
Amortized Analysis
(CLRS 17.1-17.3)

1 Amortized Analysis

• After discussing algorithm design techniques (Dynamic programming and Greedy algorithms)
we now return to data structures and discuss a new analysis method—Amortized analysis.

• Until now we have seen a number of data structures and analyzed the worst-case running
time of each individual operation.

• Sometimes the cost of an operation vary widely, so that that worst-case running time is not
really a good cost measure.

• Similarly, sometimes the cost of every single operation is not so important

– the total cost of a series of operations are more important (e.g when using priority queue
to sort)

⇓

• We want to analyze running time of one single operation averaged over a sequence of opera-
tions

– Note: We are not interested in an average case analyses that depends on some input
distribution or random choices made by algorithm.

• To capture this we define amortized time.

If any sequence of n operations on a data structure takes ≤ T (n) time,
the amortized time per operation is T (n)/n

– Equivalently, if the amortized time of one operation is U(n), then any sequence of n
operations takes n · U(n) time.

• Again keep in mind: “Average” is over a sequence of operations for any sequence

– not average for some input distribution (as in quick-sort)

– not average over random choices made by algorithm (as in skip-lists)

1



1.1 Example: Stack with Multipop

• As we know, a normal stack is a data structure with operations

– Push: Insert new element at top of stack

– Pop: Delete top element from stack

• A stack can easily be implemented (using linked list) such that Push and Pop takes O(1)
time.

• Consider the addition of another operation:

– Multipop(k): Pop k elements off the stack.

• Analysis of a sequence of n operations:

– One Multipop can take O(n) time ⇒ O(n2) running time.

– Amortized running time of each operation is O(1)⇒ O(n) running time.

∗ Each element can be popped at most once each time it is pushed
· Number of Pop operations (including the one done by Multipop) is bounded

by n

· Total cost of n operations is O(n)
· Amortized cost of one operation is O(n)/n = O(1).

1.2 Example: Binary counter

• Consider the following (somewhat artificial) data structure problem: Maintain a binary
counter under n Increment operations (assuming that the counter value is initially 0)

– Data structure consists of an (infinite) array A of bits such that A[i] is either 0 or 1.

– A[0] is lowest order bit, so value of counter is x =
∑

i≥0 A[i] · 2i

– Increment operation:

A[0] = A[0] + 1
i = 0
WHILE A[i] = 2 DO

A[i + 1] = A[i + 1] + 1
A[i] = 0
i = i + 1

OD

• The running time of Increment is the number of iterations of while loop +1.

Example (Note: Bit furthest to the right is A[0]):

x = 47⇒ A =< 0, . . . , 0, 1, 0, 1, 1, 1, 1 >

x = 48⇒ A =< 0, . . . , 0, 1, 1, 0, 0, 0, 0 >

x = 49⇒ A =< 0, . . . , 0, 1, 1, 0, 0, 0, 1 >

Increment from x = 47 to x = 48 has cost 5

Increment from x = 48 to x = 49 has cost 1

2



• Analysis of a sequence of n Increments

– Number of bits in representation of n is log n⇒ n operations cost O(n log n).

– Amortized running time of Increment is O(1)⇒ O(n) running time:

∗ A[0] flips on each increment (n times in total)
∗ A[1] flips on every second increment (n/2 times in total)
∗ A[2] flips on every fourth increment (n/4 times in total)

...
∗ A[i] flips on every 2ith increment (n/2i times in total)
⇓
Total running time: T (n) =

∑log n
i=0

n
2i

≤ n ·
∑log n

i=0 (1
2)i

= O(n)

2 Potential Method

• In the two previous examples we basically just did a careful analysis to get O(n) bounds
leading to O(1) amortized bounds.

– book calls this aggregate analysis.

• In aggregate analysis, all operations have the same amortized cost (total cost divided by n)

– other and more sophisticated amortized analysis methods allow different operations to
have different amortized costs.

• Potential method :

– Idea is to overcharge some operations and store the overcharge as credits/potential which
can then help pay for later operations (making them cheaper).

– Leads to equivalent but slightly different definition of amortized time.

• Consider performing n operations on an initial data structure D0

– Di is data structure after ith operation, i = 1, 2, . . . , n.

– ci is actual cost (time) of ith operation, i = 1, 2, . . . , n.
⇓
Total cost of n operations is

∑n
i=0 ck.

• We define potential function mapping Di to R. (Φ : Di → R)

– Φ(Di) is potential associated with Di

• We define amortized cost c̃i of ith operation as c̃i = ci + Φ(Di)− Φ(Di−1)

– c̃i is sum of real cost and increase in potential
⇓

– If potential decreases the amortized cost is lower than actual cost (we use saved poten-
tial/credits)

– If potential increases the amortized cost is larger than actual cost (we overcharge oper-
ation to save potential/credits).

3



• Key is that, as previously, we can bound total cost of all the n operations by the total
amortized cost of all n operations:∑n

i=1 ck =
∑n

i=1(c̃i + Φ(Di−1)− Φ(Di))
= Φ(D0)− Φ(Dn) +

∑n
i=1 c̃i

⇓∑n
i=1 ck ≤

∑n
i=1 c̃i if Φ(D0) = 0 and Φ(Di) ≥ 0 for all i (or even if just Φ(Dn) ≥ Φ(D0))

Note: Amortized time definition consistent with earlier definition 1
n

∑
ci = 1

n

∑
c̃i. c̃i

equal for all i⇒ c̃i = 1
n

∑
ci

2.1 Example: Stack with multipop

• Define Φ(Di) to be the size of stack Di ⇒ Φ(D0) = 0 and Φ(Di) ≥ 0

• Amortized costs:

– Push:
c̃i = ci + Φ(Di)− Φ(Di−1)

= 1 + 1
= 2
= O(1).

– Pop:
c̃i = ci + Φ(Di)− Φ(Di−1)

= 1 + (−1)
= 0
= O(1).

– Multipop(k):
c̃i = ci + Φ(Di)− Φ(Di−1)

= k + (−k)
= 0
= O(1).

• Total cost of n operations:
∑n

i=1 ck ≤
∑n

i=1 c̃i = O(n).

2.2 Example: Binary counter

• Define Φ(Di) =
∑

i≥0 A[i]⇒ Φ(D0) = 0 and Φ(Di) ≥ 0

– Φ(Di) is the number of ones in counter.

• Amortized cost of ith operation: c̃i = ci + Φ(Di)− Φ(Di−1)

– Consider the case where first k positions in A are 1 A =< 0, 0, · · · , 1, 1, 1, 1, · · · , 1 >

– In this case ci = k + 1

– Φ(Di)−Φ(Di−1) is −k + 1 since the first k positions of A are 0 after the increment and
the k + 1th position is changed to 1 (all other positions are unchanged)
⇓

– c̃i = k + 1− k + 1 = 2 = O(1)

• Total cost of n increments:
∑n

i=1 ck ≤
∑n

i=1 c̃i = O(n).

4



2.3 Notes on amortized cost

• Amortized cost depends on choice of Φ

• Different operations can have different amortized costs.

• Often we think about potential/credits as being distributed on certain parts of data structure.

In multipop example:

– Every element holds one credit.

– Push: Pay for operation (cost 1) and for placing one credit on new element (cost 1).

– Pop: Use credit of removed element to pay for the operation.

– Multipop: Use credits on removed elements to pay for the operation.

In counter example:

– Every 1 in A holds one credit.

– Change from 1→ 0 payed using credit.

– Change from 0 → 1 payed by Increment; pay one credit to do the flip and place one
credit on new 1.
⇓
Increment cost O(1) amortized (at most one 0→ 1 change).

• Book calls this the accounting method

– Note: Credits only used for analysis and is not part of data structure

• Hard part of amortized analysis is often to come up with potential function Φ

– Some people prefer using potential function (potential method), some prefer thinking
about placing credits on data structure (Accounting method)

– Accounting method often good for relatively easy examples.

• Amortized analysis defined in late ’80-ies ⇒ great progress (new structures!)

• Next time we will discuss an elegant “self-adjusting” search tree data structure with amortized
O(log n) bonds for all operations (splay trees).

5


