
!network connectivity

!quick find

!quick union

! improvements

! applications

1

Union-Find Algorithms

Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm.

• Define the problem.

• Find an algorithm to solve it.

• Fast enough?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method

Mathematical models and computational complexity

READ Chapter One of Algs in Java

2

3

!network connectivity

!quick find

!quick union

! improvements

! applications

Network connectivity

Basic abstractions

• set of objects

• union command: connect two objects

• find query: is there a path connecting one object to another?

4

Union-find applications involve manipulating objects of all types.

• Computers in a network.

• Web pages on the Internet.

• Transistors in a computer chip.

• Variable name aliases.

• Pixels in a digital photo.

• Metallic sites in a composite system.

When programming, convenient to name them 0 to N-1.

• Hide details not relevant to union-find.

• Integers allow quick access to object-related info.

• Could use symbol table to translate from object names

5

Objects

use as array index

0 7

2 3

8

4

6 5 91

stay tuned

6

Union-find abstractions

Simple model captures the essential nature of connectivity.

• Objects.

• Disjoint sets of objects.

• Find query: are objects 2 and 9 in the same set?

• Union command: merge sets containing 3 and 8.

0 1 { 2 3 9 } { 5 6 } 7 { 4 8 }

0 1 { 2 3 4 8 9 } { 5-6 } 7

0 1 { 2 3 9 } { 5-6 } 7 { 4-8 }

add a connection between
two grid points

subsets of connected grid points

are two grid points connected?

0 1 2 3 4 5 6 7 8 9 grid points

Connected components

Connected component: set of mutually connected vertices

Each union command reduces by 1 the number of components

7

 in out

 3 4 3 4

 4 9 4 9

 8 0 8 0

 2 3 2 3

 5 6 5 6

 2 9

 5 9 5 9

 7 3 7 3

0

2 3

8

4

6 5 91

7 union commands

3 = 10-7 components

7

8

Network connectivity: larger example

find(u, v) ?

u

v

9

Network connectivity: larger example

63 components

find(u, v) ?

true

10

Union-find abstractions

• Objects.

• Disjoint sets of objects.

• Find queries: are two objects in the same set?

• Union commands: replace sets containing two items by their union

Goal. Design efficient data structure for union-find.

• Find queries and union commands may be intermixed.

• Number of operations M can be huge.

• Number of objects N can be huge.

11

!network connectivity

!quick find

!quick union

! improvements

! applications

12

Quick-find [eager approach]

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 9 9 9 6 6 7 8 9
5 and 6 are connected
2, 3, 4, and 9 are connected

13

Quick-find [eager approach]

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected if they have the same id.

Find. Check if p and q have the same id.

Union. To merge components containing p and q,

change all entries with id[p] to id[q].

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 9 9 9 6 6 7 8 9
5 and 6 are connected
2, 3, 4, and 9 are connected

union of 3 and 6
2, 3, 4, 5, 6, and 9 are connected

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 6 6 6 6 6 7 8 6

id[3] = 9; id[6] = 6
3 and 6 not connected

problem: many values can change

14

Quick-find example

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 9 9 5 6 7 8 9

8-0 0 1 2 9 9 5 6 7 0 9

2-3 0 1 9 9 9 5 6 7 0 9

5-6 0 1 9 9 9 6 6 7 0 9

5-9 0 1 9 9 9 9 9 7 0 9

7-3 0 1 9 9 9 9 9 9 0 9

4-8 0 1 0 0 0 0 0 0 0 0

6-1 1 1 1 1 1 1 1 1 1 1

problem: many values can change

public class QuickFind

{

 private int[] id;

 public QuickFind(int N)

 {

 id = new int[N];

 for (int i = 0; i < N; i++)

 id[i] = i;

 }

 public boolean find(int p, int q)

 {

 return id[p] == id[q];

 }

 public void unite(int p, int q)

 {

 int pid = id[p];

 for (int i = 0; i < id.length; i++)

 if (id[i] == pid) id[i] = id[q];

 }

}

15

Quick-find: Java implementation

1 operation

N operations

set id of each
object to itself

16

Quick-find is too slow

Quick-find algorithm may take ~MN steps

to process M union commands on N objects

Rough standard (for now).

• 109 operations per second.

• 109 words of main memory.

• Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

• 1010 edges connecting 109 nodes.

• Quick-find takes more than 1019 operations.

• 300+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

• New computer may be 10x as fast.

• But, has 10x as much memory so problem may be 10x bigger.

• With quadratic algorithm, takes 10x as long!

a truism (roughly) since 1950 !

17

!network connectivity

!quick find

!quick union

! improvements

! applications

18

Quick-union [lazy approach]

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 9 4 9 6 6 7 8 9

4

7

3

5

0 1 9 6 8

2

3's root is 9; 5's root is 6

keep going until it doesn’t change

19

Quick-union [lazy approach]

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

Union. Set the id of q's root to the id of p's root.

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 9 4 9 6 6 7 8 9

4

7

3

5

0 1 9 6 8

2

3's root is 9; 5's root is 6
3 and 5 are not connected

 i 0 1 2 3 4 5 6 7 8 9

id[i] 0 1 9 4 9 6 9 7 8 9

4

7

3 5

0 1 9

6

8

2

only one value changes

p q

keep going until it doesn’t change

20

Quick-union example

3-4 0 1 2 4 4 5 6 7 8 9

4-9 0 1 2 4 9 5 6 7 8 9

8-0 0 1 2 4 9 5 6 7 0 9

2-3 0 1 9 4 9 5 6 7 0 9

5-6 0 1 9 4 9 6 6 7 0 9

5-9 0 1 9 4 9 6 9 7 0 9

7-3 0 1 9 4 9 6 9 9 0 9

4-8 0 1 9 4 9 6 9 9 0 0

6-1 1 1 9 4 9 6 9 9 0 0

problem: trees can get tall

21

Quick-union: Java implementation

time proportional
to depth of p and q

time proportional
to depth of p and q

time proportional
to depth of i

public class QuickUnion
{
 private int[] id;

 public QuickUnion(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 }

 private int root(int i)
 {
 while (i != id[i]) i = id[i];
 return i;

 }

 public boolean find(int p, int q)
 {
 return root(p) == root(q);
 }

 public void unite(int p, int q)
 {

 int i = root(p);
 int j = root(q);
 id[i] = j;
 }
}

22

Quick-union is also too slow

Quick-find defect.

• Union too expensive (N steps).

• Trees are flat, but too expensive to keep them flat.

Quick-union defect.

• Trees can get tall.

• Find too expensive (could be N steps)

• Need to do find to do union

algorithm union find

Quick-find N 1

Quick-union N* N worst case

* includes cost of find

23

!network connectivity

!quick find

!quick union

! improvements

! applications

24

Improvement 1: Weighting

Weighted quick-union.

• Modify quick-union to avoid tall trees.

• Keep track of size of each component.

• Balance by linking small tree below large one.

Ex. Union of 5 and 3.

• Quick union: link 9 to 6.

• Weighted quick union: link 6 to 9.

4

7

3

5

0 1 9 6 8

2

p

q

4 211 1 1size

25

Weighted quick-union example

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 5 3 3 3

no problem: trees stay flat

26

Weighted quick-union: Java implementation

Java implementation.

• Almost identical to quick-union.

• Maintain extra array sz[] to count number of elements

in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to

• merge smaller tree into larger tree

• update the sz[] array.

if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }

else sz[i] < sz[j] { id[j] = i; sz[i] += sz[j]; }

27

Weighted quick-union analysis

Analysis.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

• Fact: depth is at most lg N. [needs proof]

Stop at guaranteed acceptable performance? No, easy to improve further.

Data Structure Union Find

Quick-find N 1

Quick-union N * N

Weighted QU lg N * lg N

* includes cost of find

28

Path compression. Just after computing the root of i,

set the id of each examined node to root(i).

Improvement 2: Path compression

2

41110

2

54

7

8

1110

root(9)

0

1

0

3

6

9

9

78

136

5

Path compression.

• Standard implementation: add second loop to root() to set

the id of each examined node to the root.

• Simpler one-pass variant: make every other node in path

point to its grandparent.

In practice. No reason not to! Keeps tree almost completely flat.

29

Weighted quick-union with path compression

only one extra line of code !

public int root(int i)

{

 while (i != id[i])

 {

 id[i] = id[id[i]];

 i = id[i];

 }

 return i;

}

30

Weighted quick-union with path compression

3-4 0 1 2 3 3 5 6 7 8 9

4-9 0 1 2 3 3 5 6 7 8 3

8-0 8 1 2 3 3 5 6 7 8 3

2-3 8 1 3 3 3 5 6 7 8 3

5-6 8 1 3 3 3 5 5 7 8 3

5-9 8 1 3 3 3 3 5 7 8 3

7-3 8 1 3 3 3 3 5 3 8 3

4-8 8 1 3 3 3 3 5 3 3 3

6-1 8 3 3 3 3 3 3 3 3 3

no problem: trees stay VERY flat

31

WQUPC performance

Theorem. Starting from an empty data structure, any sequence

of M union and find operations on N objects takes O(N + M lg* N) time.

• Proof is very difficult.

• But the algorithm is still simple!

Linear algorithm?

• Cost within constant factor of reading in the data.

• In theory, WQUPC is not quite linear.

• In practice, WQUPC is linear.

Amazing fact:

• In theory, no linear linking strategy exists

because lg* N is a constant
in this universe

number of times needed to take
the lg of a number until reaching 1

N lg* N

1 0

2 1

4 2

16 3

65536 4

265536 5

32

Summary

Ex. Huge practical problem.

• 1010 edges connecting 109 nodes.

• WQUPC reduces time from 3,000 years to 1 minute.

• Supercomputer won't help much.

• Good algorithm makes solution possible.

Bottom line.

 WQUPC makes it possible to solve problems

 that could not otherwise be addressed

M union-find ops on a set of N objects

Algorithm Worst-case time

Quick-find M N

Quick-union M N

Weighted QU N + M log N

Path compression N + M log N

Weighted + path (M + N) lg* N

WQUPC on Java cell phone beats QF on supercomputer!

33

!network connectivity

!quick find

!quick union

! improvements

! applications

34

Union-find applications

! Network connectivity.

• Percolation.

• Image processing.

• Least common ancestor.

• Equivalence of finite state automata.

• Hinley-Milner polymorphic type inference.

• Kruskal's minimum spanning tree algorithm.

• Games (Go, Hex)

• Compiling equivalence statements in Fortran.

Percolation

A model for many physical systems

• N-by-N grid.

• Each square is vacant or occupied.

• Grid percolates if top and bottom are connected by vacant squares.

35

percolates does not percolate

model system vacant site occupied site percolates

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates

Percolation phase transition

Likelihood of percolation depends on site vacancy probability p

Experiments show a threshold p*

• p > p*: almost certainly percolates

• p < p*: almost certainly does not percolate

36

Q. What is the value of p* ?

p high: percolatesp low: does not percolate

 p*

37

• Initialize whole grid to be “not vacant”

• Implement “make site vacant” operation

that does union() with adjacent sites

• Make all sites on top and bottom rows vacant

• Make random sites vacant until find(top, bottom)

• Vacancy percentage estimates p*

UF solution to find percolation threshold

0 0 0 0 0 0 0 0

2 3 4 5 6 7 8 9

15 20 21

28 29 30 31 33

39 40 42 43 45

50 52 54 55 56 57

1 1 1 1 1 1 1 1

0 0 0 0

10 11 12 0

22 23 24 0

34 35 36 0

46 1 49

58 1

1 1 1 1 not vacant

vacant

top

bottom

14

14 14

14

32

32 1

1 11

1

1

16 16 16 16

38

Q. What is percolation threshold p* ?

A. about 0.592746 for large square lattices.

Q. Why is UF solution better than solution in IntroProgramming 2.4?

Percolation

percolation constant known
 only via simulation

percolates does not percolate

39

Hex

Hex. [Piet Hein 1942, John Nash 1948, Parker Brothers 1962]

• Two players alternate in picking a cell in a hex grid.

• Black: make a black path from upper left to lower right.

• White: make a white path from lower left to upper right.

Union-find application. Algorithm to detect when a player has won.

Reference: http://mathworld.wolfram.com/GameofHex.html

Subtext of today’s lecture (and this course)

Steps to developing an usable algorithm.

• Define the problem.

• Find an algorithm to solve it.

• Fast enough?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method

Mathematical models and computational complexity

READ Chapter One of Algs in Java

40

