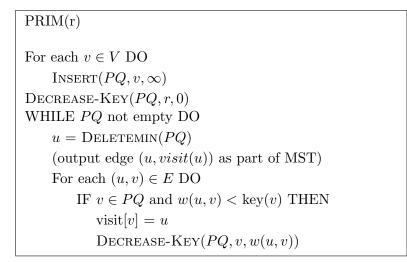
Minimum Spanning Trees

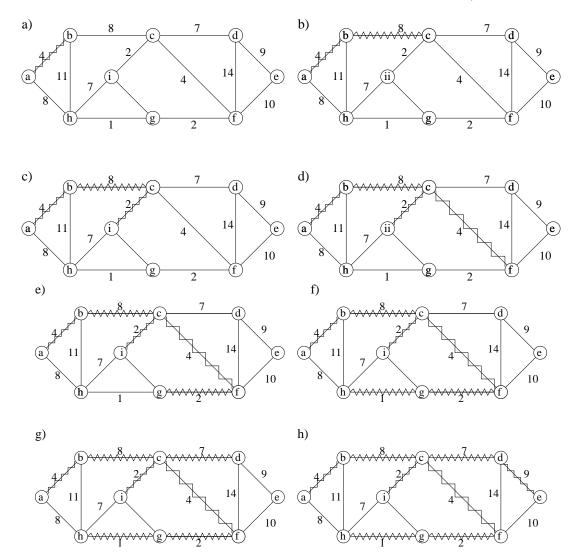
- Problem: Given connected, undirected graph G = (V, E) where each edge (u, v) has weight w(u, v). Find acyclic set $T \subseteq E$ connecting all vertices in V with minimal weight $w(T) = \sum_{(u,v)\in T} w(u,v)$.
- An acyclic set connecting all vertices is called a *spanning tree*. We want to find a spanning tree of *minimal weight*. We use *minimum spanning tree* as short for *minimum weight spanning tree*).
- MST problem has many applications
 - For example, think about connecting cities with minimal amount of wire or roads (cities are vertices, weight of edges are distances between city pairs).
- Example:

1 PRIM's algorithm

- Greedy algorithm for computing MST:
 - * Start with spanning tree containing arbitrary vertex r and no edges
 - * Grow spanning tree by repeatedly adding minimal weight edge connecting vertex in current spanning tree with a vertex not in the tree
- Implementation:
 - * To find minimal edge connected to current tree we maintain a priority queue on vertices not in the tree. The key/priority of a vertex is the weight of minimal weight edge connecting it to the tree. (We maintain pointer from adjacency list entry of v to v in the priority queue).
 - * For each node u maintain visit(u) ((u, visit(u)) is the cuurently best edge connecting it to the tree.)



- On the example graph, the greedy algorithm would work as follows (starting at vertex a):



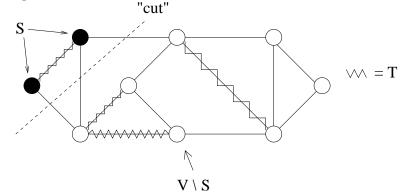
- Analysis:
 - * While loop runs |V| times \Rightarrow we perform |V| DELETEMIN's
 - * We perform at most one DECREASE-KEY for each of the |E| edges ∜

$$O((|V| + |E|) \log |V|) = O(|E| \log |V|)$$
 running time.

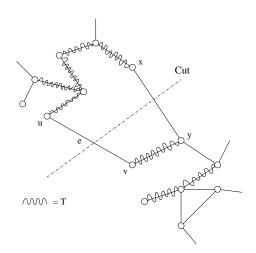
- Correctness:
 - * When designing a greedy algorithm the hard part is to prove that it works correctly.
 - * We will prove a Theorem that allows us to prove the correctness of a general class of greedy MST algorithms: Some definitions

- · A cut $(S, V \setminus S)$ is a partition of V into sets S and $V \setminus S$
- · A edge (u, v) crosses a cut S if $u \in S$ and $v \in V \setminus S$ or $v \in S$ and $u \in V \setminus S$
- · A cut S respects a set $T \subseteq E$ if no edge in T crosses the cut

Example: Cut S respects T



- Theorem: If G = (V, E) is a graph such that $T \subseteq E$ is subset of some MST of G, and S is a cut respecting T then there is a MST for G containing T and the minimum weight edge e = (u, v) crossing S.
- Note: Correctness of Prim's algorithm follows from the Theorem by induction—cut consist of current spanning tree.
- Proof:
 - * Let T^* be MST containing T
 - * If $e \in T^*$ we are done
 - * If $e \notin T^*$:
 - There must be (at least) one other edge $(x, y) \in T^*$ crossing the cut S such that there is a unique path from u to v in T^* (T^* is spanning tree)



- $\cdot\,$ This path together with e forms a cycle
- · If we remove edge (x, y) from T^* and add e instead, we still have spanning tree
- · New spanning tree must have same weight as T^* since $w(u, v) \leq w(x, y)$ \Downarrow
 - There is a MST containing T and e.
- The Theorem allows us to describe a very abstract greedy algorithm for MST:

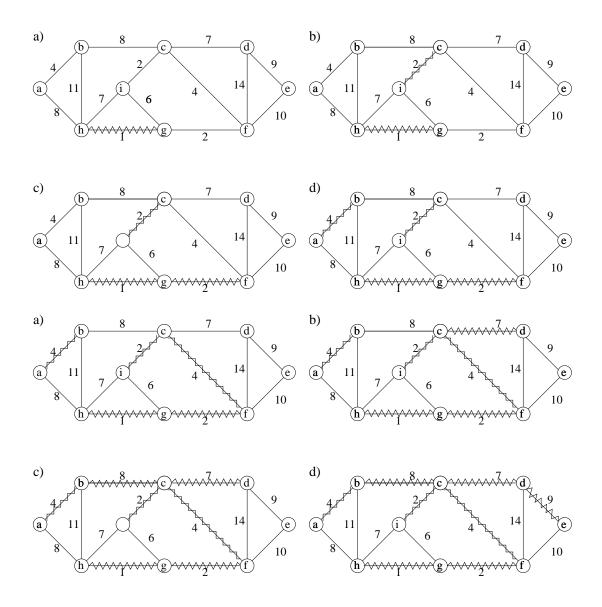
 $T = \emptyset$ While $|T| \le |V| - 1$ DO Find cut S respecting T Find minimal edge e crossing S $T = T \cup \{e\}$

* Prim's algorithm follows this abstract algorithm.

* Kruskal's algorithm is another implementation of the abstract algorithm.

2 Kruskal's Algorithm

- Kruskal's algorithm is another implementation of the abstract algorithm.
- Idea in Kruskal's algorithm:
 - * Start with |V| trees (one for each vertex)
 - * Consider edges E in increasing order; add edge if it connects two trees
- Example:



- Implementation:

We need (Union-Find) data structure that supports:

- * Make-set(v): Create set consisting of v
- * UNION-SET(u, v): Unite set containing u and set containing v
- * FIND-SET(u): Return unique representative for set containing u

KRUSKAL

 $T = \emptyset$ FOR each vertex $v \in V$ MAKE-SET(v)Sort edges of E in increasing order by weight FOR each edge $e = (u, v) \in E$ in order DO IF FIND-SET $(u) \neq$ FIND-SET(v) THEN $T = T \cup \{e\}$ UNION-SET(u, v)

- Analysis:

- * We use $O(|E| \log |E|)$ time to sort edges and we perform |V| MAKE-SET, |V| 1 UNION-SET, and 2|E| FIND-SET operations.
- * We will discuss a simple solution to the Union-Find problem such that MAKE-SET and FIND-SET take O(1) time and UNION-SET takes $O(\log V)$ time amortized. \downarrow

Kruskal's algorithm runs in time $O(|E|\log|E|+|V|\log|V|) = O((|E|+|V|)\log|E|) = O(|E|\log|V|)$ like Prim's algorithm.

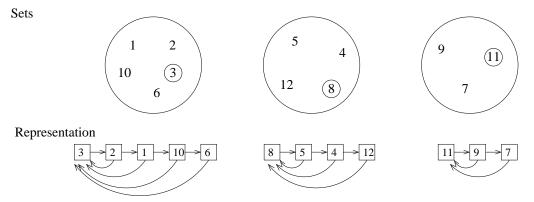
- Correctness
 - * follows from Theorem above: If minimal edge connects two trees then there exists a cut respecting the current set of edges (cut consisting of vertices in one of the trees)

3 Union-Find

- The Union-Find problem: Maintain a set system under:

- * Make-set(v): Create set consisting of v
- * UNION-SET(u, v): Unite set containing u and set containing v
- * FIND-SET(u): Return unique representative for set containing u
- Simple solution:
 - * Maintain elements in same set as a linked list with each element having a pointer to the first element in the list (unique representative)

Example:



- * MAKE-SET(v): Make a list with one element $\Rightarrow O(1)$ time
- * FIND-SET(u): Follow pointer and return unique representative $\Rightarrow O(1)$ time
- * UNION-SET(u, v): Link first element in list with unique representative FIND-SET(u) after last element in list with unique representative FIND-SET $(v) \Rightarrow O(|V|)$ time (as we have to update all unique representative pointers in list containing u)
- With this simple solution the |V| 1 UNION-SET operations in Kruskal's algorithm may take $O(|V|^2)$ time.
- We can improve the performance of UNION-SET with a very simple modification: Always link the smaller list after the longer list (\Rightarrow update the pointers of the smaller list)
 - * One UNION-SET operation can still take O(|V|) time, but the |V| 1 UNION-SET operations takes $O(|V| \log |V|)$ time altogether (one UNION-SET takes $O(\log |V|)$ time amortized):
 - $\cdot\,$ Total time is proportional to number of unique representative pointer changes
 - · Consider element u:

After pointer for u is updated, u belongs to a list of size at least double the size of the list it was in before

₩

After k pointer changes, u is in list of size at least 2^k

Pointer can be changed at most $\log |V|$ times.

– With improvement, Kruskal's algorithm runs in time $O(|E| \log |E| + |V| \log |V|) = O((|E| + |V|) \log |E|) = O(|E| \log |V|)$ like Prim's algorithm.