1 Amortized Analysis

- After discussing algorithm design techniques (Dynamic programming and Greedy algorithms) we now return to data structures and discuss a new analysis method—*Amortized analysis*.

- Until now we have seen a number of data structures and analyzed the worst-case running time of each individual operation.

- Sometimes the cost of an operation vary widely, so that that worst-case running time is not really a good cost measure.

- Similarly, sometimes the cost of every single operation is not so important
 - the total cost of a series of operations are more important (e.g when using priority queue to sort)

\[\Downarrow \]

- We want to analyze running time of one single operation averaged over a sequence of operations
 - Note: We are not interested in an average case analyses that depends on some input distribution or random choices made by algorithm.

- To capture this we define *amortized time*.

 If any sequence of \(n \) operations on a data structure takes \(\leq T(n) \) time, the amortized time per operation is \(T(n)/n \)

 - Equivalently, if the amortized time of one operation is \(U(n) \), then any sequence of \(n \) operations takes \(n \cdot U(n) \) time.

- Again keep in mind: “Average” is over a sequence of operations for *any* sequence
 - *not* average for some input distribution (as in quick-sort)
 - *not* average over random choices made by algorithm (as in skip-lists)
1.1 Example: Stack with MULTIPOP

- As we know, a normal stack is a data structure with operations
 - **PUSH**: Insert new element at top of stack
 - **POP**: Delete top element from stack

- A stack can easily be implemented (using linked list) such that **PUSH** and **POP** takes \(O(1)\) time.

- Consider the addition of another operation:
 - **MULTIPOP**\((k)\): POP \(k\) elements off the stack.

- Analysis of a sequence of \(n\) operations:
 - One **MULTIPOP** can take \(O(n)\) time \(⇒ O(n^2)\) running time.
 - Amortized running time of each operation is \(O(1)\) \(⇒ O(n)\) running time.
 - Each element can be popped at most once each time it is pushed
 - Number of **POP** operations (including the one done by **MULTIPOP**) is bounded by \(n\)
 - Total cost of \(n\) operations is \(O(n)\)
 - Amortized cost of one operation is \(O(n)/n = O(1)\).

1.2 Example: Binary counter

- Consider the following (somewhat artificial) data structure problem: Maintain a binary counter under \(n\) **INCREMENT** operations (assuming that the counter value is initially 0)
 - Data structure consists of an (infinite) array \(A\) of bits such that \(A[i]\) is either 0 or 1.
 - \(A[0]\) is lowest order bit, so value of counter is \(x = \sum_{i \geq 0} A[i] \cdot 2^i\)
 - **INCREMENT** operation:

 \[
 \begin{align*}
 A[0] &= A[0] + 1 \\
 i &= 0 \\
 \text{WHILE } A[i] &= 2 \\
 &\quad A[i + 1] = A[i + 1] + 1 \\
 &\quad A[i] = 0 \\
 &\quad i = i + 1 \\
 \text{OD}
 \end{align*}
 \]

- The running time of **INCREMENT** is the number of iterations of while loop +1.

Example (Note: Bit furthest to the right is \(A[0]\)):

\[
\begin{align*}
\text{INCREMENT from } x = 47 & \text{ to } x = 48 \text{ has cost 5} \\
\text{INCREMENT from } x = 48 & \text{ to } x = 49 \text{ has cost 1}
\end{align*}
\]
• Analysis of a sequence of n INCREMENTS

 – Number of bits in representation of n is $\log n \Rightarrow n$ operations cost $O(n \log n)$.

 – Amortized running time of INCREMENT is $O(1) \Rightarrow O(n)$ running time:
 * $A[0]$ flips on each increment (n times in total)
 * $A[1]$ flips on every second increment ($n/2$ times in total)
 * $A[2]$ flips on every fourth increment ($n/4$ times in total)

 \vdots

 * $A[i]$ flips on every 2^ith increment ($n/2^i$ times in total)

 \[\text{Total running time: } T(n) = \sum_{i=0}^{\log n} \frac{n}{2^i} \leq n \cdot \sum_{i=0}^{\log n} \left(\frac{1}{2}\right)^i = O(n) \]

2 Potential Method

• In the two previous examples we basically just did a careful analysis to get $O(n)$ bounds leading to $O(1)$ amortized bounds.

 – book calls this aggregate analysis.

• In aggregate analysis, all operations have the same amortized cost (total cost divided by n)

 – other and more sophisticated amortized analysis methods allow different operations to have different amortized costs.

• Potential method:

 – Idea is to overcharge some operations and store the overcharge as credits/potential which can then help pay for later operations (making them cheaper).

 – Leads to equivalent but slightly different definition of amortized time.

• Consider performing n operations on an initial data structure D_0

 – D_i is data structure after ith operation, $i = 1, 2, \ldots, n$.

 – c_i is actual cost (time) of ith operation, $i = 1, 2, \ldots, n$.

 \[\Downarrow \]

 \[\text{Total cost of } n \text{ operations is } \sum_{i=0}^{n} c_k. \]

• We define potential function mapping D_i to R. ($\Phi : D_i \rightarrow R$)

 – $\Phi(D_i)$ is potential associated with D_i

• We define amortized cost \tilde{c}_i of ith operation as $\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$

 – \tilde{c}_i is sum of real cost and increase in potential

 \[\Downarrow \]

 – If potential decreases the amortized cost is lower than actual cost (we use saved potential/credits)

 – If potential increases the amortized cost is larger than actual cost (we overcharge operation to save potential/credits).
Key is that, as previously, we can bound total cost of all the n operations by the total amortized cost of all n operations:

$$\sum_{i=1}^{n} c_k = \sum_{i=1}^{n} (\tilde{c}_i + \Phi(D_{i-1}) - \Phi(D_i))$$

$$= \Phi(D_0) - \Phi(D_n) + \sum_{i=1}^{n} \tilde{c}_i$$

$$\downarrow$$

$$\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i$$ if $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$ for all i (or even if just $\Phi(D_n) \geq \Phi(D_0)$)

Note: Amortized time definition consistent with earlier definition $\frac{1}{n} \sum c_i = \frac{1}{n} \sum \tilde{c}_i$. \tilde{c}_i equal for all $i \Rightarrow \tilde{c}_i = \frac{1}{n} \sum c_i$

2.1 Example: Stack with multipop

- Define $\Phi(D_i)$ to be the size of stack D_i ⇒ $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$

- Amortized costs:

 - **Push:**
 $$\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $$= 1 + 1$$
 $$= 2$$
 $$= O(1).$$

 - **Pop:**
 $$\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $$= 1 + (-1)$$
 $$= 0$$
 $$= O(1).$$

 - **Multipop(k):**
 $$\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$
 $$= k + (-k)$$
 $$= 0$$
 $$= O(1).$$

- Total cost of n operations: $\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i = O(n)$.

2.2 Example: Binary counter

- Define $\Phi(D_i) = \sum_{i \geq 0} A[i]$ ⇒ $\Phi(D_0) = 0$ and $\Phi(D_i) \geq 0$

 - $\Phi(D_i)$ is the number of ones in counter.

- Amortized cost of ith operation: $\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$

 - Consider the case where first k positions in A are 1 $A = < 0, 0, \ldots, 1, 1, 1, 1, \ldots, 1 >$

 - In this case $c_i = k + 1$

 - $\Phi(D_i) - \Phi(D_{i-1})$ is $-k + 1$ since the first k positions of A are 0 after the increment and the $k + 1$th position is changed to 1 (all other positions are unchanged)

 $$\downarrow$$

 $$\tilde{c}_i = k + 1 - k + 1 = 2 = O(1)$$

- Total cost of n increments: $\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i = O(n)$.

2.3 Notes on amortized cost

- Amortized cost depends on choice of Φ
- Different operations can have different amortized costs.
- Often we think about potential/credits as being distributed on certain parts of data structure.

In multipop example:
- Every element holds one credit.
- **PUSH**: Pay for operation (cost 1) and for placing one credit on new element (cost 1).
- **POP**: Use credit of removed element to pay for the operation.
- **MULTIPOP**: Use credits on removed elements to pay for the operation.

In counter example:
- Every 1 in A holds one credit.
- Change from $1 \rightarrow 0$ payed using credit.
- Change from $0 \rightarrow 1$ payed by **INCREMENT**; pay one credit to do the flip and place one credit on new 1.

\[\text{INCREMENT cost } O(1) \text{ amortized (at most one } 0 \rightarrow 1 \text{ change}).\]

- Book calls this the *accounting method*
 - Note: Credits only used for analysis and is not part of data structure
- Hard part of amortized analysis is often to come up with potential function Φ
 - Some people prefer using potential function (*potential method*), some prefer thinking about placing credits on data structure (*Accounting method*).
 - Accounting method often good for relatively easy examples.

- Amortized analysis defined in late ’80-ies \Rightarrow great progress (new structures!)
- Next time we will discuss an elegant “self-adjusting” search tree data structure with amortized $O(\log n)$ bonds for all operations (*splay trees*).