Divide-and-conquer

Divide-and-Conquer (Input: Problem P)

To Solve P:

1. Divide P into smaller problems $P_{1}, P_{2}, P_{3} \ldots . . P_{k}$.
2. Conquer by solving the (smaller) subproblems recursively.
3. Combine solutions to $P_{1}, P_{2}, \ldots P_{k}$ into solution for P.

1 MergeSort

- Can we design better than n^{2} (quadratic) sorting algorithm?
- We will do so using one of the most powerful algorithm design techniques.
- Using divide-and-conquer, we can obtain a mergesort algorithm.
- Divide: Divide n elements into two subsequences of $n / 2$ elements each.
- Conquer: Sort the two subsequences recursively.
- Combine: Merge the two sorted subsequences.
- Assume we have procedure $\operatorname{Merge}(A, p, q, r)$ which merges sorted $\mathrm{A}[\mathrm{p} . . \mathrm{q}]$ with sorted $\mathrm{A}[\mathrm{q}+1 \ldots . \mathrm{r}]$
- We can sort $\mathrm{A}[\mathrm{p} . . \mathrm{r}]$ as follows (initially $\mathrm{p}=1$ and $\mathrm{r}=\mathrm{n}$):

```
Merge Sort(A,p,r)
    If p<r then
        q=\(p+r)/2\rfloor
        MergeSort(A,p,q)
        MergeSort(A,q+1,r)
        Merge(A,p,q,r)
```

- How does $\operatorname{Merge}(A, p, q, r)$ work?
- Imagine merging two sorted piles of cards. The basic idea is to choose the smallest of the two top cards and put it into the output pile.
- Running time: $(r-p)$
- Implementation is a bit messier..

1.1 Mergesort Correctness

- Prove that Merge() is correct (what is the invariant?)
- Assuming that Merge is correct, prove that Mergesort() is correct.
- Induction on n

1.2 Mergesort Analysis

- To simplify things, let us assume that n is a power of 2 , i.e $n=2^{k}$ for some k .
- Running time of a recursive algorithm can be analyzed using a recurrence equation/relation. Each "divide" step yields two sub-problems of size $n / 2$.

$$
\begin{aligned}
T(n) & \leq c_{1}+T(n / 2)+T(n / 2)+c_{2} n \\
& \leq 2 T(n / 2)+\left(c_{1}+c_{2} n\right)
\end{aligned}
$$

- Next class we will prove that $T(n) \leq c n \log _{2} n$. Intuitively, we can see why the recurrence has solution $n \log _{2} n$ by looking at the recursion tree: the total number of levels in the recursion tree is $\log _{2} n+1$ and each level costs linear time.
- Note: If $n \neq 2^{k}$ the recurrence gets more complicated, but the solution is the same. (We will often assume $n=2^{k}$ to avoid complicated cases).

2 Matrix Multiplication

- Let X and Y be $n \times n$ matrices

$$
X=\left\{\begin{array}{llll}
x_{11} & x_{12} & \cdots & x_{1 n} \\
x_{21} & x_{22} & \cdots & x_{1 n} \\
x_{31} & x_{32} & \cdots & x_{1 n} \\
\cdots & \cdots & \cdots & \cdots \\
x_{n 1} & x_{n 2} & \cdots & x_{n n}
\end{array}\right\}
$$

- We want to compute $Z=X \cdot Y$

$$
-z_{i j}=\sum_{k=1}^{n} X_{i k} \cdot Y_{k j}
$$

- Naive method uses $\Rightarrow n^{2} \cdot n=\Theta\left(n^{3}\right)$ operations
- Divide-and-conquer solution:

$$
Z=\left\{\begin{array}{ll}
A & B \\
C & D
\end{array}\right\} \cdot\left\{\begin{array}{ll}
E & F \\
G & H
\end{array}\right\}=\left\{\begin{array}{ll}
(A \cdot E+B \cdot G) & (A \cdot F+B \cdot H) \\
(C \cdot E+D \cdot G) & (C \cdot F+D \cdot H)
\end{array}\right\}
$$

- The above naturally leads to divide-and-conquer solution:
* Divide X and Y into 8 sub-matrices A, B, C, and D.
* Do 8 matrix multiplications recursively.
* Compute Z by combining results (doing 4 matrix additions).
- Lets assume $n=2^{c}$ for some constant c and let A, B, C and D be $n / 2 \times n / 2$ matrices
* Running time of algorithm is $T(n)=8 T(n / 2)+\Theta\left(n^{2}\right) \Rightarrow T(n)=\Theta\left(n^{3}\right)$
- But we already discussed a (simpler/naive) $O\left(n^{3}\right)$ algorithm! Can we do better?

2.1 Strassen's Algorithm

- Strassen observed the following:
$Z=\left\{\begin{array}{ll}A & B \\ C & D\end{array}\right\} \cdot\left\{\begin{array}{cc}E & F \\ G & H\end{array}\right\}=\left\{\begin{array}{cc}\left(S_{1}+S_{2}-S_{4}+S_{6}\right) & \left(S_{4}+S_{5}\right) \\ \left(S_{6}+S_{7}\right) & \left(S_{2}+S_{3}+S_{5}-S_{7}\right)\end{array}\right\}$
where

$$
\begin{aligned}
& S_{1}=(B-D) \cdot(G+H) \\
& S_{2}=(A+D) \cdot(E+H) \\
& S_{3}=(A-C) \cdot(E+F) \\
& S_{4}=(A+B) \cdot H \\
& S_{5}=A \cdot(F-H) \\
& S_{6}=D \cdot(G-E) \\
& S_{7}=(C+D) \cdot E
\end{aligned}
$$

- Lets test that $S_{6}+S_{7}$ is really $C \cdot E+D \cdot G$

$$
\begin{aligned}
S_{6}+S_{7} & =D \cdot(G-E)+(C+D) \cdot E \\
& =D G-D E+C E+D E \\
& =D G+C E
\end{aligned}
$$

- This leads to a divide-and-conquer algorithm with running time $T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)$
- We only need to perform 7 multiplications recursively.
- Division/Combination can still be performed in $\Theta\left(n^{2}\right)$ time.
- Lets solve the recurrence using the iteration method

$$
\begin{aligned}
T(n) & =7 T(n / 2)+n^{2} \\
& =n^{2}+7\left(7 T\left(\frac{n}{2^{2}}\right)+\left(\frac{n}{2}\right)^{2}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+7^{2} T\left(\frac{n}{2^{2}}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+7^{2}\left(7 T\left(\frac{n}{2^{3}}\right)+\left(\frac{n}{2^{2}}\right)^{2}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+\left(\frac{7}{2^{2}}\right)^{2} \cdot n^{2}+7^{3} T\left(\frac{n}{2^{3}}\right) \\
& =n^{2}+\left(\frac{7}{2^{2}}\right) n^{2}+\left(\frac{7}{2^{2}}\right)^{2} n^{2}+\left(\frac{7}{2^{2}}\right)^{3} n^{2} \ldots+\left(\frac{7}{2^{2}}\right)^{\log n-1} n^{2}+7^{\log n} \\
& =\sum_{i=0}^{\log n-1}\left(\frac{7}{2^{2}}\right)^{i} n^{2}+7^{\log n} \\
& =n^{2} \cdot \Theta\left(\left(\frac{7}{2^{2}}\right)^{\log n-1}\right)+7^{\log n} \\
& =n^{2} \cdot \Theta\left(\frac{7^{\log n}}{\left(2^{2}\right)^{\log n}}\right)+7^{\log n} \\
& =n^{2} \cdot \Theta\left(\frac{7^{\log n}}{n^{2}}\right)+7^{\log n} \\
& =\Theta\left(7^{\log n}\right)
\end{aligned}
$$

- Now we have the following:

$$
\begin{aligned}
7^{\log n} & =7^{\frac{\log _{7} n}{\log _{7} 2}} \\
& =\left(7^{\log _{7} n}\right)^{\left(1 / \log _{7} 2\right)} \\
& =n^{\left(1 / \log _{7} 2\right)} \\
& =n^{\frac{\log _{2} 7}{\log _{2} 2}} \\
& =n^{\log 7}
\end{aligned}
$$

- Or in general: $a^{\log _{k} n}=n^{\log _{k} a}$

So the solution is $T(n)=\Theta\left(n^{\log 7}\right)=\Theta\left(n^{2.81 \ldots}\right)$

- Note:
- We are 'hiding' a much bigger constant in $\Theta()$ than before.
- Currently best known bound is $O\left(n^{2.376 . .}\right)$ (another method).
- Lower bound is (trivially) $\Omega\left(n^{2}\right)$.

