.

V. Osma-Ruiz et al. / Pattern Recognition 40 (2007) 1078–1090 1089

5. Conclusions

The watershed transform obtained by means of rain sim-
ulation is a good tool to segment objects in digital images.
The speed achieved by the actual algorithms, the accuracy
of the results, and the simplifications introduced in the post
processing calculation, increase the importance of this tool.

There are some previous works that obtain accurate re-
sults for all kinds of images, with low computational costs.
To date, the fastest was developed by Han Sun et al. [14].
This work has been improved to manage the memory more
efficiently and to carry out complex operations with the min-
imum possible running time.

Comparing the improved SYR algorithm with the pro-
posed one, we can conclude that an improvement of around
31% is obtained, averaging over various image sizes.

Another important aspect is that, as with other arrowing
algorithms, the new algorithm achieves linear running time
with respect to the size of the input images.

6. Summary

This paper has presented an overview of the construction
of the watershed transform of an image and a detailed view of
the rain simulation technique. Following this methodology, a
new algorithm has been developed yielding the same results
as the existing ones, but improving running time by around
31% for various images of various sizes.

To obtain these improvements, our algorithm reduces as
much as possible the number of neighbouring operations,
which is the most expensive computation in the context of
these techniques, as well as the number of scans performed
over the original image. The algorithm uses only four queues
of reduced size and a single output matrix, which is also
used to store the intermediate results, with the same size as
the input image.

Thus, we can conclude that the presented algorithm per-
forms better than the best existing ones, in both execution
time and allocated memory size, and has at least the same
efficiency.

Acknowledgements

This research was carried out under Grants: TIC2003-
08956-C02-00 and TIC2002-2273 from the Ministry of Sci-
ence and Technology, and AP2001-1278 from the Ministry
of Education of Spain. The authors would like to thank the
anonymous reviewers for their valuable comments.

References

[1] A. Bleau, L.J. Leon, Watershed-based segmentation and region
merging, Comput. Vision Image Understanding 77 (3) (2000)
317–370.

[2] R.C. Gonzalez, R.E. Woods, S.L. Eddins, Segmentation using the
watershed transform, in: R.C. Gonzalez, R.E. Woods, S.L. Eddins
(Eds.), Digital Image Processing Using MATLAB, Pearson Prentice-
Hall, NJ, USA, 2004, pp. 417–425.

[3] A. Bleau, J. De Guise, R. LeBlanc, A new set of fast algorithms
for mathematical morphology: I-Idempotent geodesic transforms,
CVGIP: Image Understanding 56 (2) (1992) 178–209.

[4] S. Beucher, C. Lantuéjoul, Use of watersheds in contour detection,
in: Proceedings of the International Workshop on Image Processing:
Real-Time Edge and Motion Detection/Estimation, vol. 132,
September 1979, pp. 2.1–2.12.

[5] S. Beucher, The watershed transformation applied to image
segmentation, Scanning Microsc. 6 (1992) 299–314.

[6] L. Vincent, P. Soille, Watersheds in digital spaces: an efficient
algorithm based on immersion simulations, IEEE Trans. Pattern Anal.
Mach. Intell. 13 (6) (1991) 583–598.

[7] C. Rambabu, I. Chakrabarti, D. Ghosh, An efficient watershed
transform computation method, in: Proceeding of IEEE ICICS-PCM
2003, vol. 2, December 2003, pp. 792–796.

[8] S.Y. Chien, Y.W. Huang, S.Y. Ma, L.G. Chen, Predictive watershed
for image sequences segmentation, in: Proceedings of IEEE
ICASSP’02, vol. 3, Orlando, FL, USA, May 2002, pp. 3196–3199.

[9] S.Y. Chien, Y.W. Huang, L.G. Chen, Predictive watershed: a fast
watershed algorithm for video segmentation, IEEE Trans. Circuits
Systems Video Technol. 13 (5) (2003) 453–461.

[10] J.P. Thiran, V. Warscotte, B. Macq, A queue-based region growing
algorithm for accurate segmentation of multi-dimensional digital
images, Signal Process. 60 (1) (1997) 1–10.

[11] C.J. Kuo, S.F. Odeh, M.C. Huang, Image segmentation with improved
watershed algorithm and its FPGA implementation, in: Proceedings
of IEEE ISCAS 2001, vol. 2, Sydney, Australia, May 2001,
pp. 753–756.

[12] A. Bieniek, A.N. Moga, An efficient watershed algorithm based on
connected components, Pattern Recognition 33 (6) (2000) 907–916.

[13] V. Grau, A.U.J. Mewes, M. Alcañiz, R. Kikinis, S.K. Warfield,
Improved watershed transform for medical image segmentation
using prior information, IEEE Trans. Med. Imaging 23 (4) (2004)
447–458.

[14] H. Sun, J. Yang, M. Ren, A fast watershed algorithm based on chain
code and application in image segmentation, Pattern Recognition
Lett. 26 (9) (2005) 1266–1274.

[15] C. Rambabu, T.S. Rathore, I. Chakrabarti, A new watershed
algorithm based on hillclimbing technique for image segmentation,
in: Proceedings of TENCON 2003, vol. 4, Bangalore, India, October
2003, pp. 1404–1408.

[16] A.N. Moga, M. Gabbouj, Parallel image component labeling with
watershed transformation, IEEE Trans. Pattern Anal. Mach. Intell.
19 (5) (1997) 441–450.

[17] J.B.T.M. Roerdink, A. Meijster, The watershed transform: definitions,
algorithms and parallelization strategies, Fundamenta Informaticae
41 (2000) 187–228.

[18] S. Beucher, F. Meyer, The morphological approach to segmentation:
the watershed transformation, in: E. Dougherty (Ed.), Mathematical
Morphology in Image Processing, Marcel Dekker, New York, USA,
1993, pp. 433–481.

[19] C. Rambabu, I. Chakrabarti, A. Mahanta, Flooding-based watershed
algorithm and its prototype hardware architecture, IEE Proc. Vision,
Image Signal Process. 151 (3) (2004) 224–234.

[20] G. Bueno, O. Musse, F. Heitz, J.P. Armspach, Three-dimensional
segmentation of anatomical structures in MR images on large data
bases, Magn. Reson. Imaging 19 (1) (2001) 73–88.

[21] L. Patino, Fuzzy relations applied to minimize over segmentation
in watershed algorithms, Pattern Recognition Lett. 26 (6) (2005)
819–828.

[22] S. Eom, S. Chang, B. Ahn, Watershed-based region merging using
conflicting regions, in: Proceedings of ICIP 2002, vol. 2, September
2002, pp. 781–784.

1090 V. Osma-Ruiz et al. / Pattern Recognition 40 (2007) 1078–1090

[23] H. Zhu, O. Basir, F. Karray, Fuzzy integral based region merging
for watershed image segmentation, in: Proceedings of FUZZ-IEEE
2001, vol. 1, December 2001, pp. 27–30.

[24] S.E. Hernandez, K.E. Barner, Joint region merging criteria for
watershed-based image segmentation, in: Proceedings of IEEE ICIP
2000, vol. 2, September 2000, pp. 108–111.

[25] K. Haris, S.N. Efstratiadis, N. Maglaveras, A.K. Katsaggelos, Hybrid
image segmentation using watersheds and fast region merging, IEEE
Trans. Image Process. 7 (12) (1998) 1684–1699.

[26] A. Bleau, J. De Guise, R. LeBlanc, A new set of fast algorithms for
mathematical morphology: II-Identification of topographic features
on grayscale images, CVGIP: Image Understanding 56 (2) (1992)
210–229.

[27] D.F. Shen, M.T. Huang, A watershed-based image segmentation using
JND property, 3 (2003) 377–380.

