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Abstract

In this paper, a formal de"nition and a new algorithmic technique for the watershed transformation is presented. The
novelty of the approach is to adapt the connected component operator to solve the watershed segmentation problem.
The resulting algorithm is independent of the number of grey-levels, employs simple data structures, requires less error
prone memory management, and issues a lower complexity and a short running time. However, the algorithm does not
modify the principle of the watershed segmentation; the output result is the same as that of using any traditional
algorithm which does not build watershed lines. ! 2000 Pattern Recognition Society. Published by Elsevier Science
Ltd. All rights reserved.
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1. Introduction

The watershed transformation is a popular image seg-
mentation algorithm for grey-scale images. The tradi-
tional watershed algorithm simulates a #ooding process.
Thus, an image is identi"ed with a topographical surface,
in which the altitude of every point is equal to the grey
level of the corresponding pixel. Holes are then pierced in
all regional minima of the relief (connected plateaus of
constant altitude from which it is impossible to reach
a location of lower altitude without having to climb).
Sinking the whole surface slowly into a lake, water
springs through the holes and progressively immerses the
adjacent walls. To prevent streams of water coming from
di!erent holes to intermingle, a hinder is set up at the
meeting locations. Once the relief is completely covered
by water, the set of obstacles depicts the watershed
image.

Various de"nitions of watersheds have been proposed
in the literature for both digital and continuous spaces
[1}5]. Most algorithms label each pixel with the identi"-
er of its catchment basin and no watershed lines are
explicitly constructed. In this paper, we present a new
algorithm to perform the watershed transformation
which does not construct watershed lines. Let us mention
that the algorithm produces the same segmentation re-
sult as the techniques in Refs. [1}3], but a simpler algo-
rithmic construction and hence a lower complexity is
issued.

The traditional implementation of the watershed seg-
mentation algorithm simulates the #ooding process over
the image surface. First, regional minima are detected
and uniquely labelled with integer values. Then, the algo-
rithm simulates the #ooding process using a hierarchical
queue [1,2]. Such a queue consists of H "rst-in}"rst-out
(FIFO) queues, one queue for each of the H grey levels in
the image; the size of the hth FIFO queue is given by the
number of pixels in the image having the grey-level h.
This data structure is used to impose the order of access-
ing pixels to operate on. Initially, the hierarchical queue
contains the seeds for the #ooding, i.e. the minima which
are at the interface line between the regional minima and
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Fig. 1. Sequential watershed: (a) #ooding the input image (b) output image of labels.

the non-minima pixels; a pixel of grey-level h is introduc-
ed into the hth FIFO queue of the hierarchical queue.
The hierarchical queue is then parsed from the lowest
grey level to the highest one. A pixel p, removed from the
queue, propagates its label to all its neighbours which
have not been already reached by #ooding. The latter are
introduced, at their turn, into the queue of their grey
level. The FIFO order of serving the candidate pixels
within the same connected plateau ensures the syn-
chronous breadth-"rst propagation of labels coming
from di!erent minima inside a plateau. When all FIFO
queues have been emptied, each pixel was appended to
a single region and the procedure stops. The image of
labelled pixels depicts the segmentation result. For a
simple input image, the #ooding process, illustrated by
arrows, is shown in Fig. 1.

Following the #owing scheme in Fig. 1, we developed a
formalism which allows us to determine for every pixel
p a neighbouring pixel q from which p will be #ooded. As
in other watershed formalisms, q may not be unique. In
such a case, q is arbitrarily chosen among the potential
pixels. Having this local `connectivitya relation, between
neighbouring pixels which pertain to the same catchment
basin, embedded into the image (technique also known as
arrowing [2]), the result is nothing but a directed
graph, for which the connected components [6,7],
must be computed. The novelty of our approach is to
e!ectively apply the connected component operator
[6,7], to compute catchment basins. Preliminary results
for this approach have been published in Ref. [8] and
a modi"ed version, which constructs watershed pixels
according to the de"nitions of Meyer [2], has been re-
cently found in Ref. [9]. However, the connected com-
ponent technique has been previously used in Refs.

[10}12] for the parallelization of the watershed trans-
formation.

The paper is organized as follows. In Section 2, a for-
mal de"nition of watersheds in digital space for images
without non-minima plateaus is presented. In Section 3,
our formalism is compared with Meyer's de"nition of
watersheds [2]. Further on, the proposed de"nitions lead
to a connected component-like watershed algorithm for
images without non-minima plateaus in Section 4. The
de"nitions are extended for images with non-minima
plateaus in Section 5, whereas the corresponding algo-
rithm follows in Section 6. In Section 7, the complexity
analysis of the algorithm and timing results are present-
ed, while conclusions are drawn in Section 8.

2. Segmentation based on local conditions

In this section, we present a de"nition of the watershed
segmentation for images without non-minima plateaus.
The reason to consider just such images is that each pixel
has at least one lower neighbour, except minima pixels,
i.e. the image is lower complete [3,11]. The extension to
include images with non-minima plateaus is presented in
Section 5.

Let f (p) be a function of grey levels, representing
a digital image with the domain !L!!. Each pixel p3!
has a grey level f (p) and a set of neighbouring pixels
p"3N(p) with a distance function dist (p, p") to each neigh-
bour. In most cases, a 4- or 8-square neighborhood is
used with a constant distance of 1 to all neighbouring
pixels. Before giving our de"nition of watershed segmen-
tation and catchment basins, some preliminary de"ni-
tions are introduced:
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De5nition 1 (Lower slope). The lower slope of a pixel p
is given by the maximal ratio ( f (p)!f (p"))/dist(p, p") to
all its neighbouring pixels of lower grey level than itself:

LS(p)" max
+!"#"$!%

!f (p)!f (p")
dist(p, p") " f (p"))f (p)#

and is not de"ned for the case f (p")'f (p), ∀p"3N(p) [2].

The lower slope de"nes the maximum steepness from
a pixel to its lower neighbours. Each pixel in the image,
excluding minima, has a steepest neighbourhood:

De5nition 2 (Steepest neighbourhood ). ∀p3!, NLS (p) is
the set of pixels p"3N(p) de"ned as follows:

NLS(p)"$p"3N(p) " f (p)!f (p")
dist(p, p")

"LS(p), f (p")(f (p)%.
For the case dist(p, p")"1, ∀p"3N(p), the set becomes

NLS(p)"$p"3N(p) " f (p")" min
+!##"$!%

f (p#), f (p")(f (p)%.
A similar de"nition exists also in Ref. [2]. Let us note

that in an image without non-minima plateaus,
NLS(p)O! ∀p3!, p is not a minimum. In addition,
the path of steepest descent from a pixel p down to a
regional minimum m

#
will pass only pixels of the set

!$#
!"&!

NLS(p").
A di!erent de"nition than in Ref. [2] for a catchment

basin and watershed segmentation based on the steepest
neighbourhood is next given.

De5nition 3 (Watershed segmentation for images without
non-minima plateaus). For any image without non-min-
ima plateaus, a segmentation is called watershed segmen-
tation if every regional minimum m

#
has an unique label

¸(m
#
) and, for every pixel p3! with NLS(p)O!, the fol-

lowing condition holds:

!p"3NLS(p) such that ¸(p)"¸(p").

De5nition 4 (Catchment basin). For the watershed seg-
mentation de"ned above, a catchment basin CBLC(m

#
) of

the regional minimum m
#
is the set of pixels with the label

¸(m
#
):

CBLC(m
#
)"$p % ¸(p)"¸(m

#
)&.

CBLC(pPm
#
) denotes the catchment basin of m

#
con-

taining pixel p. The de"nition of watershed segmentation
and catchment basin does not imply uniqueness of the
segmentation result; in general, an image may have sev-
eral valid watershed segmentations.

3. Relation to the traditional de5nition of the watershed
segmentation

In this section, Meyer's formalism [2] is presented and
compared with our de"nitions in Section 2. From func-
tions on continuous space, Meyer derived a formal def-
inition of catchment basins for the digital space [2] as
follows:

De5nition 5 (Cost function based on lower slope). The cost
for walking on the topographical surface from position
p
#'(

to p
#
3N(p

#'(
) is given by

cost(p
#'(

, p
#
)"

$
LS(p

#'(
) dist(p

#'(
, p

#
), f (p

#'(
)'f (p

#
),

LS(p
#
) dist(p

#'(
, p

#
), f (p

#'(
)(f (p

#
),

(
!

(LS(p
#'(

)#LS(p
#
)) dist(p

#'(
, p

#
), f (p

#'(
)"f (p

#
).

De5nition 6 (Topographical distance). The topographical
distance between two pixels p and q of an image is the
minimal !-topographical distance among all paths ! be-
tween p and q inside the image:

TD
%

(p, q)"inf TD!
%

(p, q).

where TD!
%

(p, q)""&
#&!

cost(p
#'(

, p
#
) is the '-topo-

graphical distance of a path '"(p"p
(
, p

!
,2,

p
&
"q), such that ∀i, p

#
3N(p

#'(
) and p

#
3!.

De5nition 7 (Catchment basin based on topographical dis-
tance). A catchment basin CBTD(m

#
) of a regional min-

imum m
#
is the set of pixels p3! closer to m

#
than to any

other regional minimum m
'
, according to the topo-

graphical distance and the grey levels of the minima:

CBTD(m
#
)"$p % f (m

#
)#TD

%
(p, m

#
)(f (m

'
)

#TD
%

(p, m
'
) ∀jOi&.

Based on these de"nitions, Meyer presents the follow-
ing theorem (Proposition 5 in Ref [2]):

Theorem 8. The topographical distance between a pixel
p and the regional minimum m

#
in the depth of its catchment

basin is minimal and equal to f (p)!f (m
#
) and the geodesic

line between them is a line of steepest descent.

The reversal of Theorem 8 states that a path of steepest
descent ensures a minimal cost. The construction of the
catchment basins is reduced to a problem of "nding
a shortest path between each pixel and a regional min-
imum. The relation between De"nitions 4 and 7 is stated
in the following theorem:

Theorem 9. A catchment basin based on the topographical
distance, as in Dexnition 7, is a subset of the catchment
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basin in Dexnition 4, based on the local condition given in
Dexnition 3.

Proof. The formal construction of the catchment basin
according to De"nition 3 can be described as a recursion.
The process starts with the set of pixels belonging to the
regional minimum m

#
. All these pixels are labeled with

¸(m
#
). At each step, unlabelled pixels, whose neighbours

of steepest descent are already in the set, are appended to
the set. The recursion ends when no more pixels can be
incorporated into the set.

CBLC)(m
#
)"m

#
,

CBLC()((m
#
)"CBLC((m

#
) ( ) CBLC((m

#
),

) CBLC((m
#
)"$p % ∀j, p " CBLC((m

'
) and ! p"3NLS(p),

p"3CBLC((m
#
)&.

Each newly inserted pixel p has a neighbour p" being
part of the catchment basin CBLC((m

#
). Thus, the local

condition of De"nition 3 is valid for each p. The proof
proceeds as follows:

p"3 NLS(p)NLS(p)!"#!" f (p)!f (p")
dist(p, p")

NLS(p) ) dist(p, p")

"f (p)!f (p")!"# *N cost(p, p")"f (p)!f (p").

According to Theorem 8, one recursion step adds only
those pixels p building paths of steepest descent down
to CBLC((m

#
) with the minimal cost f (p)!f (p"),

p"3CBLC((m
#
). After the recursion is "nished, all paths

between pixels of the catchment basin and its minimum
are paths of steepest descent. Therefore, it is not possible
to construct a steeper path to a di!erent minimum m

'
.

However, there might exist another steepest path, of
equal cost as to m

#
, to a di!erent regional minimum m

'
.

In this case, the pixel is a watershed pixel according to
De"nition 7. This proves that CBTD(m

#
) is a subset of

CBLC(m
#
). !

The di!erence between De"nitions 7 and 4 is the treat-
ment of pixels which have the steepest paths of equal cost
in more than one minimum. According to De"nition 7,
these pixels are watershed pixels. Following De"nition 4,
based on the local condition, such a pixel is assigned
to one of the minima, m

#
, to which it is connected by

a steepest path and for which the condition
!p"3NLS(p), ¸(p")"¸(m

#
) holds. All possible assign-

ments result in a valid watershed segmentation. In such
cases, most watershed algorithms which do not construct
watershed lines, including algorithms described in

Ref. [2], choose one of the possible assignments given
by De"nition 4. Therefore, these algorithms are consis-
tent with the de"nition.

Algorithms which follow De"nition 7 may result in
thick watershed lines and watershed areas. In other cases,
no watershed line is visible between neighbouring re-
gions. Algorithms which avoid thick or zero-width water-
shed lines are not consistent with De"nition 7. According
to De"nition 4, every pixel belongs to a catchment basin,
but the segmentation result is scanning order dependent.

4. A simple algorithm for lower complete images

The idea of the proposed algorithm originates in the
connected components problem [13}15]. The goal is to
label each pixel with the representative of the region it
belongs to. Choosing, for every pixel p, a neighbour from
the set NLS(p) as predecessor, a directed graph results.
However, minima pixels do not have a steepest neigh-
bourhood. Therefore, for these pixels, another type of
connectivity relation is introduced; all neighbours of
a minimum pixel p and having the same grey level as
p pertain to the same component. Consequently, they are
uni"ed such that the representative of the regional min-
imum is the pixel with the smallest address value. Once
the whole graph is constructed, its connected compo-
nents have to be computed. Our design solution makes
use, apart from the input image f, of an image l, which
stores for every pixel its representative, or label. Let us
underscore that pixel addresses are used for labeling
[14] instead of arbitrary integer values. The algorithm
consists of three raster scannings described below.
N

!*+,
(p)"$p"3N(p) % p"(p& represents the already scan-

ned neighbourhood of p, i.e. all neighbours with a smaller
address than p in the raster scanning order.

Watershed Algorithm for lower complete images $
Input: f.
Output: l.

(1) Raster scan (p) $
qQp;
for each (p"3N(p) and f [p"](f [p])

if (f [p"](f [q]) qQp";
if (qOp)

l[p]Qq;
else l[p]QP¸A¹EA;;

&

(2) Raster scan (p) $
if (l[p]"P¸A¹EA;) $

l[p]Qp;
for each (p"3N

!*+,
(p) and f [p"]"f [p]) $

rQFIND(l, p); r"QFIND(l, p");
l[r]Ql[r"]Qmin(r, r");

&
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&
&
(3) Raster scan (p)

l[p]QFIND(l, p);
&

FIND(l, u) $
for(rQu; l[r]Or; rQl[r]);
for (wQu; wOr;)

tmpQl[w]; l[w]Qr; wQtmp;
return r;

&

In the "rst raster scanning, the label of each pixel p,
which has a lower neighbour, is set to q3NLS(p). Other-
wise, if the pixel has no lower neighbour, it is on a min-
ima plateau and is labelled PLATEAU.

A representative label is computed for every minima
plateau in the second raster scanning. The connected
component operator FIND (l, p) with path compression
[6,7] returns the representative of the plateau on which
p lies; this representative, in our implementation, is the
pixel with the smallest address in the plateau. The path
compression itself is performed in the second for-loop of
the function FIND(l, p), by shortcutting all labels w on
the path from u to the representative r; the latter was
found in the "rst for-loop. Let us remark that performing
the two raster scannings (1) and (2) at the same time is
also possible.

In the third raster scanning, all pixel labels are re-
placed by their representative. In this way, the condition
in De"nition 3 is true for every pixel, and therefore, the
presented segmentation algorithm performs a watershed
segmentation.

Let us notice that apart from the input and output
image, no queue or other data structure is needed. The
algorithm is independent of the number of grey levels in
the image and of the image histogram, uses only contigu-
ous chunks of memory, avoiding thus memory frag-
mentation or additional indexing variables.

5. Extension to images with plateaus

Natural images do have non-minima plateaus. There-
fore, an extension of De"nition 3 and of the previous
algorithm is needed. In this section, we will show how to
extend the set of lower neighbours NLS on a path of
steepest descent to include images with non-minima pla-
teaus.

The basic problem is that the topographical distance
(De"nition 6) has the same value for any two plateau
pixels, which do not have lower neighbours. Therefore,
the geodesic distance, or an approximation of it, must be
used to ensure that a pixel on a non-minima plateau gets
the label from the nearest border pixel of the plateau

which has a lower neighbour. The geodesic distance
between two pixels p and p" on a plateau is equal to the
length of the shortest path within the plateau between
p and p" [5].

A plateau PL is a connected set of pixels of the same
altitude. Let *

+,
"$p"3PL % NLS(p")O!& denote the set

of pixels on the border of the plateau PL which have
a lower neighbour; furthermore, let gdist

+,
(p, p") denote

the geodesic distance, or an approximation of it, between
p and p" within the plateau. The minimal distance be-
tween any pixel p on the plateau PL and all border pixels
p"3*

+,
is gdist

$#&
(p, *

+,
)"min

+!"#/+,
gdist

+,
(p, p"). The

watershed segmentation for images with non-minima
plateaus can be de"ned by extending the steepest neigh-
bourhood given in De"nition 2:

De5nition 10 (Extended steepest neighborhood ). The set
NLS"(p) contains the pixels of the sets NLS(p") of all
border pixels p"3*

+,
such that

NLS"(p)"$ +
!"#/+, $%!&'(+, $!-!"%&%!&'($#& $!- /+, %

NLS(p")%.

De5nition 11 (Watershed segmentation for images with
plateaus). For any image with non-minima plateaus, a
segmentation is called watershed segmentation if every
regional minimum m

#
has an unique label ¸(m

#
) and, for

every pixel p3! and NLS"(p)O!, the following condi-
tion holds:

!p"3NLS"(p) with ¸(p)"¸(p").

The de"nition leaves open the metric used for the
geodesic distance. In our and most other implementa-
tions, an approximation of the geodesic distance based
on the 4- or 8-square neighbourhood is used. The case of
images without non-minimal plateaus is included, be-
cause the equation in De"nition 10 possesses the follow-
ing property: gdist

+,
(p", p)"0Np""pNNLS"(p)"

NLS(p).

6. The algorithm for images with plateaus

In order to perform a watershed segmentation on any
input image and to ful"l the condition in De"nition 11,
another step has to be added to the algorithm for non-
minima plateaus. Let us observe that after step (1), in
Section 4, plateaus of minima and non-minima are not
distinguishable. For a simple input image illustrated in
Fig. 2(a), the result of step (1) is shown in Fig. 2(c), where
the label PLATEAU has value !1.

An intermediate step, for the treatment of non-minima
plateaus, is below described in the frame of the entire
general algorithm;
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"

Fig. 2. (a) Input image, (b) pixel addresses, (c) after "rst scan (I),
(d) after #ooding non-minima plateaus (III), (e) after connecting
minima plateaus (IV), and (f ) after replacing each label with its
representative (V).

Watershed Algorithm $
Input: f.
Output: l.

(I) Do step (1) of the algorithm of Section 4
(II) Raster Scan (p) $

if (l[p]"P¸A¹EA;)
for each (p"3N(p))
if (l[p"]OP¸A¹EA; and f [p]"f [p"])
"fo}put(p"); break;

&
(III) while ("fo}empty( )"FALSE) $

pQ"fo}get( );
for each(p"3N(p) and l[p"]"P¸A¹EA;) $

l[p"]Qp;
"fo}put(p");

&
(IV) Do step (2) of the algorithm of Section 4
(V) Do step (3) of the algorithm of Section 4
&

Let us stepwise follow what result produces the algo-
rithm above on the image example in Fig. 2(a). As already
mentioned, 1D pixel addresses, in the raster scanning
order, are used for labelling. Thus, the pixel location
(i, j), 0)i(nrows, 0)j(ncols, in an image of size
nrows#ncols has the 1D address equal to i#ncols#j.
All pixel addresses are illustrated in Fig. 2(b). In the rest
of the paper, the 2D notation and its equivalent 1D value
will be used to designate a pixel location.

The result of the "rst raster scanning can be observed
in Fig. 2(c). The label of pixels have lower neighbours is
set to the address of the lowest grey-level neighbour;
otherwise, to PLATEAU, i.e. !1. Thus, pixel (0, 4) " 4 of
grey level 8 has as lowest neighbour pixel (0, 3) " 3, of
grey-level 2. Consequently, l (4)Q3. Its neighbouring
pixel (0, 5) " 5 has no lower neighbour and therefore it
receives label PLATEAU, l (5)Q!1. Similarly, pixel
(3, 3) " 33 of grey-level 7 is labelled PLATEAU,
l (33)Q!1.

At step (II), for every PLATEAU pixel p which has
a neighbour p" of the same grey level as p, but it also has
a lower neighbour (l(p")OP¸A¹EA;),p" is introduced
into the FIFO queue. Indeed, p"3*

+,
and therefore it is

a seed for the computation of the extended steepest
neighbourhood of pixels within the plateau. In our case,
pixel (0, 5) " 5 will insert pixel (0, 4) " 4 into the queue
and pixel (2, 1) " 21 will introduce pixel (1, 0)"10.

A global wave propagation, starting from the seeds in
the queue, is performed at step (III). During this process,
each seed pixel, accessed in FIFO order, sets its address
as a label to all neighbouring PLATEAU pixels of the
same altitude as itself. The latter become seeds and, at
their turn, are introduced into the queue. The result of
this step is depicted in Fig. 2(d). Thus, pixel (0, 5) " 5
receives label 4 from pixel (0, 4) " 4 and propagates its
address to pixel (0, 6) " 6; next, the latter sets its label to
5. The propagation continues until the whole plateau of
grey level 8 is exhausted. Let us remark that the condi-
tion of De"nition 10 is ful"lled for non-minima plateaus,
using an approximation of the geodesic distance. The
latter is given by the time stamp of the wave propagation
process, but it is not actually tracked during the algo-
rithm.

After step (III), only minima plateaus are labelled PLA-
TEAU (see Fig. 2(d)), because they do not have lower
brims. The remaining stages are identical with steps (2)
and (3) described in Section 4. Thus, pixels on minima
plateaus are connected at step (IV) using the connected
component operator. The result of this phase is shown in
Fig. 2(e). Minima pixels (0, 0) " 0 and (0, 3) " 3 are their
own representative and accordingly, l (0)Q0, l (3)Q3.
The e!ectiveness of the for-loop within this raster scann-
ing is more evident on the plateau of grey-level 7; the
latter is completely labeled with its representative label
33, i.e. the smallest pixel address within the plateau,
parsed in raster scanning order. Similarly, the regional
minimum of grey-level 10 is labelled 51.

At step (V), for each pixel, its label is replaced by its
representative at step (V). The output image can be
observed in Fig. 2(f ).

Unlike in the algorithm in Section 4, a FIFO queue is
here needed, but only the pixels on non-minima plateaus
are vehiculated through this queue. Thus, the dimension
of this queue is smaller than that of the hierarchical
queue (a su$cient size could be computed during the "rst
raster scanning, namely by counting the total number of
PLATEAU pixels). Additionally, before allocating each of
the FIFO queue in the hierarchical queue, the classical
algorithm must compute the image histogram; this step
disappears entirely in the present algorithm. Finally, the
mechanisms for manipulating a FIFO queue are much
simpler than those for a hierarchical queue.

7. Complexity analysis and experimental results

Given an image with n pixels, the complexity of the
algorithm in Section 6 is now analysed step by step. At
Steps (I) and (II) a linear scan with access to a limited
neighbourhood is performed. Therefore the complexity
of both steps is O(n), or linear with the number of pixels
(there exist the constants c

(
, c

!
such that the complexity

equals c
(
#n#c

!
).
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Table 1
Timing results

Running time (s)

Image,Algorithm Approach I Approach II Hierarchical queues

Cermet (256#256) 0.07 0.08 0.15
Lenna (512#512) 0.34 0.35 0.76
Peppers (512#512) 0.35 0.36 0.71
Simple512 (512#512) 0.39 0.35 0.71
People (1024#1024) 1.47 1.35 3.26

Fig. 3. Peppers (a) input image (b) output image.

Each pixel on a non-minimum plateau is inserted into
the FIFO queue during Steps (II) and (III) at most once.
For each pixel in the FIFO queue, a limited neighbour-
hood is accessed at step (III). Therefore, the overall
worst-case complexity of step (III) is O(n).

Let n")n be the number of minima plateau pixels.
Since we use path compression in the FIND (l, p) opera-
tion in combination with naive linking at step (IV), the
worst-case complexity of this step is O(n" log n") [6,7].
The worst-case complexity can be reduced to linear for
practical problem sizes, if linking by rank or size is used
[6,7], at the expense of an additional image to store the
rank or size. Nevertheless, for the images we tested, the
logarithmic factor could not be observed.

At step (V), for each of the n pixels, a FIND (l, p)
operation is performed. The pixels in the image can be
divided into two sets. Let F be the set of pixels which
have not been already accessed by a FIND operation.
Initially all pixels are in F. Each FIND operation walks
along a path of pixels which are within F. As soon as it
hits a pixel p" " F the operation "nishes, because p" has
already been shortcut to its representative. Afterwards,
all pixels on the path are shortcut as well and removed
from F. Therefore, the total complexity of step (V) is O(n)
because %F%"n and the total number of FIND opera-
tions is also n.

As a result, the overall worst-case complexity of the
algorithm is O(n#n" log n"). With our test images we
could not observe the logarithmic factor. Therefore, the
algorithm can be treated as O(n) for practical images.

Concerning the memory requirements, the algorithm
described in the previous section makes use of an input
and an output image, as well as of a FIFO queue. As
already mentioned, the size of this queue can be dynam-
ically computed, at the run time; alternatively, the size of
the image can be used instead.

In Table 1, the presented algorithm is compared with
the traditional hierarchical queue algorithm. The time
measurements were performed on a Silicon Graphic./
O2 workstation with an R10000 RISC processor. Ap-
proach I is the implementation of the algorithm as pre-
sented here, while in Approach II, step (II), slightly modi-
"ed as below explained, is performed at the same time
with step (I). This saves the overhead of a scan through
the image, but many unnecessary seeds might be detec-
ted, because labels of half of the neighbours are only
available at this stage. Therefore, all pixels p" having
a lower neighbouring pixel and also neighbours p of the
same altitude are stored as seeds; however, not all the
pixels p in the neighbourhood not already scanned and
having the same altitude as p" will be labeled PLATEAU
by the test at Scan (I). Hence, p" are useless in the FIFO
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queue. The results of both implementations show how-
ever a signi"cant improvement in the running time com-
pared against the classical algorithm.

One image example is illustrated in Fig. 3(a). Taking
the gradient image thresholded with an arbitrary value
as input for the watershed algorithm, the output can
be observed in Fig. 3(b). Let us notice that only the
boundaries of the labelled regions are shown in the latter
"gure.

8. Conclusion

In this paper, we have presented a de"nition for the
watershed segmentation which is consistent with the
behaviour of most implementations of the watershed
algorithm, namely, to chose one arbitrary label in the
case of competing labels. Di!erent distance metrics to
approximate the geodesic distance on plateaus can be
incorporated into the de"nition.

The de"nition led to a new type of watershed algo-
rithm which is closely related to the connected compon-
ent algorithm. We have shown that the algorithm has
a linear complexity with the number of pixels, except the
connection of minima plateau pixels which introduces, in
the worst case, an additional logarithmic factor. For the
images we tested, the logarithmic factor could be how-
ever not observed.

The algorithm has a regular structure (raster scannings
comprising simple pixel assignment rules), the memory
requirements are minimal (three contiguous chunks of
memory accessed by direct indexing techniques) and
independent of the image content (image resolution and
image histogram), leading to a robust and e$cient imple-
mentation. Consequently, our timing results show a sig-
ni"cant improvement in the running time, compared
against the classical watershed algorithm.

Combining our watershed algorithm with an opening
by reconstruction [16,17], to "nd markers for `signi"-
canta objects in the image, a marker-based watershed
algorithm results, which is thus independent of the num-
ber of grey levels. Consequently, the algorithm is very
suitable for images of large resolution, for which the
hierarchical queue approach is rather expensive.

Finally, the connected component-like formulation of
watersheds exhibits a better parallel potential, allowing
the design of e$cient and scalable parallel watershed
algorithms [10}12].

9. Summary

The watershed transformation is a popular image seg-
mentation algorithm for grey-scale images. The tradi-
tional watershed algorithm simulates the #ooding pro-
cess with the help of hierarchical queues. In this paper, we

develop a formalism for the watershed transformation,
which does not build watersheds at the same time with
#ooding of the basins, based on sets of neighbouring
pixels. Our de"nition is consistent with the behaviour
of most implementations of the watershed algorithm,
namely, to choose one arbitrary label in the case of
competing labels. Moreover, di!erent distance metrics
to approximate the geodesic distance on plateaus can be
incorporated into the formalism. The relation to the
traditional de"nition of watershed segmentation is
proven in the paper.

The formalism leads to a new type of watershed algo-
rithm which is closely related to the connected compon-
ent algorithm. The algorithm that we here introduce is
more simple, with respect to implementation and data
structures. Additionally, the memory requirement is
small and independent of the number of grey levels in the
input image. Furthermore, our timing results show a sig-
ni"cant improvement in the running time, compared
against the classical watershed algorithm.
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