Part II: SP and MST

Laura Toma
Algorithms (csci2200), Bowdoin College

Part II: SP and MST Graphs

Topics

Weighted graphs
e cach edge (u,v) has a weight denoted w(u,v) or wy,

e stored in the adjacency list or adjacency matrix

The weight of a path p = (v1,va, v3, ...v%) is the sum of the
weights of the edges on the path.

Problems:
e shortest paths (SP)

e minimum spanning tree (MST)

Part II: SP and MST Graphs

Shortest paths

Variants:
e P2P SP: given two vertices u,v: find SP from u to v
@ SSSP: given a vertex u, find SP from w to all vertices
in G
e APSP: find SP between any two vertices (u,v)

Part II: SP and MST Graphs

Shortest paths

Variants:
e P2P SP: given two vertices u,v: find SP from u to v
@ SSSP: given a vertex u, find SP from w to all vertices
in G
e APSP: find SP between any two vertices (u,v)

Notes:
@ SPs not well-defined when graph has a negative cycle
e might want shortest path that has no cycles < NPC

@ When all edge weights are equal, SP can be computed
by BFS.
e computing shortest paths in terms of number of edges
on the path is a special case of the SP problem

Part II: SP and MST Graphs

Point-to-point SP

Problem: given two vertices u,v: find SP from u to v

No algorithm is known for computing SP(u,v) that’s better,
in the worst case, than running SSSP(u).

Part II: SP and MST Graphs

APSP

Problem: For any u,v: find SP from u to v

Can run SSSP(u) |V| times, once for each vertex w.

Better algorithms exist.

Part II: SP and MST Graphs

SSSP

G is a weighted (directed or undirected) graph.
Problem: Given vertex s, find SP from s to all v in G.

If G has positive weights: Diskstra’s algorithm
Otherwise: Bellman-Ford algorithm

Part II: SP and MST Graphs

SSSP: Dijkstra’a algorithm

SSSP(s)

Idea: for each vertex v, maintain d[v] as the best known
shortest path to v (from s)

Initially: d[s] = 0 and d[v] = oo for all v # s

Idea: Greedy: Visit first the vertex with smallest d.

Implementation: use a priority queue.

Part II: SP and MST Graphs

SSSP: Dijkstra’a algorithm

Idea: for each vertex v, maintain d[v] as the best known
shortest path to v (from s)

o Initialize: d[s] =0 and d[v] = oo for all v # s. For
every v € V, insert (v, d[v]) in PQ.
e while PQ not empty
o v = deleteMin(PQ)
o for each outgoing edge (v, u): relax (v,u)
relax(v, u) tests whether we can improve the SP to u by
going through v
e if d[u] > d[v] + wy, then
o du] = d[v] + Wiy
o decreaseKey of u in PQ to d[u]

Part II: SP and MST Graphs

SSSP: Dijkstra’a algorithm

Idea: for each vertex v, maintain d[v] as the best known
shortest path to v (from s)

o Initialize: d[s] =0 and d[v] = oo for all v # s. For
every v € V, insert (v, d[v]) in PQ.
e while PQ not empty

o v = deleteMin(PQ)
o for each outgoing edge (v, u): relax (v,u)

relax(v, u) tests whether we can improve the SP to u by
going through v
e if d[u] > d[v] + wy, then
o dlu] = d[v] + wyy
o decreaseKey of u in PQ to d[u]
O(|V|+ |E|) + |V|- PQ-insert + |V|- PQ-delete + |E|-
PQ-decreaseKey

Part II: SP and MST Graphs

SSSP: Dijkstra’a algorithm

Idea: for each vertex v, maintain d[v] as the best known
shortest path to v (from s)

o Initialize: d[s] =0 and d[v] = oo for all v # s. For
every v € V, insert (v, d[v]) in PQ.
e while PQ not empty

o v = deleteMin(PQ)
o for each outgoing edge (v, u): relax (v, u)

relax (v, u)
o if d[u] > d[v] + wy, then
o dlu] = d[v] + way
o decreaseKey of u in PQ to d[u]
Analysis: With a heap, runs in O(EIgV)

Part II: SP and MST Graphs

SSSP: Dijkstra’a algorithm

Let S denote the set of vertices that have been deleted
from PQ.

Correctness: At every iteration of the while loop, the
following invariants hold:

Q@ (I1) for any v € V — S, d[v] is the length of the
shortest path from s to v among all paths that go only
through vertices of S.

@ (12) for any v € S, d[v] is the length of the shortest
path from s to v.

Part II: SP and MST Graphs

SSSP: Dijkstra’a algorithm

Let S denote the set of vertices that have been deleted
from PQ.

Correctness: At every iteration of the while loop, the
following invariants hold:

Q@ (I1) for any v € V — S, d[v] is the length of the
shortest path from s to v among all paths that go only
through vertices of S.

@ (12) for any v € S, d[v] is the length of the shortest
path from s to v.

Prove by induction on the size of S.

Part II: SP and MST Graphs

SSSP: Dijkstra’a algorithm

At every iteration of the while loop, the following holds:
(I1) for any v € V' — S, d[v] is the length of the shortest
path from s to v among all paths that go only through
vertices of S.

Basecase: (I1) is trivially true before the first iteration of
the while loop, when §' is empty.

Assume (I1) is true before an iteration of the while loop.
We’ll prove that it’s true after this iteration.

After adding v to S, the only paths that can change are to
those vertices that are adjacent to v. The algorithm checks
them and releases them.

Part II: SP and MST Graphs

SSSP: Dijkstra’a algorithm

At every iteration of the while loop, the following holds:
(I2) for any v € S, d[v] is the length of the shortest path
from s to v.

Basecase: (I2) is trivially true before the first iteration of
the while loop, when §'is empty.

Assume (12) is true before an iteration of the while loop.
We’ll prove that it’s true after this iteration.

As we are adding v to S, assume by contradiction that the
length of the shortest path to v is [d(s,v)| < d[v]. Let (x,y)
be the first edge on d(s,v) leaving S (z last vertex in S).

e d[v] > d(s,v) =d(s,y) + 0(y,v)

o dly] = d(s,y) by (I1)
e d[v] < d[y] because v comes out of PQ) before y

= d(y,v) < 0 impossible

Part II: SP and MST Graphs

SSSP: Dijkstra’a algorithm

What happens if we run Dijkstra’s algorithm on a graph
with negative weights?

Part II: SP and MST Graphs

SSSP: Dijkstra’a algorithm

What happens if we run Dijkstra’s algorithm on a graph
with negative weights?

Find an example of a graph where Dijkstra does not
compute the SP correctly.

Part II: SP and MST Graphs

SSSP with negative weights

Note: If G is undirected and has negative weights, that
immediately means a negative cycle.

Part II: SP and MST Graphs

SSSP with negative weights

G directed graph.

Part II: SP and MST Graphs

SSSP with negative weights

G directed graph.
If G has no negative cycles, then there exists a SP from s
to v that is simple and hence has |V| — 1 edges.

Part II: SP and MST Graphs

SSSP with negative weights

G directed graph.
If G has no negative cycles, then there exists a SP from s
to v that is simple and hence has |V| — 1 edges.

Let d(u,v) denote the shortest path from u to v.

Start with d[v] = co and progresively refine it, until

dv] = |6(s, v)|

Similar to Dijkstra: Dijkstra relaxes edges in greedy order
of increasing d[]; that does not work for negative edges

Part II: SP and MST Graphs

SSSP with negative weights

G directed graph.

Bellman-Ford algorithm (s):
e Initialize: d[s] = 0 and d[v] = oo for all v # s.
e fori=1to |[V|—1do:

o for every edge (v,u) in G: relax(v, u)

relax(v, u)
e if d[u] > d[v] + wy, then
o dlu] = d[v] + way

Part II: SP and MST Graphs

Bellman-Ford

WHY does this work?
Intuition: look at the number of edges along a shortest
path (SP) from s

Part II: SP and MST Graphs

Bellman-Ford

WHY does this work?
Intuition: look at the number of edges along a shortest
path (SP) from s

e initially, only d[s] is correct. Put differently, all SP
that consist of 0 edges are correctly computed.

Part II: SP and MST Graphs

Bellman-Ford

WHY does this work?
Intuition: look at the number of edges along a shortest
path (SP) from s

e initially, only d[s] is correct. Put differently, all SP
that consist of 0 edges are correctly computed.

e after round 1: all SP from s that consist precisely of 1
edge are correctly computed.

Part II: SP and MST Graphs

Bellman-Ford

WHY does this work?
Intuition: look at the number of edges along a shortest
path (SP) from s
e initially, only d[s] is correct. Put differently, all SP
that consist of 0 edges are correctly computed.
e after round 1: all SP from s that consist precisely of 1
edge are correctly computed.

e after round 2: all SP from s that consist precisely of 2
edges are correctly computed.

Part II: SP and MST Graphs

Bellman-Ford

WHY does this work?
Intuition: look at the number of edges along a shortest
path (SP) from s
e initially, only d[s] is correct. Put differently, all SP
that consist of 0 edges are correctly computed.
e after round 1: all SP from s that consist precisely of 1
edge are correctly computed.

e after round 2: all SP from s that consist precisely of 2
edges are correctly computed.

o after round i: all SP from s that consist precisely of ¢
edges are correctly computed.

Part II: SP and MST Graphs

Bellman-Ford

WHY does this work?
Intuition: look at the number of edges along a shortest
path (SP) from s

Let OPT(v,4) denote the length of the shortest path from s
to v among all paths containing < 7 edges.

Part II: SP and MST Graphs

Bellman-Ford

WHY does this work?
Intuition: look at the number of edges along a shortest
path (SP) from s

Let OPT(v,4) denote the length of the shortest path from s
to v among all paths containing < 7 edges.
We have:

Part II: SP and MST Graphs

Bellman-Ford

WHY does this work?
Intuition: look at the number of edges along a shortest
path (SP) from s

Let OPT(v,4) denote the length of the shortest path from s
to v among all paths containing < 7 edges.
We have:

e OPT(s,0) =0

Part II: SP and MST Graphs

Bellman-Ford

WHY does this work?
Intuition: look at the number of edges along a shortest
path (SP) from s

Let OPT(v,4) denote the length of the shortest path from s
to v among all paths containing < 7 edges.
We have:

o OPT(s,0) =0
e OPT(v,0) = oo for any v # s

Part II: SP and MST Graphs

Bellman-Ford

WHY does this work?
Intuition: look at the number of edges along a shortest
path (SP) from s

Let OPT(v,4) denote the length of the shortest path from s
to v among all paths containing < 7 edges.
We have:

e OPT(s,0)=0
e OPT(v,0) = oo for any v # s
° OPT(U7 |V| - 1) = |6(va)|

Part II: SP and MST Graphs

Bellman-Ford

WHY does this work?
Intuition: look at the number of edges along a shortest
path (SP) from s

Let OPT(v,4) denote the length of the shortest path from s
to v among all paths containing < 7 edges.

We have:
e OPT(s,0) =
e OPT(v,0) = oo for any v # s
° OPT(V] —1) =|0(s,v)]
e OPT(v,i) =

min{OPT(v,i — 1), miny|qw) {OPT(u,i — 1) + wy, } }

Part II: SP and MST Graphs

Bellman-Ford

WHY does this work?
Intuition: look at the number of edges along a shortest
path (SP) from s

Let OPT(v,4) denote the length of the shortest path from s
to v among all paths containing < i edges.
We have:
° OPT(s,0) =
PT(v,0) = oo for any v # s
OPT(VI =1) = 5(s, v)l
OPT(v,i) =
min{OPT (v, — 1), miny|wun{OPT(u,i — 1) + wyy } }
Claim: After round ¢ in Bellman-Ford we have
d[v] = OPT(v,1)

Part II: SP and MST Graphs

Bellman-Ford

Running time: O(V - E)
After V' — 1 rounds, d[v] = OPT (v, |V| — 1) = |0(s,v)|

Part II: SP and MST Graphs

Bellman-Ford

Running time: O(V - E)
After V' — 1 rounds, d[v] = OPT (v, |V| — 1) = |0(s,v)|

What happens if we do more rounds? (beyond |V| — 1)

Part II: SP and MST Graphs

Bellman-Ford

Running time: O(V - E)
After V' — 1 rounds, d[v] = OPT (v, |V| — 1) = |0(s,v)|

What happens if we do more rounds? (beyond |V| — 1)

e the values d[v] will not decrease any further....
unless.....there’s a negative cycle

Part II: SP and MST Graphs

Bellman-Ford

Running time: O(V - E)
After V' — 1 rounds, d[v] = OPT (v, |V| — 1) = |0(s,v)|

What happens if we do more rounds? (beyond |V| — 1)

e the values d[v] will not decrease any further....
unless.....there’s a negative cycle

Negative cycles: What happens if G negative cycles?

Part II: SP and MST Graphs

Bellman-Ford

Running time: O(V - E)
After V' — 1 rounds, d[v] = OPT (v, |V| — 1) = |0(s,v)|

What happens if we do more rounds? (beyond |V| — 1)

e the values d[v] will not decrease any further....
unless.....there’s a negative cycle

Negative cycles: What happens if G negative cycles?
@ d[v] are not SP (there are no SP)

e some values d[v] will keep decreasing

Part II: SP and MST Graphs

Bellman-Ford

Running time: O(V - E)
After V' — 1 rounds, d[v] = OPT (v, |V| — 1) = |0(s,v)|

What happens if we do more rounds? (beyond |V| — 1)

e the values d[v] will not decrease any further....
unless.....there’s a negative cycle

Negative cycles: What happens if G negative cycles?
@ d[v] are not SP (there are no SP)

e some values d[v] will keep decreasing

— Bellman-Ford can be used to test for the existence of
negative cycles in the graph:

Part II: SP and MST Graphs

Bellman-Ford

G directed graph.
Bellman-Ford algorithm (s):

o Initialize: d[s] = 0 and d[v] = oo for all v # s.
e fori=1to |V|—1do:
o for every edge (v,u) in G: relax(v,u)
e for each edge (v,u) in G: if d[v] + wy, < d[u] = NEG
CYCLE

Part II: SP and MST Graphs

Bellman-Ford

G directed graph.
Bellman-Ford algorithm (s):

o Initialize: d[s] = 0 and d[v] = oo for all v # s.
e fori=1to |V|—1do:
o for every edge (v,u) in G: relax(v,u)
e for each edge (v,u) in G: if d[v] + wy, < d[u] = NEG
CYCLE

Note: detects negative cycle reachable from s. Can be
extended to detect if G has any negative cycle.

Part II: SP and MST Graphs

SSSP

Summary of known algorithms:
e (G unweighted
o BFS in O(V + E)
o G DAG
o dynamic programming in O(V + E)
e (directed, no negative weights
o Dijkstra’s algorithm in O(E'IgV')
e G directed, no negative cycles
o Bellman-Ford algorithm in O(V - E)

Part II: SP and MST Graphs

