
Dynamic Programming: 0-1 Knapsack

• Problem: Given n items, with item i being worth vi and having weight wi pounds, fill a
knapsack of capacity W pounds with maximal value.

• Perhaps a greedy strategy of picking the item with the biggest value-per-pound might work?
Here is a counter-example showing that this does not work:

20

30

= $220

Optimal solution
for knapsack of
size 50

10
20

30

10

20
= $160$60

$100
$120

order

Items in value
per pound

Greedy solution
for knapsack of
size 50

Note: In the fractional-knapsack problem we can take 2
3 of $120 object and get $240

solution.

• Now we’ll show that 0−1 knapsack problem can be solved in time O(n·W) using dynamic-
programming.

• Often the hardest part is coming up with the recursive formulation. Let us denote by
optknapsack(k,w) the maximal value obtainable when filling a knapsack of capacity w using
items among items 1 through k.

• To solve our problem we need to compute optknapsack(n,W).

• The idea is to consider each item, one at a time. Let’s take item k: either it’s part of the
optimal solution, or not. We need to compute both options, and chose the best one.

optknapsack(k,w)

IF weight[k] <= w THEN

with = value[k] + optknapsack(k-1, w - weight[k])

ELSE

with = 0

END IF

without = optknapsack(k-1,w)

RETURN max{with, without}

END Knapsack

1

• Analysis: Let T (n,W) be the running time of optknapsack(k,w).

T (n,W) = T (n− 1,W) + T (n− 1,W − w[n]) + Θ(1)

We’ll look at the worst case where w[i] = 1 for all 1 ≤ i ≤ n. If w[i] = 1 then it is clear that
T (n,W) > 2T (n − 1,W − 1). This recurrence, which runs for min(n,W) steps, gives that
T (n,W) = Ω(2min(n,W)).

• We now show how to improve the exponential running time with dynamic programming: We
create a table T of size [1..n][1..W] in which to store our results of prior runs. Entry T [i][w]
will store the result of optknapsack(i, w).

First we initialize all entries in the table as 0 (in this problem we are looking for max values
when all item values are positive, so 0 is safe).

We modify the algorithm to check this table before launching into computing the solution.

optknapsack(k,w)

IF table[k][w] != 0 THEN

RETURN table[k][w]

IF w[k] <= w THEN

with = v[k] + optknapsack(k-1, w-w[k])

ELSE

with = 0

without = optknapsack(k-1,w)

table[k][w] = max{with, without}

RETURN max{with, without}

END

• Effectively, the table will prevent a subproblem optknapsack(k,w) to be computed more than
once.

• Analysis: This will run in O(n ·W) time as we fill each entry in the table at most once, and
there are nW spaces in the table.

2

