The most fundamental graph problem is traversing the graph.

• There are two standard (and simple) ways of traversing all vertices/edges in a graph in a systematic way: BFS and DFS.

• Most fundamental algorithms on graphs (e.g. finding cycles, connected components) are applications of graph traversal.

• Like finding the way out of a maze (maze = graph). Need to be careful to not get stuck in the graph, so we need to mark vertices that we’ve encountered; and we need to make sure we don’t skip anything.

• Basic idea: over the course of the traversal a vertex progresses from undiscovered, to discovered, to completely-discovered:
 – undiscovered: initially (WHITE)
 – discovered: after it’s encountered, but before it’s completely explored (GRAY)
 – completely explored: the vertex after we visited all its incident edges (BLACK)

• We start with a single vertex and evaluate its outgoing edges:
 – If an edge goes to an undiscovered vertex, we mark it as discovered and add it to the list of discovered vertices.
 – If an edge goes to a completely explored vertex, we ignore it (we’ve already been there)
 – If an edge goes to an already discovered vertex, we ignore it (it’s on the list).

• Analysis: Each edge is visited once (for directed graphs), or twice (undirected graphs — once when exploring each endpoint) ⇒ $O(|V| + |E|)$

• Depending on how we store the list of discovered vertices we get BFS or DFS:
 – queue: explore oldest vertex first. The exploration propagates in layers form the starting vertex.
 – stack: explore newest vertex first. The exploration goes along a path, and backs up only when new unexplored vertices are not available.
Breadth-first search (BFS)

- We use a queue Q to hold all gray vertices—vertices we have seen but are still not done with.
- We remember from which vertex a given vertex v is colored gray – i.e. the node that discovered v first; this is called $\text{parent}[v]$.
- We also maintain $d[v]$, the length of the path from s to v. Initially $d[s] = 0$.

\[
\begin{align*}
&BFS(s) \\
&\quad \text{color}[s] = \text{gray} \\
&\quad d[s] = 0 \\
&\quad \text{ENQUEUE}(Q, s) \\
&\quad \text{WHILE } Q \text{ not empty DO} \\
&\quad \quad \text{DEQUEUE}(Q, u) \\
&\quad \quad \text{FOR each } v \in \text{adj}[u] \text{ DO} \\
&\quad \quad \quad \text{IF color}[v] = \text{white THEN} \\
&\quad \quad \quad \quad \text{color}[v] = \text{gray} \\
&\quad \quad \quad \quad d[v] = d[u] + 1 \\
&\quad \quad \quad \quad \text{parent}[v] = u \quad // (u,v) \text{ is a tree-edge} \\
&\quad \quad \quad \quad \text{ENQUEUE}(Q, v) \\
&\quad \quad \quad // \text{ELSE } v \text{ is not white, (u,v) is non-tree edge} \\
&\quad \quad \quad \text{color}[u] = \text{black}
\end{align*}
\]

- Example (for directed graph):

- If graph is not connected we start the traversal at all nodes until the entire graph is explored.

\[
\begin{align*}
&BFS(G) \\
&\quad \text{FOR each vertex } u \in V \text{ DO} \\
&\quad \quad \text{IF color}[u] = \text{white THEN BFS}(u)
\end{align*}
\]
Properties of BFS

- During BFS(v) each edge in G is classified as:
 - tree edge: an edge leading to an unmarked vertex
 - non-tree edge: an edge leading to a marked vertex.

- Each vertex, except the source vertex s, has a parent; these edges (v, parent[v]) define a tree, called the BFS-tree.

- **Lemma:** On a directed graph, BFS(s) reaches all vertices reachable from s. On an undirected graph, BFS(s) visits all vertices in the connected component (CC) of s, and the BFS-tree obtained is a spanning tree of CC(s).

 Proof idea: Assume by contradiction that there is a vertex v in CC(u) that is not reached by BFS(u). Since u, v are in same CC, there must exist a path v₀ = u, v₁, v₂, ..., vₖ, v connecting u to v. Let vᵢ be the last vertex on this path that is reached by BFS(u) (vᵢ could be u). When exploring vᵢ, BFS must have explored edge (vᵢ, vᵢ₊₁),..., leading eventually to v. Contradiction.

- **Lemma:** BFS(s) runs in $O(|V_c| + |E_c|)$, where V_c, E_c are the number of vertices and edges in CC(s). When run on the entire graph, BFS(G) runs in $O(|V| + |E|)$ time. Put differently, BFS runs in linear time in the size of the graph.

 Proof: It explores every vertex once. Once a vertex is marked, it’s not explored again. It traverses each edge twice. Overall, $O(|V| + |E|)$.

- **Lemma:** Let x be a vertex reached in BFS(s). Its distance $d[x]$ represents the the shortest path from s to x in G.

 Proof idea: All vertices v which are one edge away from s are discovered when exploring s and are set with $d[v] = 1$. Similarly all vertices that are one edge away from vertices at distance 1, are explored and their distance set to $d = 2$. And so on.

- **Lemma:** For undirected graphs, for any non-tree edge (x, y) in BFS(v), the level of x and y differ by at most one.

 Proof idea: Observe that, at any point in time, the vertices in the queue have distances that differ by at most 1. Let’s say x comes out first from the queue; at this time y must be already marked (because otherwise (x, y) would be a tree edge). Furthermore y has to be in the queue, because, if it wasn’t, it means it was already deleted from the queue and we assumed x was first. So y has to be in the queue, and we have $|d(y) − d(x)| ≤ 1$ by above observation.
Depth-first search (DFS)

- Use stack instead of queue to hold discovered vertices:
 - We go “as deep as possible”, go back until we find first unexplored adjacent vertex
- Useful to compute “start time” and “finish time” of vertex \(u \)
 - Start time \(d[u] \): time when a vertex is first visited.
 - Finish time \(f[u] \): time when all adjacent vertices of \(u \) have been visited.
- We can write DFS iteratively using the same algorithm as for BFS but with a STACK instead of a QUEUE, or, we can write a recursive DFS procedure

\[
\text{DFS}(u) \\
\text{color}[u] = \text{gray} \\
d[u] = \text{time} \\
time = \text{time} + 1 \\
\text{FOR each } v \in \text{adj}[u] \text{ DO} \\
\quad \text{IF color}[v] = \text{white THEN} \\
\quad \quad \text{parent}[v] = u \\
\quad \quad \text{DFS}(v) \\
\text{color}[u] = \text{black} \\
f[u] = \text{time} \\
time = \text{time} + 1
\]

- Example:

\[
\begin{align*}
\text{a} &\quad \text{d} &\quad \text{f} \\
\text{b} &\quad \text{e} &\quad \text{g}
\end{align*}
\]

DFS Properties:

- DFS(u) reaches all vertices reachable from \(u \). On undirected graphs, DFS(u) visits all vertices in CC(u), and the DFS-tree obtained is a spanning tree of \(G \).
- Analysis: DFS(s) runs in \(O(|V_c| + |E_c|) \), where \(V_c, E_c \) are the number of vertices and edges in CC(s) (reachable from \(s \), for directed graphs). When run on the entire graph, DFS(G) runs in \(O(|V| + |E|) \) time. Put differently, DFS runs in linear time in the size of the graph.
- As with BFS (\(v, \text{parent}[v] \)) forms a tree, the DFS-tree
- Nesting of descendants: If \(u \) is descendent of \(v \) in DFS-tree then \(d[v] < d[u] < f[u] < f[v] \).