Lecture 1: Introduction

(CLRS 1, 2.1-2.2)

1 Introduction

- Class is about designing and analyzing algorithms
- Algorithm: A well-defined procedure that takes an input and computes some output.
* Not a program (but often specified like it): An algorithm can often be implemented in several ways.
- Design: Methods/ideas for developing (efficient) algorithms.
- Analysis: Abstract/mathematical comparison of algorithms (without actually implementing them). Think of analysis as a measure of the quality of your algorithm and use it to justify design decisions when you write programs.
- In this class we do all these:
- come up with solutions for a problem
- prove that it is correct
- analyze its running time
- Hopefully the class will show that algorithms matter!

2 Algorithm example: Insertion-sort

The problem of sorting is defined as:

- Input: n integers in array $A[1 . . n]$
- Output: A sorted in increasing order

Insertion-sort works similarly with sorting a deck of cards. The algorithm is described below in a "pseudo-code" that we will use to describe algorithms.

```
INSERTION-SORT(A)
    For \(j=2\) to \(n\) DO
        \(k e y=A[j]\)
        \(i=j-1\)
        WHILE \(i>0\) and \(A[i]>\) key DO
            \(A[i+1]=A[i]\)
            \(i=i-1\)
        OD
        \(A[i+1]=k e y\)
    OD
```

How does it work? Example:

| 5 | 2 | 4 | 6 | 1 | 3 | $\mathrm{j}=2$ | $\mathrm{i}=1$ | $\mathrm{key}=2$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 5 | 5 | 4 | 6 | 1 | 3 | | $\mathrm{i}=0$ | |
| 2 | 5 | 4 | 6 | 1 | 3 | | | |
| 2 | 5 | 4 | 6 | 1 | 3 | $\mathrm{j}=3$ | $\mathrm{i}=2$ | $\mathrm{key}=4$ |
| 2 | 5 | 5 | 6 | 1 | 3 | | $\mathrm{i}=1$ | |
| 2 | 4 | 5 | 6 | 1 | 3 | | | |
| 2 | 4 | 5 | 6 | 1 | 3 | $\mathrm{j}=4$ | $\mathrm{i}=3$ | $\mathrm{key}=6$ |
| 2 | 4 | 5 | 6 | 1 | 3 | | | |
| 2 | 4 | 5 | 6 | 1 | 3 | $\mathrm{j}=5$ | $\mathrm{i}=4$ | $\mathrm{k} e \mathrm{y}=1$ |
| 2 | 4 | 5 | 6 | 6 | 3 | | $\mathrm{i}=3$ | |
| 2 | 4 | 5 | 5 | 6 | 3 | | $\mathrm{i}=2$ | |
| 2 | 4 | 4 | 5 | 6 | 3 | | $\mathrm{i}=1$ | |
| 2 | 2 | 4 | 5 | 6 | 3 | | $\mathrm{i}=0$ | |
| 1 | 2 | 4 | 5 | 6 | 3 | | | |
| 1 | 2 | 4 | 5 | 6 | 3 | $\mathrm{j}=6$ | $\mathrm{i}=5$ | $\mathrm{k} e \mathrm{l}=3$ |
| 1 | 2 | 4 | 5 | 6 | 6 | | $\mathrm{i}=4$ | |
| 1 | 2 | 4 | 5 | 5 | 6 | | $\mathrm{i}=3$ | |
| 1 | 2 | 4 | 4 | 5 | 6 | | $\mathrm{i}=2$ | |
| 1 | 2 | 3 | 4 | 5 | 6 | | | |

2.1 Correctness

We prove correctness by finding and proving certain conditions that hold at some point in the algorithm for any input. These are called invariants.

- Prove the following loop invariant: "A $1 . . \mathrm{j}-1]$ is sorted" holds at the beginning of each iteration of FOR-loop.
- When $\mathrm{j}=\mathrm{n}+1$ (Termination) we have the correct output.
- The loop invariant can be proved by induction (try it!).
- Note: In many cases it is harder to find the right invariant(s) than to prove it (them).

2.2 Analysis

- We want to predict the resource use of the algorithm.
- We can be interested in different resources (like main memory, bandwidth), but normally running time.
- To analyze running time without actually implementing the algorithm we need a mathematical model of a computer:
Random-access machine (RAM) model:
- Instructions executed sequentially one at a time
- All instructions take unit time:
* Load/Store
* Arithmetics (e.g. $+,-, *, /$)
* Logic (e.g. >)
- Main memory is infinite

The running time of an algorithm is the number of instructions it executes in the RAM model of computation.

- RAM model not completely realistic, e.g.
- main memory not infinite (even though we often imagine it is when we program)
- not all memory accesses take same time (cache, main memory, disk)
- not all arithmetic operations take same time (e.g. multiplications expensive)
- instruction pipelining
- other processes
- But RAM model often enough to give relatively realistic results (if we don't cheat too much).
- Running time of insertion-sort depends on many things
- How sorted the input is
- How big the input is, etc etc
- Normally we are interested in running time as a function of input size
- in insertion-sort: n.
- Best-case running time: The shortest running time for any input of size n. The algorithm will never be faster than this.
- Worst-case running time: The longest running time for any input of size n. The algorithm will never be slower than this.
- Average-case running time: Be careful: average over what? Must assume an input distribution.
- Let us analyze insertion-sort by assuming that line i in the program use c RAM instructions.
- How many times are each line of the program executed?
- Let t_{j} be the number of times line 4 (the WHILE statement) is executed in the j 'th iteration.

FOR $j=2$ to n DO	cost	times
$k e y=A[j]$	c	n
$i=j-1$	c	$n-1$
WHILE $i>0$ and $A[i]>$ key DO	c	$n-1$
$A[i+1]=A[i]$	c	$\sum_{j=2}^{n} t_{j}$
$i=i-1$	c	$\sum_{j=2}^{n}\left(t_{j}-1\right)$
OD	c	$\sum_{j=2}^{n}\left(t_{j}-1\right)$
$A[i+1]=$ key		$n-1$
OD	c	$n-1$

- Running time: (depends on $\left.t_{j}\right) T(n)=c n+2 c(n-1)+c \sum_{j=2}^{n} t_{j}+2 c \sum_{j=2}^{n}\left(t_{j}-1\right)+c(n-1)$
- Best case: $t_{j}=1$ (already sorted)

$$
\begin{aligned}
T(n) & =c n+2 c(n-1)+c(n-1)+c(n-1) \\
& =5 c n-4 c \\
& =k_{1} n-k_{2}
\end{aligned}
$$

Linear function of n

- Worst case: $t_{j}=j$ (sorted in decreasing order)

$$
\begin{aligned}
T(n) & =c n+2 c(n-1)+c \sum_{j=2}^{n} j+2 c \sum_{j=2}^{n}(j-1)+c(n-1) \\
& =c n+2 c(n-1)+c\left(\frac{n(n+1)}{2}-1\right)+2 c\left(\frac{(n-1) n}{2}\right)+c(n-1) \\
& =\ldots \\
& =k_{3} n^{2}+k_{4} n-k_{5}
\end{aligned}
$$

Quadratic function of n

Note: We used $\sum_{j=1}^{n} j=\frac{n(n+1)}{2}$ (Next week!)

- Average case: We assume n numbers chosen randomly $\Rightarrow t_{j}=j / 2$
$T(n)=k_{6} n^{2}+k_{7} n+k_{8}$
Still Quadratic function of n
- Note:
- We will normally be interested in worst-case running time.
* For some algorithms, worst-case occur fairly often.
* Average case often as bad as worst case (but not always!).
- We will only consider order of growth of running time:
* We already ignored cost of each statement and used the constants c.
* We even ignored c and used k_{i}.
* We simply said that best case was linear in n and worst/average case quadratic in n.
$\Rightarrow O$-notation (best case $O(n)$, worst/average case $O\left(n^{2}\right)$) (next lecture!)

