
I/O-Efficient Hierarchical Watershed
Decomposition of Grid Terrains Models

Lars Arge⋆1, Andrew Danner⋆⋆2, Herman Haverkort⋆⋆⋆3, and Norbert Zeh†4

1 Department of Computer Science, University of Aarhus, Aarhus, Denmark
large@daimi.au.dk

2 Department of Computer Science, Duke University, Durham, NC, USA
adanner@cs.duke.edu

3 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
cs.herman@haverkort.net

4 Faculty of Computer Science, Dalhousie University, Halifax, Canada
nzeh@cs.dal.ca

Summary. Recent progress in remote sensing has made massive amounts of high
resolution terrain data readily available. Often the data is distributed as regular
grid terrain models where each grid cell is associated with a height. When terrain
analysis applications process such massive terrain models, data movement between
main memory and slow disk (I/O), rather than CPU time, often becomes the per-
formance bottleneck. Thus it is important to consider I/O-efficient algorithms for
fundamental terrain problems. One such problem is the hierarchical decomposition
of a grid terrain model into watersheds–regions where all water flows towards a sin-
gle common outlet. Several different hierarchical watershed decompositions schemes
have been described in the hydrology literature. One important such scheme is the
Pfafstetter label method where each watershed is assigned a unique label and each
grid cell is assigned a sequence of labels corresponding to the (nested) watersheds
to which it belongs.

In this paper we present an I/O-efficient algorithm for computing the Pfafstetter
label of each cell of a grid terrain model. The algorithm uses O(sort(T )) I/Os,
the number of I/Os needed to sort T elements, where T is the total length of the
cell labels. To our knowledge, our algorithm is the first efficient algorithm for the
problem. We also present the results of a experimental study using massive real life
terrain data that shows our algorithm is practically as well as theoretically efficient.

⋆ Supported in part by the US Army Research Office through grant W911NF-
04-1-0278, and by a Ole Roemer Scholarship from the Danish National Science
Research Council. Part of this work was done while the author was at Duke
University.

⋆⋆ Supported in part by the US National Science Foundation through grant CCR–
9984099 and by the US Army Research Office through grant W911NF-04-1-0278.

⋆⋆⋆ This work was done while at University of Aarhus supported by a grant from the
Danish National Science Research Council.

† Supported by the Natural Sciences and Engineering Research Council of Canada
and the Canadian Foundation for Innovation.



2 L. Arge, A. Danner, H. Haverkort, and N. Zeh

1 Introduction
Over millions of years, rainfall has been slowly etching networks of rivers into
the terrain. Today, studying these river networks is important for managing
drinking water supplies, tracking pollutants, creating flood maps, and more.
Hydrologists can use large-scale digital elevation models, or DEMs, of the
terrain along with a Geographic Information System, or GIS, to automate
much of such studies. Often it is not necessary to study the entire terrain or
river network at once; frequently one is only interested in regions that are
downstream of a particular river, or the upstream areas that contribute flow
to a particular river. By decomposing the terrain into a set of disjoint hydro-
logic units—regions where all water within the region flows towards a single,
common outlet—one can quickly identify areas of interest without having
to examine the entire terrain. The Pfafstetter labeling scheme described by
Verdin and Verdin [16] defines a hierarchical decomposition of a terrain into
arbitrarily small hydrological units, each with a unique label. These Pfafstet-
ter labels also encode topological properties such as upstream and downstream
neighbors, making it possible to automatically identify hydrological units of
interest based on the Pfafstetter label alone.

In this paper, we describe an efficient algorithm for computing Pfafstetter
labels efficiently on grid DEMs. Our algorithm is capable of handling massive
high-resolution DEMs that are too large to fit in the main memory of even
high-end machines. With recent progress in remote sensing technology, such as
LIDAR, such DEMs are increasingly becoming available. Existing methods for
determining hydrological units on grid DEMs use either manual methods [14],
local filters [13, 10], or full terrain flow modeling [12] to identify terrain fea-
tures and extract watersheds. While manual methods are often very ad-hoc,
some of the main disadvantages of the current automatic methods is that
they do not naturally define a hierarchical decomposition or a hierarchy that
encode topological properties such as upstream and downstream neighbors.
Furthermore, the existing algorithms cannot handle massive grid DEMs.

1.1 Pfafstetter labels of grid DEM
Conceptually, the definition of Pfafstetter labels [16] is independent of what
DEM representation is used. However, for brevity we here only formally define
Pfafstetter labels for grid DEMs.

Several different methods for modeling water flow on grid DEMs have been
proposed; refer to [10, 8, 12, 15] for a discussion of the different methods. To
model the direction water naturally flows from each cell s in the grid, most of
these methods assign one or more flow directions from s to one or more of its
(at most) eight neighboring cells. In the most common method [10], each cell
s is assigned a single flow direction to the lowest of the lower neighboring cells.
To model water flow off the terrain, cells on the boundary of the terrain (cells
with less than eight neighbors) without any lower neighbors are assigned a



I/O-Efficient Hierarchical Watershed Decomposition of Gridded Terrains 3

flow direction to an imaginary cell ρ outside the terrain (the “outside sink”).
The cells and flow directions naturally form a graph with an edge from cell
s to cell t if s is assigned a flow direction to t. Assuming that the grid DEM
does not contain any cells without lower neighbors other than the boundary
cells, this graph is indeed a tree T since it contains N − 1 edges (each cell
except ρ has one downslope edge to a neighbor cell) and does not have cycles
(flow directions go to lower cells). If we root T in ρ, each cell s with flow
direction to t has t as its parent and is connected to ρ through a unique path
of cells s = s1, t = s2, s3, . . . , sk = ρ, where cell si is assigned a flow direction
to si+1, i.e., water can flow from s to (the outside) ρ through s2, s3, . . . sk−1;
water from cells in the subtree rooted in s drain through s on its way to (the
outside) ρ. We call such a path in T a river R with mouth ρ (and source
s). If the grid DEM does contain cells without lower neighbors other than
the boundary cells, assigning flow directions as above to cells with a lower
neighbor leads to a forest of trees where water in each tree can flow from a
cell through parent cells to the root of a tree [5].

We define Pfafstetter labels of a grid DEM in terms of a forest of trees.
For simplicity in this abstract, we only consider a single binary flow tree T
with root ρ. Furthermore, we assume that each leaf l in T is augmented with
a drainage area d(l) ≥ 1, and that each internal node v in T is augmented
with a drainage area d(v) that is one plus the sum of the drainage areas of
v’s children. Note that if d(l) = 1 for every leaf l, then d(v) is the size of the
subtree rooted in v.

Pfafstetter labels of a binary flow tree T augmented with drainage areas
are defined as follows. Let the main river R of T be the root-leaf path obtained
by starting at the root ρ of T and in each node continuing to the child with the
largest drainage area. The subtrees obtained if R is removed from T are called
tributary basins or tributary trees and the root, t, of one of these subtrees,
T t, is called a tributary mouth. First consider the case where at least four
tributary mouths are obtained if R is removed. In this case, let v2, v4, v6, v8

be the four tributary mouths with largest drainage area, numbered in the
order their parents are met when traversing R from ρ towards a leaf. Let pi

and si denote the parent and the sibling of vi, respectively; both pi and si

are on R. If we remove the eight edges incident to p2, p4, p6 and p8 (i.e. edges
(vi, pi) and (si, pi), for i ∈ {2, 4, 6, 8}), T is decomposed into four tributary
basins rooted in v2, v4, v6, and v8, as well as five interbasins rooted at s0 = ρ,
s2, s4, s6 and s8. The Pfafstetter label of a node in the tributary basin rooted
in vi is i followed by the label obtained by recursively labeling the basin. The
label of the nodes in the interbasin rooted in si (which includes nodes on R)
is i+1 followed by the label obtained by recursively labeling the interbasin. In
the case where 1 ≤ k < 4 tributary mouths are obtained when R is removed
from T , labels 1 through 2k + 1 are assigned as above, while labels 2k + 2
through 9 are not assigned. Finally, no labels are assigned when no tributary
mouths are obtained, that is, when all nodes of T are on R. Refer to Figure 1.



4 L. Arge, A. Danner, H. Haverkort, and N. Zeh

2

21

22

25

26

27

28

29

59

57

55

53

ρ

v6

s6, p8

p2

p6

58

56

54

52

51

24

23

5

4

6

8

9

s4

p4

v4

v2

s2

7

1

flow

direction

3

s8 v8

Fig. 1. Left figure: A flow tree T with the main river shown as white circles and trib-
utary mouths as black circles (circle nodes constitute an augmented river). Removing
the eight bold edges decomposes T into four tributary basins and five interbasins,
each with the first digit in their Pfafstetter label shown in bold type. The remaining
digits in the Pfafstetter label of the nodes in each basin (subtree) are computed
recursively. Two right figures: First level of recursion for interbasin labeled 5 and
tributary basin labeled 2.

1.2 I/O-efficient algorithms
When processing massive datasets that do not fit in main memory and must
therefore reside on larger but considerably slower disks, transfer of data be-
tween disk and main memory (also called I/O) often becomes the performance
bottleneck. In such cases the use of so-called I/O-efficient algorithms that
minimize the number of disk accesses can lead to tremendous runtime im-
provements. I/O-efficient algorithms are algorithms designed in an I/O-model
where the machine consists of an internal (or main) memory of limited size
M and an infinite external memory. Computation is considered free but can
only occur on data in main memory; in one I/O-operation (or simply I/O) B
consecutive elements can be transfered between internal and external memory.
The goal is to solve a given problem using as few I/Os as possible [1].

Trivially, the number of I/Os needed to scan through N elements in the
I/O-model is Θ(N

B ) = Θ(scan(N)). Aggarwal and Vitter showed that the



I/O-Efficient Hierarchical Watershed Decomposition of Gridded Terrains 5

number of I/Os needed to sort N elements is Θ(N
B logM/B

N
B ) = Θ(sort(N)).

Note that sort(N) is typically much smaller than N . Therefore tremendous
speedups can often be obtained by developing algorithms that use O(scan(N))
or O(sort(N)) I/Os rather than Ω(N) I/Os; algorithms that are designed to
work on data that fits in main memory often use Ω(N) I/Os when used in
the I/O-model.

Numerous I/O-efficient algorithms and data structures have been devel-
oped, including many for GIS problems. Previous results that are particularly
relevant for our work include O(sort(N)) I/O algorithms for various problems
on trees [7] and various flow computation problems on large grid DEMs [5],
as well as external stacks and priority queues on which N operations can be
performed in O(scan(N)) and O(sort(N)) I/Os [3, 6], respectively. Refer to
recent surveys for further results [17, 2].

1.3 Our results
In this paper we present an I/O-efficient algorithm for computing the Pfaf-
stetter labels of a flow tree in O(sort(T )) I/Os, where T is the total length
of all labels. If each Pfafstetter label consists of a constant number of digits,
e.g., if we truncate the labels, our algorithm uses only O(sort(N)) I/Os, where
N is the number of nodes in the flow tree. If the flow tree and the labels fit
in main memory, our algorithm uses O(T ) time. The overall algorithm is de-
scribed in Section 2; it utilizes an algorithm for labeling a single river with
tributary basins that consist of single nodes, described in Section 3. In Sec-
tion 4 we investigate the practical use of the algorithm: we discuss how a flow
tree that yields practically realistic watershed hierarchies (Pfafstetter labels)
can be obtained in O(sort(N)) I/Os from a general grid DEM (with many
cells without lower neighbors) using previous algorithms. We also present the
results of a preliminary experimental study using massive real life terrain data
that shows that our algorithm is practically as well as theoretically efficient.

2 Computing Pfafstetter labels of flow tree
The recursive definition of Pfafstetter labels of a binary flow tree T naturally
leads to a recursive algorithm to compute the labels: Compute the main river
R and four largest tributary mouths, break the tree into nine subtrees, and
recurse. Unfortunately, due to random data access patterns, it seems hard
to make such a direct algorithm I/O-efficient. Instead our algorithm works
by decomposing T into a set of rivers augmented with tributary mouths,
Pfafstetter labeling them individually, and finally combining the labels of the
individual augmented rivers to obtain the Pfafstetter labels for all nodes of
T .

Our decomposition of the flow tree T into augmented rivers is defined by
a tributary tree T t, where each node l in T t stores an augmented river Rt

l



6 L. Arge, A. Danner, H. Haverkort, and N. Zeh

and where m is a child of l if and only if the parent of the mouth of Rt
m

is on Rt
l , that is, if Rt

m flows directly into Rt
l . More precisely, the root r of

T t contains the path obtained by starting at the root ρ of T and in each
node continue to the child with the largest drainage area; for each node v on
the path we also include the (possible) child of v not on the path (called a
tributary mouth node) in Rt

l . Note that Rt
r is the main river R in the above

definition of Pfafstetter labels of the flow tree T augmented with its tributary
mouths. The root r has a child for each tributary basin of R, that is, for each
subtree of T obtained if R is removed from T ; the rivers in these children
are obtained recursively. Note that this means that each tributary mouth is
stored exactly twice, namely in Rt

r and as the mouth of the main river Rt
l in

a child l of r. Refer to Figure 2.
Given a Pfafstetter labeling of each individual augmented river Rt

l in the
tributary tree T t, we can combine these labels to obtain the Pfafstetter la-
beling of the whole flow tree T as follows. Consider the augmented river Rt

r

stored in the root of r. As mentioned, Rt
r is the main river R in the defini-

tion of Pfafstetter labels of T , augmented with its tributary mouths. Since
in the definition of Pfafstetter labels of T , the labeling of R only depends
on the drainage area of its tributary mouths (first digit is determined by the
four tributary mouths with largest drainage areas, and the rest recursively
determined in each interbasin), the labels of the nodes in common between
the main river R and the individually labeled augmented river Rt

r are indeed
the same. Furthermore, the labels of the nodes in a tributary basin of R con-
sists of some prefix determined by the labeling of the nodes on R (a digit for
each recursive labeling step where the tributary basin is part of one of the
four interbasins, followed by a digit determined in the recursive call where
the tributary mouth has one of the four largest drainage areas), followed by
the label obtained by recursively labeling the basin. The prefix is exactly the
label assigned to the mouth of the tributary basin in the augmented river Rt

r.
Thus we can obtain the Pfafstetter labels for all nodes in T from a labeling
of the augmented rivers in T t, simply by assigning the nodes in the main
river R the labels of the corresponding nodes in Rt

r in the root r of T t, and
recursively labeling the nodes in each subtree of r while prefixing the labels

r

Fig. 2. The root r of the tributary tree T t and five subtrees. The augmented river
Rt

r is stored in the root and for each tributary mouth node in Rt
r there is one subtree

of r.



I/O-Efficient Hierarchical Watershed Decomposition of Gridded Terrains 7

in the subtree rooted in child l with the label of the tributary mouth node in
Rt

r corresponding to the mouth of the main river Rt
l .

Intuitively, computing the tributary tree T t from flow tree T is easier than
computing Pfafstetter labels directly on T . The definition of T t suggest a nat-
ural algorithm based on a DFS-traversal of T , where in each step the child
with largest drainage area is chosen. By modifying the known O(sort(N))
I/O algorithm for DFS-numbering nodes in a tree [7], it is possible to obtain
a O(sort(N)) I/O algorithm for our special DFS-traversal problem. However,
while the know general DFS-numbering algorithm is quite complicated (and
therefore not of practical interest), the special structure of flow trees (de-
creasing drainage area along root-leaf paths) allows us to develop a simple
and practical O(sort(N)) I/O algorithm. We describe this algorithm (which
utilizes an I/O-efficient priority queue) in the full version of this paper. Simi-
larly, once each individual augmented river in the tributary tree T t has been
labeled, an algorithm based on DFS-traversal (or a BFS-traversal) can be
used to combine the labels from the augmented rivers to obtain the Pfafstet-
ter labels of T in O(scan(T )) I/Os, where T is the total length of the labels.
We also describe such a simple and practical algorithm in the full paper. We
describe the remaining part of our algorithm, an O(scan(T )) I/O algorithm
for computing the Pfafstetter labels of a single augmented river, in Section 3.
This leads the following main result.

Theorem 1. The Pfafstetter labels of a flow tree T can be constructed in
O(sort(N) + scan(T )) I/Os, where T is the total size of the labels of all nodes
in T .

Remarks. In the full paper we discuss the following properties of our al-
gorithm. (i) It can easily be modified to handle non-binary flow trees in the
same I/O-bound. (ii) It can easily be modified to handle forests rather than
trees in the same I/O-bound. (iii) If each Pfafstetter label consists of a con-
stant number of digits (elements), e.g. if we truncate the labels, it only uses
O(sort(N)) I/Os. (iiii) If T , T t and all labels fit in memory, we can easily
design a Pfafstetter labeling algorithm that uses O(T ) time.

3 Labeling a single river
In this section we describe a simple and I/O-efficient algorithm for computing
the Pfafstetter labels of a single augmented river Rt

l–a simple flow tree con-
sisting of one path (river) where each node (possibly) has a tributary mouth
node child. Our algorithm is described in Section 3.2; in Section 3.1 we first
discuss a data structure, the Cartesian tree, used in the algorithm.



8 L. Arge, A. Danner, H. Haverkort, and N. Zeh

3.1 Cartesian tree
Let A = (a1, a2, . . . , aN ) be a sequence of N elements, each with an associated
weight, and let Ai denote the prefix (a1, a2, . . . , ai) of A. The Cartesian tree
C(A) of A is a binary tree defined as follows [9]: If A is empty, C(A) is empty.
Otherwise, let ai be the element with the largest weight in A; if there is more
than one occurrence of the largest weight, ai is the element that appears first
in A. C(A) consists of a root v containing an element with weight a(v) = ai,
with a left subtree C((a1, ..., ai−1)) (a Cartesian tree on the elements before ai

in A) and a right subtree C((ai+1, ..., aN )) (a Cartesian tree on the elements
after ai in A). Note that the weights of elements on a root-leaf path in C(A)
are nondecreasing.

The Cartesian tree C(A) of a sequence A can be constructed in O(N)
time using an algorithm that iteratively constructs C(Ai) from C(Ai−1) as
follows [9]: Let the rightmost path P of C(Ai−1) be the path traversed by
starting at the root r and repeatedly continuing to the right child until a
node l without a right child is reached; note that this is not necessarily the
path from the root to the rightmost leaf of C(Ai−1). We construct C(Ai) by
first traversing P from l towards r, until two adjacent nodes u and v are
located such that a(u) ≥ ai > a(v); if a(l) ≥ ai, u = l and v is non-existing,
and if a(r) < ai, v = r and u is non-existing. Then we construct a new
node w containing an element with weight a(w) = ai, and make w the right
child of u and v the left child of w. Refer to Figure 3. The correctness of the
algorithm follows from the fact that the weights of the elements along P are
non-decreasing and that w is inserted as a right child without a left child;
Refer to [9]. The linear time bound follows from the fact that all nodes on P
traversed to find u and v (except u) are removed from P by the insertion of
w (that is, they are not on the rightmost path of C(Ai)) and therefore they
are not traversed in later iterations; thus we traverse O(N) nodes in total.

Given the sequence A stored as a list in external memory, we can imple-
ment the above algorithm such that we compute C(A) and store it as a sorted
list C of post-order numbered nodes in external memory using O(scan(N))

(a) (b) (c)

u w

u

w

v

w

v

Fig. 3. Inserting w to obtain C(Ai) from C(Ai−1); dotted lines indicate inserted
edges. (a) a(u) ≥ a(w) > a(v) (b) a(l) ≥ a(w) (c) a(r) = a(v) < a(w).



I/O-Efficient Hierarchical Watershed Decomposition of Gridded Terrains 9

I/Os; a post-order numbering of the nodes in C(A) is the numbering consisting
of a recursive numbering of nodes in the left subtree of the root r, followed
by a recursive numbering of nodes in the right subtree of r, followed by the
numbering of r, and where each node stores the numbers of each of its chil-
dren. Note that the nodes on the rightmost path of C(A) have the highest
post-order numbers.

To implement the algorithm I/O-efficiently, we maintain the following two
invariants for C(Ai−1): (1) Except for the nodes on the rightmost path P of
C(Ai−1), all nodes have been post-order numbered and stored in sorted order
in a list C in external memory; (2) Nodes on P are stored on a stack S in the
order they appear on P (with the leaf l on top of S), and each node stores
the correct number of its left child (stored in C, if existing).

Initially C and S are empty. To compute C(Ai) from C(Ai−1) while main-
taining the invariants, we implement the traversal of P from l towards r used
to find u and v as follows. Until u is on the top of S (or S is empty), we
repeatedly pop a node s from S and insert it after the last element t in C; we
number s with the number following the number of t and (except for l) we
set its right child number equal to the number of t. Then we set the left child
number of the new node w equal to the number of the last element v inserted
in C (if existing), and push w on S. After computing C(AN ) = C(A), we pop
each node s from S in turn and insert it in C, while updating numbers and
right child numbers as above.

That the above procedure maintains the first invariant can be seen as
follows. Before the procedure, the nodes on the rightmost path of C(Ai−1)
stored on S have the largest numbers in the post-order numbering of C(Ai−1),
and by the first invariant the remaining nodes of C(Ai−1) are stored in post-
order number order in C. Since nodes are popped from S and inserted in C
in post-order, the nodes of C(Ai) in C are also in post-order number order.
The left and right child numbers of each node s inserted in C are also correct,
since by the second invariant the left child number was already correct before
the insertion, and the right child number is explicitly set to the last inserted
node t (or left empty in the case of the first inserted node l), which also by the
second invariant is the right child of s. That the procedure also maintains the
second invariant can be seen as follows. By the second invariant the nodes on
P are stored in order on S before the procedure. Since the nodes that are not
on P in C(Ai) are popped from S, and since the only node pushed on S is the
new leaf w on P in C(Ai), the nodes on P are also stored in order on S after
the procedure; each node store the correct left child number, since the left
child number of the only new node w is explicitly set to v. After computing
C(AN ) = C(A), invariant one implies that all but the nodes on P have been
correctly numbered and stored in C. Since by invariant two, the nodes on P
are stored in post-order number order on S, the list C correctly contains all
nodes in C(A) in post-order number order after popping each element from S
and inserting it in C.



10 L. Arge, A. Danner, H. Haverkort, and N. Zeh

Overall, the algorithm performs one scan of A and one scan of C, as well
as O(N) stack operations. Since a stack can easily be implemented such that
each operation takes O(1/B) I/Os (by keeping the top B elements in an
internal memory buffer and only reading/writing to disk when the buffer is
empty/full), the algorithm uses O(scan(N)) I/Os in total.

Augmented Cartesian tree. In our augmented river labeling algorithm we
will use a slightly modified version of the Cartesian tree, called an aug-
mented Cartesian tree. An augmented Cartesian tree Ca(A) of a sequence
A = (a1, a2, . . . , aN ) of N elements is simply a Cartesian tree C(A) of A,
where each node v has been augmented with copies of the four nodes (post-
order number, drainage area, and children post- order numbers) with largest
weight in the subtree rooted in v; if two nodes have the same weight, the
node with the weight that appear first in A is chosen. Note that one of these
largest weight nodes is v itself. In the full version of this paper we show that
we can easily modify our I/O-efficient Cartesian tree construction algorithm
to construct an augmented Cartesian tree without performing any extra I/Os.

Lemma 1. Given a sequence A of N elements, each with a weight, the aug-
mented Cartesian tree Ca(A) can be computed and stored as a sorted list of
post-order numbered nodes using O(scan(N)) I/Os.

Observation 3.1 The four largest weight nodes stored in the root r of an
augmented Cartesian tree Ca(A) constitute a connected subtree of Ca(A)
rooted in r.

Proof. The four nodes containing the elements with largest weights trivially
include r. Assume that they do not form a connected subtree. Then one of
them is a node v, other than r, whose parent u is not one of the four nodes;
therefore the weight of u is smaller than the weight of v. This contradicts that
the weights of nodes on any root-leaf path in Ca(A) are nondecreasing. !

3.2 Labeling a river
We are now ready to describe how to computer the Pfafstetter labels of an
augmented river Rt

l with mouth (root) s0 and source t. Recall that by the
definition of Pfafstetter labels, the labels of Rt

l are obtained by first identifying
the four tributary mouth nodes v2, v4, v6 and v8 with largest drainage area,
numbered in the order they appear along Rt

l , and label them 2, 4, 6, 8. Then all
edges incident to their parents p2, p4, p6 and p8 are removed, decomposing Rt

i

into five interbasins rooted in s0 and the siblings s2, s4, s6 and s8 of v2, v4, v6

and v8. Finally, each interbasin is labeled recursively, and the label of each
node in the interbasin rooted in si is prefixed by i + 1. In the case where Rt

l
only has 1 ≤ k < 4 tributary mouth nodes, labels 2k + 2 through 9 are not
assigned; when there are no tributary mouth nodes (when k = 0) no label
(other than the possible prefix) is assigned.



I/O-Efficient Hierarchical Watershed Decomposition of Gridded Terrains 11

2312 85 12367812131524252834

v2

v4

v6

v8

C(L0) C(L2) C(L4) C(L6) C(L8)

L

C(L)

flow direction

Fig. 4. Bottom figure: An augmented river with drainage areas (as it is stored in L);
the weight of river nodes (white circles) is zero and the weight of tributary mouth
nodes (black circles) is equal to their drainage area. Top figure: Cartesian tree C(L)
with the four tributary mouth nodes v2, v4, v6 and v8 with largest drainage areas
(weight), and the five Cartesian trees C(L0), C(L2), C(L4), C(L6) and C(L8) for the
five interbasins obtained when removing edges incident to their parents p2, p4, p6

and p8 in L (removing v2, v4, v6 and v8 from C(L)).

The augmented Cartesian tree provides us with an easy way of computing
the Pfafstetter labels of Rt

l . Consider constructing an augmented Cartesian
tree Ca(L) on the sequence L consisting of the nodes along Rt

l ordered from
mouth to source, where each tributary mouth node v is stored between its
parent p and sibling s, and where each river node has weight zero and each
tributary mouth node v has weight equal to its drainage area d(v). Refer to
Figure 4. Note that if Rt

l has at least one tributary mouth node, then the root r
of Ca(L) corresponds to the tributary mouth node v with largest drainage area.
Splitting L at v (while removing v) corresponds to removing the two edges
incident to the parent p of v, and results in two sequences Ll = (s0, . . . , p)
and Lr = (s, . . . , t) corresponding to two interbasins rooted in s0 and the
sibling s of v. The augmented Cartesian trees rooted in the children of r are
exactly Ca(Ll) and Ca(Lr). Similarly, if the weights of the four largest weight
nodes in L stored in r are all non-zero, they correspond to the four tributary
mouth nodes v2, v4, v6 and v8 of Rt

l with largest drainage areas. Splitting L
at v2, v4, v6 and v8 (while removing these nodes) corresponds to removing the
edges incident to their parents p2, p4, p6 and p8, and results in five sequences
L0 = (s0, . . . , p2), L2 = (s2, . . . , p4), L4 = (s4, . . . , p6), L6 = (s6, . . . , p8)
and L8 = (s8, . . . , t) corresponding to the five interbasins rooted in siblings
s0, s2, s4, s6 and s8. By Observation 3.1, the nodes in Ca(L) corresponding to
v2, v4, v6 and v8 form a connected subtree rooted in r, and if this subtree is
removed, Ca(L) is decomposed into five subtrees (since it is binary) that are
augmented Cartesian trees Ca(L0), Ca(L2), Ca(L4), Ca(L6) and Ca(L8) for the
five interbasins. Thus the Pfafstetter labels of Rt

l can be obtained by label-
ing v2, v4, v6 and v8 with 2, 4, 6 and 8, respectively, and recursively labeling
Ca(L0), Ca(L2), Ca(L4), Ca(L6) and Ca(L8) while prefixing all labels in Ca(Li)



12 L. Arge, A. Danner, H. Haverkort, and N. Zeh

with i + 1. In the case where only 1 ≤ k < 4 of the weights of the largest
weight nodes in L stored in r are non-zero, that is, if Rt

l only has k tributary
mouth nodes v2, . . . , v2k, removal of the subtree corresponding to v2, . . . , v2k

decomposes Ca(L) into k + 1 augmented Cartesian trees Ca(L0), . . . , Ca(L2k)
that can be labeled recursively (that is, labels 2k + 2 through 9 are not as-
signed). Finally, if the weights of all nodes stored in r are zero, Rt

l does not
have any tributary mouth nodes and no labels (other than the possible pre-
fix) should be assigned to Ca(L). Based on the above observations, we can
design an I/O-efficient algorithm for Pfafstetter labeling an augmented river
Rt

l given as a list L consisting of the nodes along Rt
l ordered from mouth

to source, where each tributary mouth node v is stored between its parent p
and sibling s, and where each river node has weight zero and each tributary
mouth node v has weight equal to its drainage area d(v).

We first construct an augmented Cartesian tree Ca(L) on L, stored as a
sorted list C of post-order numbered nodes. Next we label each node in C,
storing all labels in a list Cp, using a recursive traversal of Ca(L) as outlined
above, where we always recursively visit the right subtree of a node v before
recursively visiting the left subtree of v, and where we explicitly implement the
recursion stack S. The stack S can contain two types of elements, namely label
and recursion elements, both consisting of (the number of) a node v of Ca(L)
and a Pfafstetter label (prefix) P . Initially, S contains a recursion element
for the root r of Ca(L) (that is, an element with number N) and an empty
label. We repeatedly pop an element from S and access the corresponding
node v in C. If the element is a label element, we simply label v with P and
insert it at the end of Cp. If it is a recursion element, we want to label the
subtree of Ca(L) rooted in v, while prefixing all labels with P . To do so, we
consider the four largest weight nodes v2, v4, v6 and v8 stored with v in C.
Assume first that their weights are all non-zero. In this case we label v2, v4, v6

and v8 by pushing a label element for each vi on S with the label P followed
by i; we also recursively label Ca(L0), Ca(L2), Ca(L4), Ca(L6) and Ca(L8) by
pushing a recursion element for each of their roots (obtained from v2, v4, v6

and v8) with labels P followed by 1, 3, 5, 7 and 9, respectively, on S. We push
the elements in the order they appear in a post-order traversal of the subtree
rooted in v, where left subtrees are visited before right subtrees; note that
this means that they appear in reverse post-order traversal order on S. In the
case where only 1 ≤ k < 4 of the largest weight nodes stored with v in C are
non-zero, we only push label elements corresponding to these nodes v2, . . . , v2k

and recursion elements corresponding to Ca(L0), . . . , Ca(L2k). Finally, if the
weights of all the largest weight nodes stored with v in C are zero, we simply
label v with P and insert it at the end of Cp, and push two recursion elements
with label P on S; first an elements for the left child of v and then an elements
for the right child of v (note that this will eventually label the whole subtree
rooted in v with P ).

That the above algorithm correctly computes the Pfafstetter label of
Rt

l follows from the above discussion. The list C is constructed from L in



I/O-Efficient Hierarchical Watershed Decomposition of Gridded Terrains 13

O(scan(N)) I/Os (Lemma 1). Since we visit the nodes in Ca(L) in reverse
post-order, the N accesses to C correspond to a backwards scan of C, and are
therefore performed in O(scan(N)) I/Os. If T is the total size of the computed
Pfafstetter labels, the labels are written to Cp in O(scan(T )) I/Os, and the
O(N) stack operations can also be performed in O(scan(T )) I/Os (since the
combined size of the labels pushed on S is O((T )). After computing the labels
of the nodes in C, stored in Cp, we can easily label the corresponding nodes
in L in a single sorting step. However, by essentially reversing the way C was
produced from L, we can also easily do so in O(scan(T )) I/Os. Thus Rt

l is
labeled in O(scan(T )) I/Os in total.

Lemma 2. Given an augmented river Rt
l as a ordered list L of N nodes along

Rt
l , where each tributary mouth node is stored between its parent and sibling,

the Pfafstetter labels of Rt
l can be computed and stored with the nodes in L in

O(scan(T )) I/Os, where T is the total size of the labels of all nodes in Rt
l .

4 Implementation and experimental results
In this section, we present the results of an experimental study of our Pfaf-
stetter labeling algorithm. We first in Section 4.1 discuss how we implemented
our algorithm to handle general grid DEMs (as opposed to the simplified case
considered in the previous sections). In Section 4.2 and Section 4.3 we then
discuss the data and experimental results, respectively.

4.1 Implementation
In the introduction we discussed how we can obtain a flow tree T from a grid
DEM that (other than the boundary cells) does not contain any cells without
a lower neighbor, simply by assigning each cell a flow direction to the lowest
of its lower neighbors and from each boundary cell without a lower neighbor
to a special cell ρ (the outside sink). Given the grid DEM with N cells in
row (or column) major order, we can easily in O(scan(N)) I/Os construct a
representation of T consisting of an unordered list of numbered nodes, where
each node contains the numbers of its children, simply by scanning through
the grid three rows at a time, while for each cell looking at cells in a 3 × 3
neighborhood.

In the, most common, case where the grid DEM does contain cells other
than boundary cells without lower neighbors, often called flat cells, the above
procedure leads to a forest of trees, since each cell without a lower neighbor
becomes the root of a separate flow tree. Simply computing Pfafstetter labels
for such a forest does not lead to realistic watersheds, because treating each
flat cell as a sink does not model global water flow very well. Often flat cells
appear together and form larger flat areas. These flat areas can be divided
into plateaus that contain at least one spill point—a flat cell with at least one
lower neighbor—and sinks that do not. Intuitively, a single plateau should



14 L. Arge, A. Danner, H. Haverkort, and N. Zeh

not yield separate flow trees. Instead flow trees with a cell in the plateau
should be connected by assigning flow directions such that water flows across
each plateau to spill points. On the other hand, its often natural to regard
each sink as giving rise to one separate watershed or flow tree. This can be
accomplished by connecting all flow trees with a root in the sink, for example
by assigning flow directions such that each cell in the sink has a flow path to
one specific cell in the sink.

Using known algorithms, we can compute flat areas of a grid DEM and
assign directions to plateaus and sinks as discussed above in O(sort(N))
I/Os [5]. We can also use known algorithms to compute the drainage area
of each node in the resulting forest (with each leaf l having drainage area
d(l) = 1) in O(sort(N)) I/Os [5]. After that we can compute Pfafstetter la-
bels in O(sort(T )) I/Os using our algorithm described in the previous sections,
modified to work on a flow forest rather than a flow tree and to handle flow
trees that are not binary.

Often a grid DEM contains many small sinks that should intuitively not
lead to separate watersheds. Therefore a common practice in flow modeling is
to flood the DEM in order to remove all sinks, by simulating uniformly pouring
water onto the DEM (while viewing the outside as a giant sink) until a steady-
state is reached and all sinks are filled by accumulating water [10, 11]. Thus
flooding produces a terrain in which all flat areas are plateaus, and assigning
flow directions towards spill points then lead to a single flow tree for the grid
DEM. I/O-efficient O(sort(N)) algorithms for flooding a grid DEM and for
plateau flow direction assignment have been developed and implemented in
the Terraflow software package [5]. In fact, this software also computes the
drainage area of each cell in O(sort(N)) I/Os.

Our Pfafstetter implementation takes two input grids corresponding to
a DEM, namely the corresponding flow directions and the corresponding
drainage areas. To obtain a realistic watershed hierarchy (Pfafstetter labels),
we used flooded grid DEM models, where all cells, including flat cells on
plateaus, have already been assigned a flow direction, as well as had their
drainage area computed by Terraflow From these input grids we obtain
the unordered list representation of T used in our Pfafstetter algorithm by
a simple simultaneous scan of the two grids using O(scan(N)) I/Os; in the
same scan we also augment each node with the grid position of the corre-
sponding cell. After that our implementation follows the algorithm described
in the previous sections (modified to handle a non-binary flow tree), and after
computing Pfafstetter labels of all nodes, we sort the nodes by grid position
using O(sort(T )) I/Os to obtain an output Pfafstetter label grid. (Option-
ally, we allow the user to truncate labels to a maximum length, so that each
label fits in O(1) log N -bit words and the sorting of labels can be done in
O(sort(N)) I/Os). We implemented our algorithm in C++ using tpie [4], a
library that provides support for implementing I/O-efficient algorithms and
data structures. The implementation work was greatly simplified by the fact



I/O-Efficient Hierarchical Watershed Decomposition of Gridded Terrains 15

that all main primitives of our algorithm—scanning, sorting, stacks and prior-
ity queues—are already implemented I/O-efficiently in tpie or terraflow.

4.2 Datasets
To investigate the practical performance of our algorithms, as well as the re-
alism of the computed watersheds, we conducted a set of experiments with
five grid DEMs of varying size. The largest DEM covered the Neuse river
basin in North Carolina at a resolution of 20 feet. It contained 396.5 million
cells (such that the flow directions and drainage areas occupied 5.8Gbytes),
and is publicly available from ncfloodmaps.com. The other four DEMs cov-
ered sub-basins of the upper Tennessee river basin at a resolution of one
arc second (approximately 100 feet) and contained 2.7, 21.7, 30.8 and 147
million cells, respectively; these datasets are from the National Elevation
Dataset (NED) from the United States Geological Survey, publicly available
at seamless.usgs.gov.

4.3 Experimental results
For each of the five input DEMs we used Terraflow to compute filled DEMs
with flow directions and drainage area, and then we used our implementation
to compute Pfafstetter labels, truncated to nine digits. The experiments were
run on a Dell Precision Server 370 (Pentium 4 3.40 GHz processor) with
hyperthreading enabled and running Linux 2.6.11. The machine had 1 GB
of physical memory, but we made sure that our implementation never used
more than 256 MB by setting a kernel flag to limit memory to 256 MB and
instructing tpie to abort if more memory than this limit was allocated. All
data was stored on a single 400 GB SATA disk drive.

Table 1 shows the time used to label each of the five input DEMs, not
counting the the time used by Terraflow. In all cases, the time taken
by Terraflow was more than five times the time taken by the Pfafstet-
ter labeling routine. Table 2 shows how much time is spent in the various
phases of the algorithm, as a percentage of total time. Constructing T t is
the most time consuming phase of the algorithm. This is not unexpected,
since this phase is the most complicated (it utilizes a priority queue) and per-
forms O(sort(N)) I/Os. Interestingly, labeling T and T t (using the augmented
Cartesian tree) is a small fraction of the total time (this is somewhat expected,

Dataset Ten 1 Ten 2 Ten 3 Ten 4 Neuse
Input size (MB) 17 116 150 713 5,819
Size (mln cells) 2.7 21.7 30.8 147.0 396.5
Running time 0m30 6m51 10m29 58m10 187m43

Table 1. Size and Pfafstetter labeling time for the five DEMs.



16 L. Arge, A. Danner, H. Haverkort, and N. Zeh

Dataset Ten 1 Ten 2 Ten 3 Ten 4 Neuse
Constructing T 16% 9% 8% 7% 16%
Constructing T t 64% 65% 66% 69% 62%
Labeling T t and T 5% 8% 7% 6% 6%
Sorting labeled cells 8% 13% 14% 13% 12%
Exporting data 6% 4% 5% 4% 5%

Table 2. Breakdown of labeling time for each of the five DEMs.

since O(scan(N)) < O(sort(N))). It is also interesting to note that reading
and importing the initial grids (constructing T ) and exporting the final results
is not an insignificant portion of the total time. Overall, we conclude that our
algorithm is practically, as well as theoretically, efficient.

The HUC (Hydrologic Unit Code) scheme developed by the Water Re-
sources Division of the United States Geological Survey (USGS) [14] is an
example of a manual hierarchical watershed decomposition scheme different
from the Pfafstetter method; it is a (up to) twelve level hierarchical decompo-
sition of the terrain in the United States. Maps with eight-digit HUC labels
are currently available and ten to twelve digit HUC maps are in development.
However, as discussed in the full version of this paper, Pfafstetter labels have
several advantages over HUC labels.

To investigate how Pfafstetter label watersheds computed using our al-
gorithm compare to the published digital USGS 8-digit HUCs, we compared
the two for a portion of the French Broad–Holston river basin (Ten 3 in the
Tables and USGS HUC 060101). As can be seen on Figure 5, the watershed
boundaries agree well. The Pfafstetter method divides the basin into nine sub-
basins, whereas the USGS HUC only has four sub-basins in the area; however
Pfafstetter basins can easily be combined to form basins that are of approxi-
mately the same extent as the USGS basins (e.g., Pfafstetter basins 7,8, and
9 can be combined to approximate USGS sub-basin 05). A close inspection
of the overlay of the two watershed decompositions show minor discrepancies
between Pfafstetter and USGS HUC watersheds, but our Pfafstetter labels are
consistent with the underlying elevation, flow direction and flow accumulation
data. This consistency across multiple data layers is desirable in many GIS
applications and avoids the need to rely on multiple heterogeneous data sets.

5 Conclusion
In this paper we presented an I/O-efficient algorithm for computing the Pfaf-
stetter label of each cell of a grid terrain model. We also presented the results
of a preliminary experimental study that showed that our algorithm is prac-
tically as well as theoretically efficient.



I/O-Efficient Hierarchical Watershed Decomposition of Gridded Terrains 17

(a) Pfafstetter (b) USGS

(c) Overlay

Fig. 5. Comparison of Pfafstetter label watersheds to USGS HUCs in the French
Broad–Holston river basin (HUC 060101). Common boundaries are generally in good
agreement.

References
1. A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and

related problems. Communications of the ACM, 31(9):1116–1127, 1988.
2. L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and

M. G. C. Resende, editors, Handbook of Massive Data Sets, pages 313–358.
Kluwer Academic Publishers, 2002.

3. L. Arge. The buffer tree: A technique for designing batched external data struc-
tures. Algorithmica, 37(1):1–24, 2003.

4. L. Arge, R. Barve, D. Hutchinson, O. Procopiuc, L. Toma, D. E. Vengroff, and
R. Wickremesinghe. TPIE User Manual and Reference (edition 082902). Duke
University, 2002. The manual and software distribution are available on the web
at http://www.cs.duke.edu/TPIE/.

5. L. Arge, J. Chase, P. Halpin, L. Toma, D. Urban, J. S. Vitter, and R. Wick-
remesinghe. Flow computation on massive grid terrains. GeoInformatica,
7(4):283–313, 2003.



18 L. Arge, A. Danner, H. Haverkort, and N. Zeh

6. G. S. Brodal and J. Katajainen. Worst-case efficient external-memory priority
queues. In Proc. Scandinavian Workshop on Algorithms Theory, LNCS 1432,
pages 107–118, 1998.

7. Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and
J. S. Vitter. External-memory graph algorithms. In Proc. ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 139–149, 1995.

8. T. Freeman. Calculating catchment area with divergent flow based on a regular
grid. Computers and Geosciences, 17:413–422, 1991.

9. H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related techniques for
geometry problems. In Proc. of 16th ACM Symposium on Theory of Computing,
pages 135–143, 1984.

10. S. Jenson and J. Domingue. Extracting topographic structure from digital ele-
vation data for geographic information system analysis. Photogrammetric En-
gineering and Remote Sensing, 54(11):1593–1600, 1988.

11. D. Morris and R. Heerdegen. Automatically derived catchment boundary and
channel networks and their hydrological applications. Geomorphology, 1:131–
141, 1988.

12. J. F. O’Callaghan and D. M. Mark. The extraction of drainage networks from
digital elevation data. Computer Vision, Graphics and Image Processing, 28,
1984.

13. T. K. Peucker. Detection of surface specific points by local parallel processing
of discrete terrain elevation data. Computer Graphics and Image Processing,
4:375–387, 1975.

14. P. Seaber, F. Kapinos, and G. Knapp. Hydrologic unit maps, USGS water
supply paper 2294, 63 p., 1987.

15. D. Tarboton. A new method for the determination of flow directions and con-
tributing areas in grid digital elevation models. Water Resources Research,
33:309–319, 1997.

16. K. L. Verdin and J. P. Verdin. A topological system for delineation and codifi-
cation of the Earth’s river basins. Journal of Hydrology, 218:1–12, 1999.

17. J. S. Vitter. External memory algorithms and data structures: Dealing with
MASSIVE data. ACM Computing Surveys, 33(2):209–271, 2001.


