Amortized Analysis
(CLRS 17.1-17.3)

1 Amortized Analysis

After discussing algorithm design techniques (Dynamic programming and Greedy algorithms)
we now return to data structures and discuss a new analysis method—Amortized analysis.

Until now we have seen a number of data structures and analyzed the worst-case running
time of each individual operation.

Sometimes the cost of an operation vary widely, so that that worst-case running time is not
really a good cost measure.

Similarly, sometimes the cost of every single operation is not so important

— the total cost of a series of operations are more important (e.g when using priority queue
to sort)

4

We want to analyze running time of one single operation averaged over a sequence of opera-
tions

— Note: We are not interested in an average case analyses that depends on some input
distribution or random choices made by algorithm.

To capture this we define amortized time.

If any sequence of n operations on a data structure takes < 7'(n) time,
the amortized time per operation is T'(n)/n

— Equivalently, if the amortized time of one operation is U(n), then any sequence of n
operations takes n - U(n) time.

Again keep in mind: “Average” is over a sequence of operations for any sequence

— not average for some input distribution (as in quick-sort)

— not average over random choices made by algorithm (as in skip-lists)



1.1 Example: Stack with MurTiPOP

e As we know, a normal stack is a data structure with operations

— PUsH: Insert new element at top of stack
— Pop: Delete top element from stack

e A stack can easily be implemented (using linked list) such that PusH and Pop takes O(1)
time.

e Consider the addition of another operation:
— Murtipop(k): PoP k elements off the stack.
e Analysis of a sequence of n operations:

— One MULTIPOP can take O(n) time = O(n?) running time.
— Amortized running time of each operation is O(1) = O(n) running time.

+x Each element can be popped at most once each time it is pushed
- Number of PoP operations (including the one done by MULTIPOP) is bounded
by n
- Total cost of n operations is O(n)

- Amortized cost of one operation is O(n)/n = O(1).

1.2 Example: Binary counter

e Consider the following (somewhat artificial) data structure problem: Maintain a binary
counter under n INCREMENT operations (assuming that the counter value is initially 0)

— Data structure consists of an (infinite) array A of bits such that A[i] is either 0 or 1.
— A0] is lowest order bit, so value of counter is = > ;5 Ali] - 2°

— INCREMENT operation:

Al0] = AJ0] + 1
i=0
WHILE A[i] = 2 DO
Ali+1]=Ali +1] +1
Afi] =0
i=i+1
OD

e The running time of INCREMENT is the number of iterations of while loop +1.
Example (Note: Bit furthest to the right is A[0]):

r=47=A=<0,...,0,1,0,1,1,1,1 >
r=48 = A=<0,...,0,1,1,0,0,0,0 >
r=49=A=<0,...,0,1,1,0,0,0,1 >

INCREMENT from x = 47 to x = 48 has cost 5

INCREMENT from x = 48 to x = 49 has cost 1



e Analysis of a sequence of n INCREMENTS

— Number of bits in representation of n is logn = n operations cost O(nlogn).
— Amortized running time of INCREMENT is O(1) = O(n) running time:

« A[0] flips on each increment (n times in total)

« A[1] flips on every second increment (n/2 times in total)

« A[2] flips on every fourth increment (n/4 times in total)

* A[i] flips on every 2/th increment (/2% times in total)

4

Total running time: 7'(n)

1
Zi‘fof%
ogn/1\s
n: i:g(] (E)Z

O(n)

A

2 Potential Method

In the two previous examples we basically just did a careful analysis to get O(n) bounds
leading to O(1) amortized bounds.

— book calls this aggregate analysis.
e In aggregate analysis, all operations have the same amortized cost (total cost divided by n)

— other and more sophisticated amortized analysis methods allow different operations to
have different amortized costs.

Potential method:

— Idea is to overcharge some operations and store the overcharge as credits/potential which
can then help pay for later operations (making them cheaper).

— Leads to equivalent but slightly different definition of amortized time.

e Consider performing n operations on an initial data structure Dg
— D, is data structure after ith operation, i =1,2,... n.
— ¢; is actual cost (time) of ith operation, i =1,2,...,n.
U

Total cost of n operations is Y i Ck.

We define potential function mapping D; to R. (®: D; — R)

— ®(D;) is potential associated with D;

We define amortized cost ¢; of ith operation as ¢; = ¢; + ®(D;) — ®(D;—1)

— ¢; is sum of real cost and increase in potential

4
— If potential decreases the amortized cost is lower than actual cost (we use saved poten-

tial/credits)

— If potential increases the amortized cost is larger than actual cost (we overcharge oper-
ation to save potential/credits).



e Key is that, as previously, we can bound total cost of all the n operations by the total

2.1

2.2

amortized cost of all n operations:

Yk = i (G + @(Di1) — ©(Dy))
= ®(Do) = (D) + 31 &

U
Yo ce <Y 6 if ®(Dg) =0and ®(D;) > 0 for all i (or even if just ®(D,,) > ®(Dy))
Note: Amortized time definition consistent with earlier definition %Zci = %Zc}. G

equal for all i = ¢; = %Z C;

Example: Stack with multipop
Define ®(D;) to be the size of stack D; = ®(Dy) = 0 and ®(D;) >0

Amortized costs:

— Push:
61’ = + (I)(DZ) — (I)(Dl_l)
= 141
= 2
= 0(1)
— Por
52‘ = ¢+ (I)(DZ) — (I)(Di_l)
= 14(-1)
= 0
= 0O(1).
— Muvrripopr(k):
61' = + (I)(Dl) — ‘I)(Di_l)
= k+(—k)
= 0
= 0O(1).

Total cost of n operations: Y i ;cxp < Y iy & = O(n).

Example: Binary counter
Define ®(D;) = >-;50 Ali] = ®(Dp) = 0 and ®(D;) >0
— ®(D;) is the number of ones in counter.
Amortized cost of ith operation: ¢ = ¢; + ®(D;) — ®(D;—1)

— Consider the case where first k positions in A are 1 A =< 0,0,---,1,1,1,1,---,1 >
— In thiscase ¢; =k +1

— ®(D;) — ®(D;_1) is —k + 1 since the first k positions of A are 0 after the increment and
the k + 1th position is changed to 1 (all other positions are unchanged)

4
—Gi=k+1-k+1=2=0(1)

e Total cost of n increments: > 7' ;¢ < D1t & = O(n).



2.3

Notes on amortized cost

Amortized cost depends on choice of ®
Different operations can have different amortized costs.

Often we think about potential /credits as being distributed on certain parts of data structure.

In multipop example:

— Every element holds one credit.

PusH: Pay for operation (cost 1) and for placing one credit on new element (cost 1).

— Pop: Use credit of removed element to pay for the operation.

MurtipoP: Use credits on removed elements to pay for the operation.
In counter example:

— Every 1 in A holds one credit.
— Change from 1 — 0 payed using credit.

— Change from 0 — 1 payed by INCREMENT; pay one credit to do the flip and place one
credit on new 1.

4

INCREMENT cost O(1) amortized (at most one 0 — 1 change).
Book calls this the accounting method
— Note: Credits only used for analysis and is not part of data structure
Hard part of amortized analysis is often to come up with potential function ®

— Some people prefer using potential function (potential method), some prefer thinking
about placing credits on data structure (Accounting method)

— Accounting method often good for relatively easy examples.
Amortized analysis defined in late ’80-ies = great progress (new structures!)

Next time we will discuss an elegant “self-adjusting” search tree data structure with amortized
O(logn) bonds for all operations (splay trees).



