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Topics

Weighted graphs

each edge (u, v) has a weight denoted w(u, v) or wuv

stored in the adjacency list or adjacency matrix

The weight of a path p = (v1, v2, v3, ...vk) is the sum of the
weights of the edges on the path.

Problems:

shortest paths (SP)

minimum spanning tree (MST)
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Shortest paths

Variants:

P2P SP: given two vertices u, v: find SP from u to v

SSSP: given a vertex u, find SP from u to all vertices
in G

APSP: find SP between any two vertices (u, v)

Notes:

SPs not well-defined when graph has a negative cycle

might want shortest path that has no cycles ⇐ NPC
When all edge weights are equal, SP can be computed
by BFS.

computing shortest paths in terms of number of edges
on the path is a special case of the SP problem
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Point-to-point SP

Problem: given two vertices u, v: find SP from u to v

No algorithm is known for computing SP(u,v) that’s better,
in the worst case, than running SSSP(u).
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APSP

Problem: For any u, v: find SP from u to v

Can run SSSP(u) |V | times, once for each vertex u.

Better algorithms exist.
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SSSP

G is a weighted (directed or undirected) graph.
Problem: Given vertex s, find SP from s to all v in G.

If G has positive weights: Diskstra’s algorithm
Otherwise: Bellman-Ford algorithm
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SSSP: Dijkstra’a algorithm

SSSP(s)
Idea: for each vertex v, maintain d[v] as the best known
shortest path to v (from s)

Initially: d[s] = 0 and d[v] = ∞ for all v 6= s

Idea: Greedy: Visit first the vertex with smallest d.

Implementation: use a priority queue.
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SSSP: Dijkstra’a algorithm

Idea: for each vertex v, maintain d[v] as the best known
shortest path to v (from s)

Initialize: d[s] = 0 and d[v] = ∞ for all v 6= s. For
every v ∈ V , insert (v, d[v]) in PQ.

while PQ not empty

v = deleteMin(PQ)
for each outgoing edge (v, u): relax (v, u)

relax(v, u) tests whether we can improve the SP to u by
going through v

if d[u] > d[v] + wvu then

d[u] = d[v] + wvu

decreaseKey of u in PQ to d[u]

O(|V |+ |E|) + |V |· PQ-insert + |V |· PQ-delete + |E|·
PQ-decreaseKey
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SSSP: Dijkstra’a algorithm

Idea: for each vertex v, maintain d[v] as the best known
shortest path to v (from s)

Initialize: d[s] = 0 and d[v] = ∞ for all v 6= s. For
every v ∈ V , insert (v, d[v]) in PQ.

while PQ not empty

v = deleteMin(PQ)
for each outgoing edge (v, u): relax (v, u)

relax(v, u)

if d[u] > d[v] + wvu then

d[u] = d[v] + wvu

decreaseKey of u in PQ to d[u]

Analysis: With a heap, runs in O(E lg V )
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SSSP: Dijkstra’a algorithm

Let S denote the set of vertices that have been deleted
from PQ.
Correctness: At every iteration of the while loop, the
following invariants hold:

1 (I1) for any v ∈ V − S, d[v] is the length of the
shortest path from s to v among all paths that go only
through vertices of S.

2 (I2) for any v ∈ S, d[v] is the length of the shortest
path from s to v.

Prove by induction on the size of S.
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SSSP: Dijkstra’a algorithm

At every iteration of the while loop, the following holds:
(I1) for any v ∈ V − S, d[v] is the length of the shortest
path from s to v among all paths that go only through
vertices of S.

Basecase: (I1) is trivially true before the first iteration of
the while loop, when S is empty.

Assume (I1) is true before an iteration of the while loop.
We’ll prove that it’s true after this iteration.

After adding v to S, the only paths that can change are to
those vertices that are adjacent to v. The algorithm checks
them and releases them.
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SSSP: Dijkstra’a algorithm

At every iteration of the while loop, the following holds:
(I2) for any v ∈ S, d[v] is the length of the shortest path
from s to v.
Basecase: (I2) is trivially true before the first iteration of
the while loop, when S is empty.
Assume (I2) is true before an iteration of the while loop.
We’ll prove that it’s true after this iteration.
As we are adding v to S, assume by contradiction that the
length of the shortest path to v is |δ(s, v)| < d[v]. Let (x, y)
be the first edge on δ(s, v) leaving S (x last vertex in S).

d[v] > δ(s, v) = δ(s, y) + δ(y, v)

d[y] = δ(s, y) by (I1)

d[v] < d[y] because v comes out of PQ before y

⇒ δ(y, v) < 0 impossible
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SSSP: Dijkstra’a algorithm

What happens if we run Dijkstra’s algorithm on a graph
with negative weights?

Find an example of a graph where Dijkstra does not
compute the SP correctly.
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SSSP with negative weights

Note: If G is undirected and has negative weights, that
immediately means a negative cycle.
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SSSP with negative weights

G directed graph.

If G has no negative cycles, then there exists a SP from s
to v that is simple and hence has |V | − 1 edges.

Let δ(u, v) denote the shortest path from u to v.
Start with d[v] = ∞ and progresively refine it, until
d[v] = |δ(s, v)|
Similar to Dijkstra: Dijkstra relaxes edges in greedy order
of increasing d[]; that does not work for negative edges
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SSSP with negative weights

G directed graph.
Bellman-Ford algorithm (s):

Initialize: d[s] = 0 and d[v] = ∞ for all v 6= s.

for i = 1 to |V | − 1 do:

for every edge (v, u) in G: relax(v, u)

relax(v, u)

if d[u] > d[v] + wvu then

d[u] = d[v] + wvu
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Bellman-Ford

WHY does this work?
Intuition: look at the number of edges along a shortest
path (SP) from s

initially, only d[s] is correct. Put differently, all SP
that consist of 0 edges are correctly computed.

after round 1: all SP from s that consist precisely of 1
edge are correctly computed.

after round 2: all SP from s that consist precisely of 2
edges are correctly computed.

...

after round i: all SP from s that consist precisely of i
edges are correctly computed.
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Bellman-Ford

WHY does this work?
Intuition: look at the number of edges along a shortest
path (SP) from s
Let δ(u, v) denote the shortest path from u to v.
Let OPT (v, i) denote the length of the shortest path from s
to v among all paths containing ≤ i edges.

We have:

OPT (s, 0) = 0

OPT (v, 0) = ∞ for any v 6= s

OPT (v, |V | − 1) = |δ(s, v)|
OPT (v, i) =
min{OPT (v, i− 1), minu|(u,v){OPT (u, i− 1) + wuv}}

Claim: After round i in Bellman-Ford we have
d[v] = OPT (v, i)
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Bellman-Ford

Running time: O(V · E)
After V − 1 rounds, d[v] = OPT (v, |V | − 1) = |δ(s, v)|

What happens if we do more rounds? (beyond |V | − 1)

the values d[v] will not decrease any further....
unless.....there’s a negative cycle

Negative cycles: What happens if G negative cycles?

d[v] are not SP (there are no SP)

some values d[v] will keep decreasing

→ Bellman-Ford can be used to test for the existence of
negative cycles in the graph:

Part II: SP and MST Graphs



Bellman-Ford

Running time: O(V · E)
After V − 1 rounds, d[v] = OPT (v, |V | − 1) = |δ(s, v)|

What happens if we do more rounds? (beyond |V | − 1)

the values d[v] will not decrease any further....
unless.....there’s a negative cycle

Negative cycles: What happens if G negative cycles?

d[v] are not SP (there are no SP)

some values d[v] will keep decreasing

→ Bellman-Ford can be used to test for the existence of
negative cycles in the graph:

Part II: SP and MST Graphs



Bellman-Ford

Running time: O(V · E)
After V − 1 rounds, d[v] = OPT (v, |V | − 1) = |δ(s, v)|

What happens if we do more rounds? (beyond |V | − 1)

the values d[v] will not decrease any further....
unless.....there’s a negative cycle

Negative cycles: What happens if G negative cycles?

d[v] are not SP (there are no SP)

some values d[v] will keep decreasing

→ Bellman-Ford can be used to test for the existence of
negative cycles in the graph:

Part II: SP and MST Graphs



Bellman-Ford

Running time: O(V · E)
After V − 1 rounds, d[v] = OPT (v, |V | − 1) = |δ(s, v)|

What happens if we do more rounds? (beyond |V | − 1)

the values d[v] will not decrease any further....
unless.....there’s a negative cycle

Negative cycles: What happens if G negative cycles?

d[v] are not SP (there are no SP)

some values d[v] will keep decreasing

→ Bellman-Ford can be used to test for the existence of
negative cycles in the graph:

Part II: SP and MST Graphs



Bellman-Ford

Running time: O(V · E)
After V − 1 rounds, d[v] = OPT (v, |V | − 1) = |δ(s, v)|

What happens if we do more rounds? (beyond |V | − 1)

the values d[v] will not decrease any further....
unless.....there’s a negative cycle

Negative cycles: What happens if G negative cycles?

d[v] are not SP (there are no SP)

some values d[v] will keep decreasing

→ Bellman-Ford can be used to test for the existence of
negative cycles in the graph:

Part II: SP and MST Graphs



Bellman-Ford

Running time: O(V · E)
After V − 1 rounds, d[v] = OPT (v, |V | − 1) = |δ(s, v)|

What happens if we do more rounds? (beyond |V | − 1)

the values d[v] will not decrease any further....
unless.....there’s a negative cycle

Negative cycles: What happens if G negative cycles?

d[v] are not SP (there are no SP)

some values d[v] will keep decreasing

→ Bellman-Ford can be used to test for the existence of
negative cycles in the graph:

Part II: SP and MST Graphs



Bellman-Ford

G directed graph.
Bellman-Ford algorithm (s):

Initialize: d[s] = 0 and d[v] = ∞ for all v 6= s.

for i = 1 to |V | − 1 do:

for every edge (v, u) in G: relax(v, u)

for each edge (v, u) in G: if d[v] + wvu < d[u] ⇒ NEG
CYCLE

Note: detects negative cycle reachable from s. Can be
extended to detect if G has any negative cycle.
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SSSP

Summary of known algorithms:

G unweighted

BFS in O(V + E)

G DAG

dynamic programming in O(V + E)

G directed, no negative weights

Dijkstra’s algorithm in O(E lg V )

G directed, no negative cycles

Bellman-Ford algorithm in O(V · E)
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