Amortized Analysis

 $(CLRS \ 17.1-17.3)$

1 Amortized Analysis

- After discussing algorithm design techniques (Dynamic programming and Greedy algorithms) we now return to data structures and discuss a new analysis method—*Amortized analysis*.
- Until now we have seen a number of data structures and analyzed the worst-case running time of each individual operation.
- Sometimes the cost of an operation vary widely, so that that worst-case running time is not really a good cost measure.
- Similarly, sometimes the cost of every single operation is not so important
 - the total cost of a series of operations are more important (e.g when using priority queue to sort)

∜

- We want to analyze running time of one single operation averaged over a sequence of operations
 - Note: We are not interested in an average case analyses that depends on some input distribution or random choices made by algorithm.
- To capture this we define *amortized time*.

If any sequence of n operations on a data structure takes $\leq T(n)$ time, the amortized time per operation is T(n)/n

- Equivalently, if the amortized time of one operation is U(n), then any sequence of n operations takes $n \cdot U(n)$ time.
- Again keep in mind: "Average" is over a sequence of operations for any sequence
 - not average for some input distribution (as in quick-sort)
 - not average over random choices made by algorithm (as in skip-lists)

1.1 Example: Stack with MULTIPOP

- As we know, a normal stack is a data structure with operations
 - PUSH: Insert new element at top of stack
 - POP: Delete top element from stack
- A stack can easily be implemented (using linked list) such that PUSH and POP takes O(1) time.
- Consider the addition of another operation:
 - MULTIPOP(k): POP k elements off the stack.
- Analysis of a sequence of *n* operations:
 - One MULTIPOP can take O(n) time $\Rightarrow O(n^2)$ running time.
 - Amortized running time of each operation is $O(1) \Rightarrow O(n)$ running time.
 - * Each element can be popped at most once each time it is pushed
 - · Number of POP operations (including the one done by MULTIPOP) is bounded by n
 - · Total cost of n operations is O(n)
 - Amortized cost of one operation is O(n)/n = O(1).

1.2 Example: Binary counter

- Consider the following (somewhat artificial) data structure problem: Maintain a binary counter under n INCREMENT operations (assuming that the counter value is initially 0)
 - Data structure consists of an (infinite) array A of bits such that A[i] is either 0 or 1.
 - -A[0] is lowest order bit, so value of counter is $x = \sum_{i \ge 0} A[i] \cdot 2^i$
 - INCREMENT operation:

A[0] = A[0] + 1 i = 0WHILE A[i] = 2 DO A[i+1] = A[i+1] + 1 A[i] = 0 i = i + 1OD

• The running time of INCREMENT is the number of iterations of while loop +1. Example (Note: Bit furthest to the right is A[0]):

 $\begin{aligned} x &= 47 \Rightarrow A = < 0, \dots, 0, 1, 0, 1, 1, 1, 1 > \\ x &= 48 \Rightarrow A = < 0, \dots, 0, 1, 1, 0, 0, 0, 0 > \\ x &= 49 \Rightarrow A = < 0, \dots, 0, 1, 1, 0, 0, 0, 1 > \end{aligned}$

INCREMENT from x = 47 to x = 48 has cost 5 INCREMENT from x = 48 to x = 49 has cost 1

- Analysis of a sequence of n INCREMENTS
 - Number of bits in representation of n is $\log n \Rightarrow n$ operations cost $O(n \log n)$.
 - Amortized running time of INCREMENT is $O(1) \Rightarrow O(n)$ running time:
 - * A[0] flips on each increment (n times in total)
 - * A[1] flips on every second increment (n/2 times in total)
 - * A[2] flips on every fourth increment (n/4 times in total)
 - * A[i] flips on every 2^i th increment $(n/2^i$ times in total) \Downarrow Total running time: $T(n) = \sum_{i=0}^{\log n} \frac{n}{n_i}$

btal running time:
$$T(n) = \sum_{i=0}^{\log n} \frac{n}{2^i}$$

 $\leq n \cdot \sum_{i=0}^{\log n} (\frac{1}{2})^i$
 $= O(n)$

2 Potential Method

- In the two previous examples we basically just did a careful analysis to get O(n) bounds leading to O(1) amortized bounds.
 - book calls this aggregate analysis.
- In aggregate analysis, all operations have the same amortized cost (total cost divided by n)
 - other and more sophisticated amortized analysis methods allow different operations to have different amortized costs.
- Potential method:
 - Idea is to overcharge some operations and store the overcharge as credits/potential which can then help pay for later operations (making them cheaper).
 - Leads to equivalent but slightly different definition of amortized time.
- Consider performing n operations on an initial data structure D_0
 - D_i is data structure after *i*th operation, i = 1, 2, ..., n.
 - $c_i \text{ is actual cost (time) of } i\text{th operation, } i = 1, 2, ..., n.$ ↓
 - Total cost of *n* operations is $\sum_{i=0}^{n} c_k$.
- We define *potential function* mapping D_i to R. $(\Phi: D_i \to R)$
 - $-\Phi(D_i)$ is potential associated with D_i
- We define amortized cost \tilde{c}_i of *i*th operation as $\tilde{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$
 - $-\tilde{c}_i$ is sum of real cost and *increase* in potential \downarrow
 - If potential decreases the amortized cost is lower than actual cost (we use saved potential/credits)
 - If potential increases the amortized cost is larger than actual cost (we overcharge operation to save potential/credits).

• Key is that, as previously, we can bound total cost of all the n operations by the total amortized cost of all n operations:

$$\sum_{i=1}^{n} c_k = \sum_{i=1}^{n} (\tilde{c}_i + \Phi(D_{i-1}) - \Phi(D_i))$$

= $\Phi(D_0) - \Phi(D_n) + \sum_{i=1}^{n} \tilde{c}_i$
$$\downarrow$$

$$\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i \text{ if } \Phi(D_0) = 0 \text{ and } \Phi(D_i) \geq 0 \text{ for all } i \text{ (or even if just } \Phi(D_n) \geq \Phi(D_0))$$

Note: Amortized time definition consistent with earlier definition $\frac{1}{n} \sum c_i = \frac{1}{n} \sum \tilde{c}_i. \tilde{c}_i$
equal for all $i \Rightarrow \tilde{c}_i = \frac{1}{n} \sum c_i$

2.1 Example: Stack with multipop

- Define $\Phi(D_i)$ to be the size of stack $D_i \Rightarrow \Phi(D_0) = 0$ and $\Phi(D_i) \ge 0$
- Amortized costs:

- PUSH:

$$\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$$

 $= 1 + 1$
 $= 2$
 $= O(1).$
- POP:
 $\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$
 $= 1 + (-1)$
 $= 0$
 $= O(1).$
- MULTIPOP(k):
 $\tilde{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$
 $= k + (-k)$
 $= 0$
 $= O(1).$

• Total cost of *n* operations: $\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i = O(n)$.

2.2 Example: Binary counter

- Define $\Phi(D_i) = \sum_{i \ge 0} A[i] \Rightarrow \Phi(D_0) = 0$ and $\Phi(D_i) \ge 0$
 - $-\Phi(D_i)$ is the number of ones in counter.
- Amortized cost of *i*th operation: $\tilde{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$
 - Consider the case where first k positions in A are $1 A = < 0, 0, \dots, 1, 1, 1, 1, \dots, 1 >$
 - In this case $c_i = k + 1$
 - $Φ(D_i) Φ(D_{i-1})$ is -k + 1 since the first k positions of A are 0 after the increment and the k + 1th position is changed to 1 (all other positions are unchanged) ↓
 - $-\tilde{c}_i = k + 1 k + 1 = 2 = O(1)$
- Total cost of *n* increments: $\sum_{i=1}^{n} c_k \leq \sum_{i=1}^{n} \tilde{c}_i = O(n).$

2.3 Notes on amortized cost

- Amortized cost depends on choice of Φ
- Different operations can have different amortized costs.
- Often we think about potential/credits as being distributed on certain parts of data structure. In multipop example:
 - Every element holds one credit.
 - PUSH: Pay for operation (cost 1) and for placing one credit on new element (cost 1).
 - POP: Use credit of removed element to pay for the operation.
 - Multipop: Use credits on removed elements to pay for the operation.

In counter example:

- Every 1 in A holds one credit.
- Change from $1 \rightarrow 0$ payed using credit.
- Change from 0 \rightarrow 1 payed by INCREMENT; pay one credit to do the flip and place one credit on new 1.

北

- INCREMENT cost O(1) amortized (at most one $0 \rightarrow 1$ change).
- Book calls this the *accounting method*
 - Note: Credits only used for analysis and is not part of data structure
- Hard part of amortized analysis is often to come up with potential function Φ
 - Some people prefer using potential function (*potential method*), some prefer thinking about placing credits on data structure (*Accounting method*)
 - Accounting method often good for relatively easy examples.
- Amortized analysis defined in late '80-ies \Rightarrow great progress (new structures!)
- Next time we will discuss an elegant "self-adjusting" search tree data structure with amortized $O(\log n)$ bonds for all operations (*splay trees*).